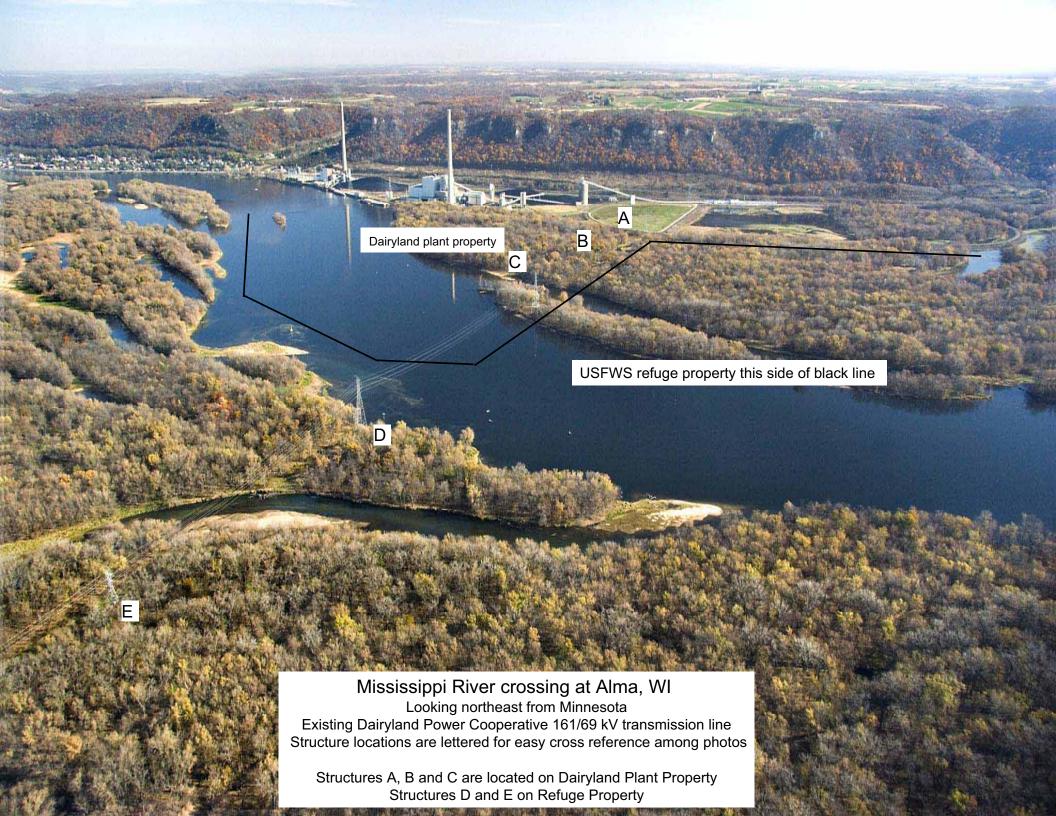
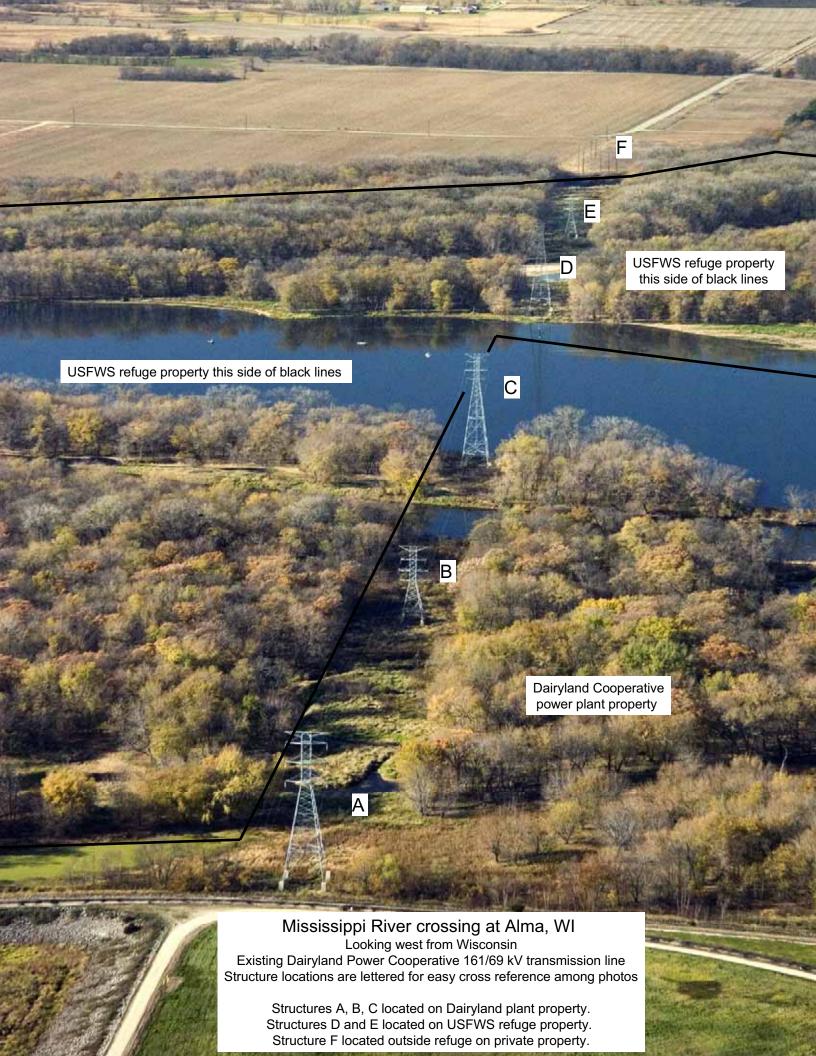
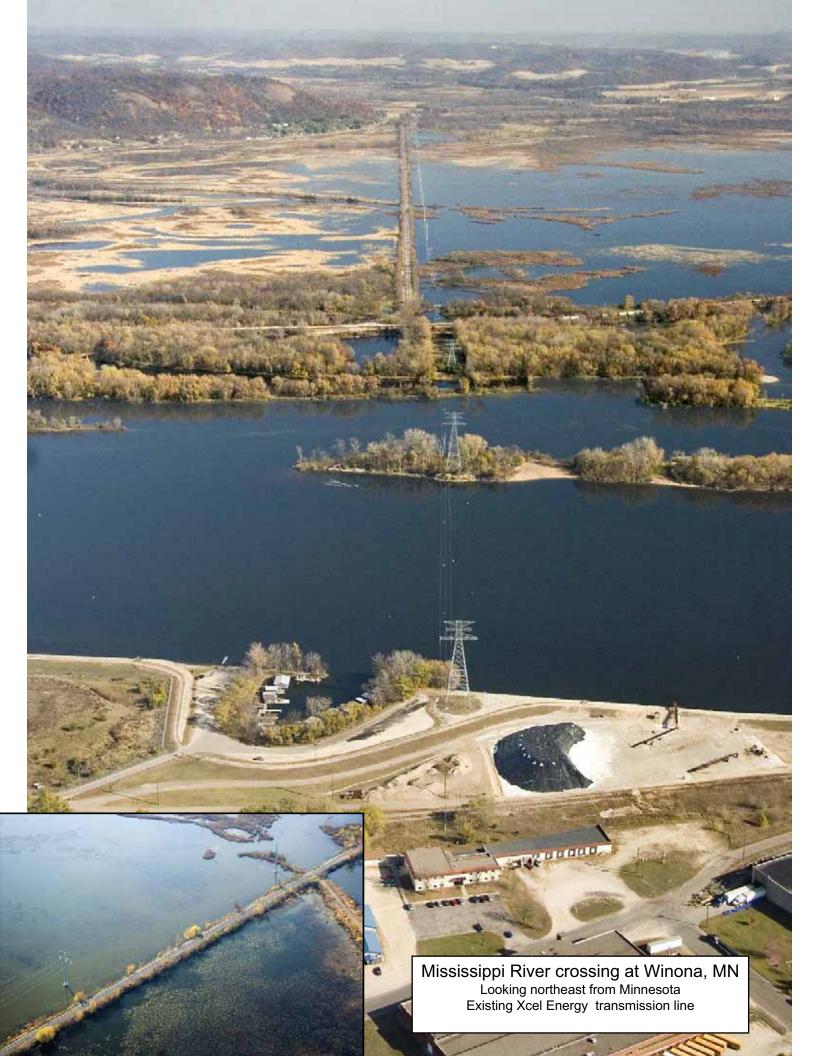
CapX2020

Appendix F: Mississippi River Crossing Analysis




Appendix F1:

Photos of Existing Transmission Line Crossings at Alma, Winona and La Crescent



Hampton • Rochester • La Crosse 345 kV Transmission Project

Appendix F: ississippi i er Crossing esign ptions Alma

Appendix F:

ississippi i er Crossing esign ra ings

The Mississippi River presents unique considerations that will require the use of multiple-circuit, specialty structures. A portion of this crossing is on Upper Mississippi River Wildlife Refuge (Refuge) lands managed by the U.S. Fish and Wildlife Service (USFWS). A Special Use Permit will be required to cross the Refuge and the Applicant will work closely with the USFWS to identify the most appropriate structure design.

An existing double-circuit transmission line crosses the Mississippi River and Refuge at the Project's proposed crossing location. The existing line crosses approximately 0.5 mile of Refuge lands and includes two structures on refuge property. The line is constructed on a 180-foot-wide permitted ROW. An area approximately 125 feet wide and 1,900 feet long is maintained cleared of trees. The two main river crossing structures are 180 feet tall.

Several possible designs for the proposed river crossing are described in this appendix. The design options demonstrate tradeoffs between structure height and easement width while maintaining only three structures on refuge lands. Minimum conductor clearance over the Mississippi River main channel in all instances is approximately 90 feet, per by US Army Corps of Engineers requirements.

- Option A: A design that stays within the existing 125-foot wide tree clearing. However, this results in main channel crossing structures of 275 feet in height. The Federal Aviation Administration (FAA) requires lighting of poles exceeding 200 feet above ground level, and may also require poles to be painted alternating red and white.
- Option B: The shortest possible pole design with horizontal circuit configuration. This keeps the main channel crossing structures less than 200 feet tall, avoiding FAA lighting requirements and keeps all the conductors in one plane, which is often preferred by those who are concerned about bird impacts. This design requires a 280-foot cleared ROW.
- Options C and D: A combination of options A and B keeps main channel crossing structures of less than 200 feet while using narrower structures elsewhere to minimize the need for additional ROW and tree clearing on refuge lands.

These overhead options are represented in the attached pages through the use of plan view, or aerial photo, drawings. These drawings incorporate black and white aerial photographs, obtained by the Applicant in November 2008, as a background. Numbered black dots represent transmission structure locations. Also noted on each drawing is the right-of-way width required by each option, and a black line with grey cross hatching that represents US Fish and Wildlife Service Upper Mississippi National Wildlife Refuge lands. The oval train tracks at Dairyland Power Cooperative's Alma generating station is at the bottom right. The distance between the western most structure, 1, and the eastern most structure, 9, is approximately 1.5 miles, or slightly wider than the river flood plane in this area. Sketches of the various structure types proposed for each design are inset in the drawings and are numbered and dimensioned. The following tables summarize structure height and right-of-way width for each option.

Ta le F1:

ption A ississippi i er Crossing

tr ct re	eight feet	Width of ight of Wa at tr ct re feet	Location Comment	
1	105	125	Private property	
2	130	125	Wildlife refuge	
3	130	125	Wildlife refuge	
5	275 275	125	Wildlife refuge; river crossing structure; height triggers FAA lighting requirements Dairyland Power property; river crossing structure; height triggers FAA lighting	
6	135	125	requirements Dairyland Power property	
7	195	125	Dairyland Power property	
8	195	125	Dairyland Power property	
9	100	125	Private property	

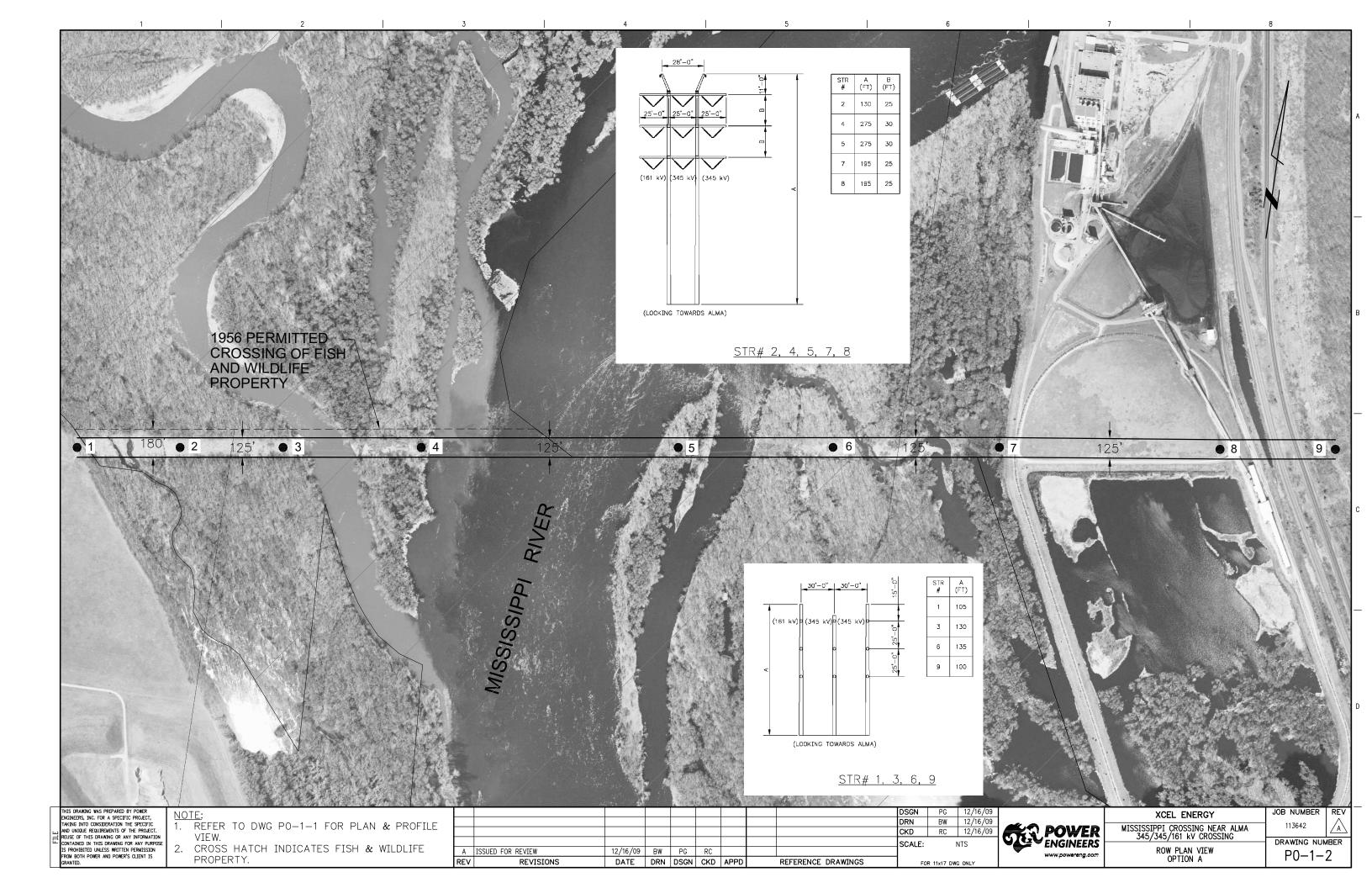
Ta le F:

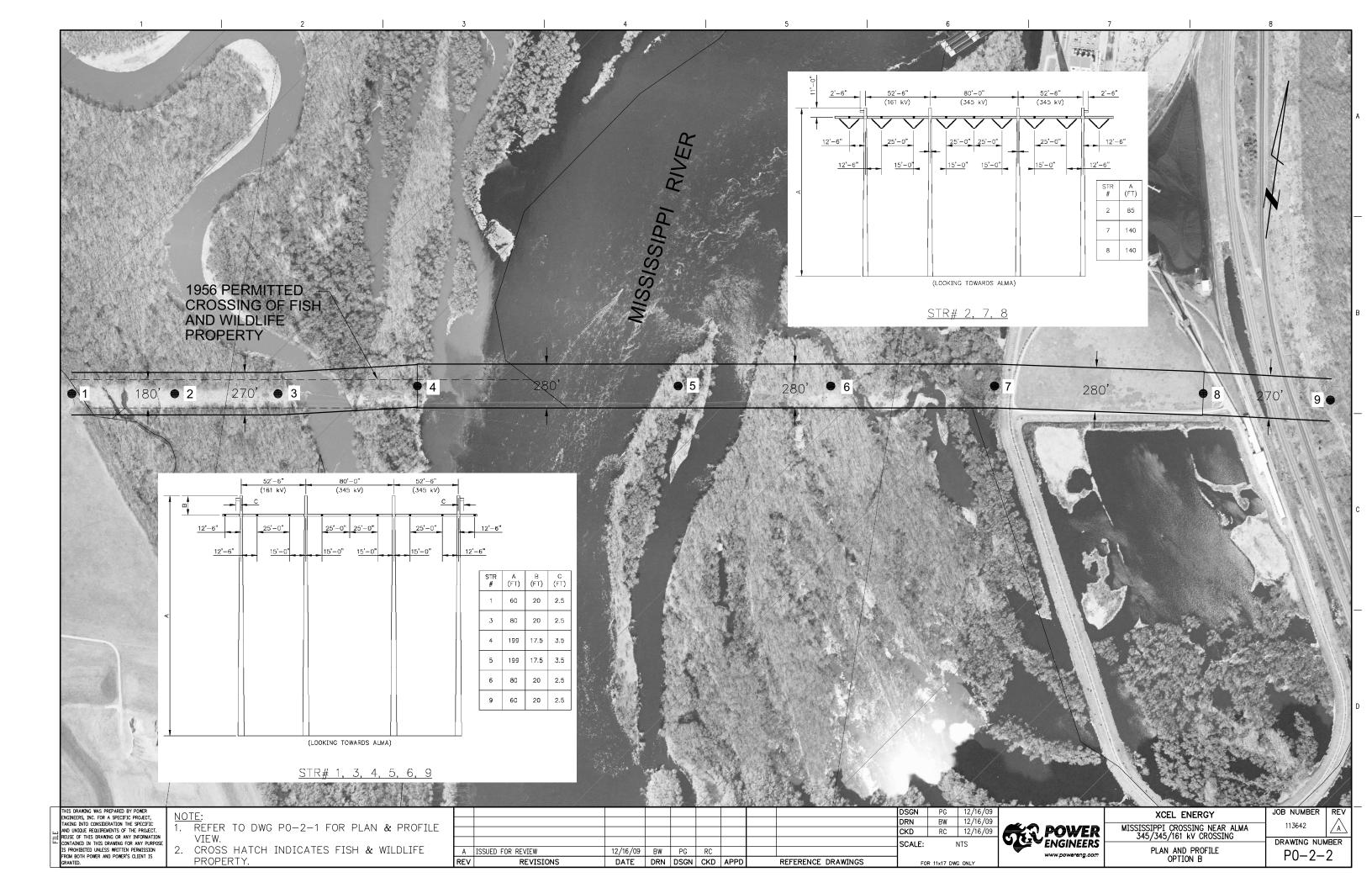
ption ississippi i er Crossing

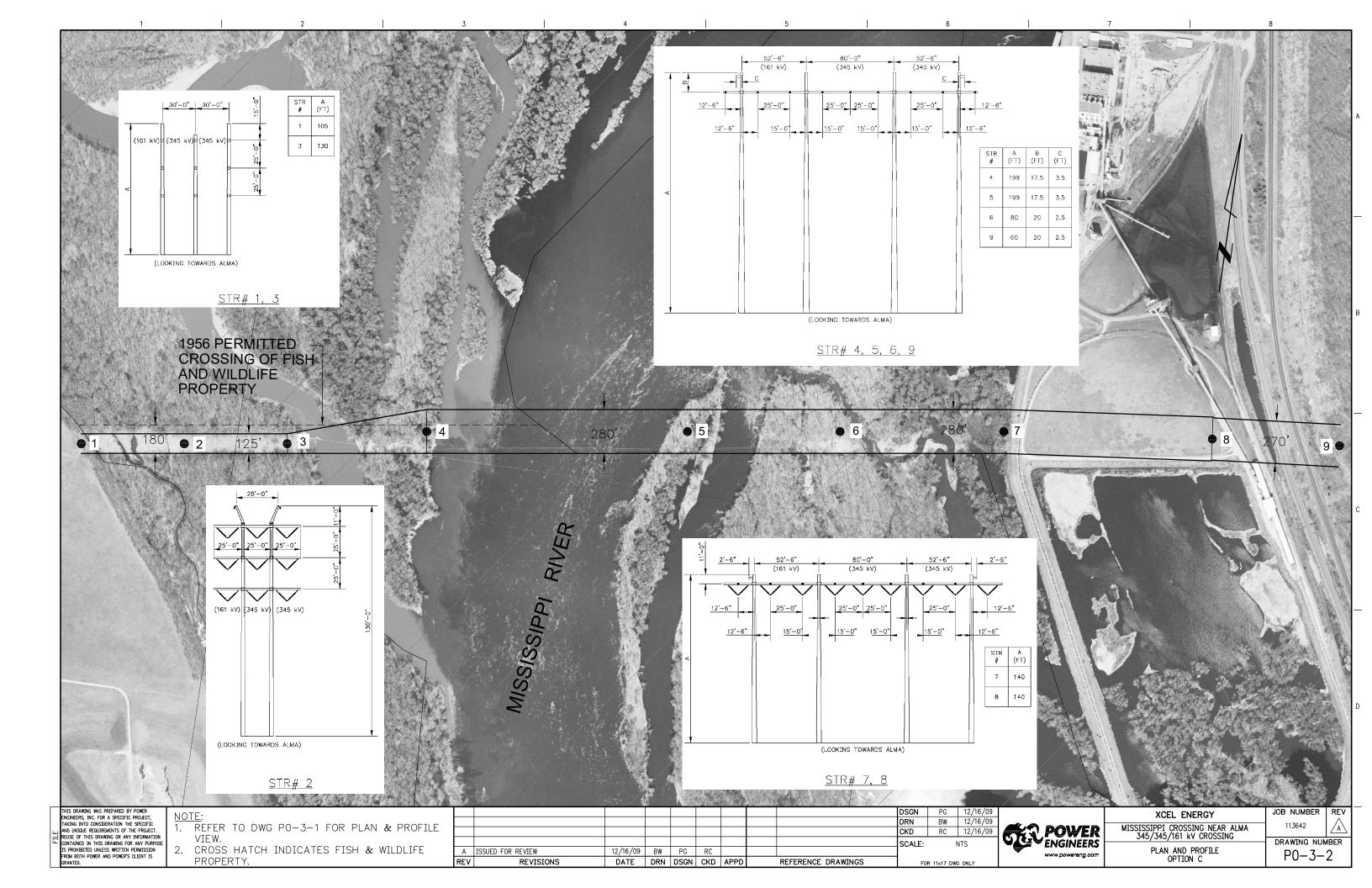
tr ct re	eight feet	Width of ight of Wa at tr ct re feet	Location Comment
1	60	270	Private property
2	85	270	Wildlife refuge
3	80	270	Wildlife refuge
4	199	280	Wildlife refuge; river
			crossing structure
5	199	280	Dairyland Power property;
			river crossing structure
6	80	280	Dairyland Power property
7	140	280	Dairyland Power property
8	140	280	Dairyland Power property
9	60	270	Private property

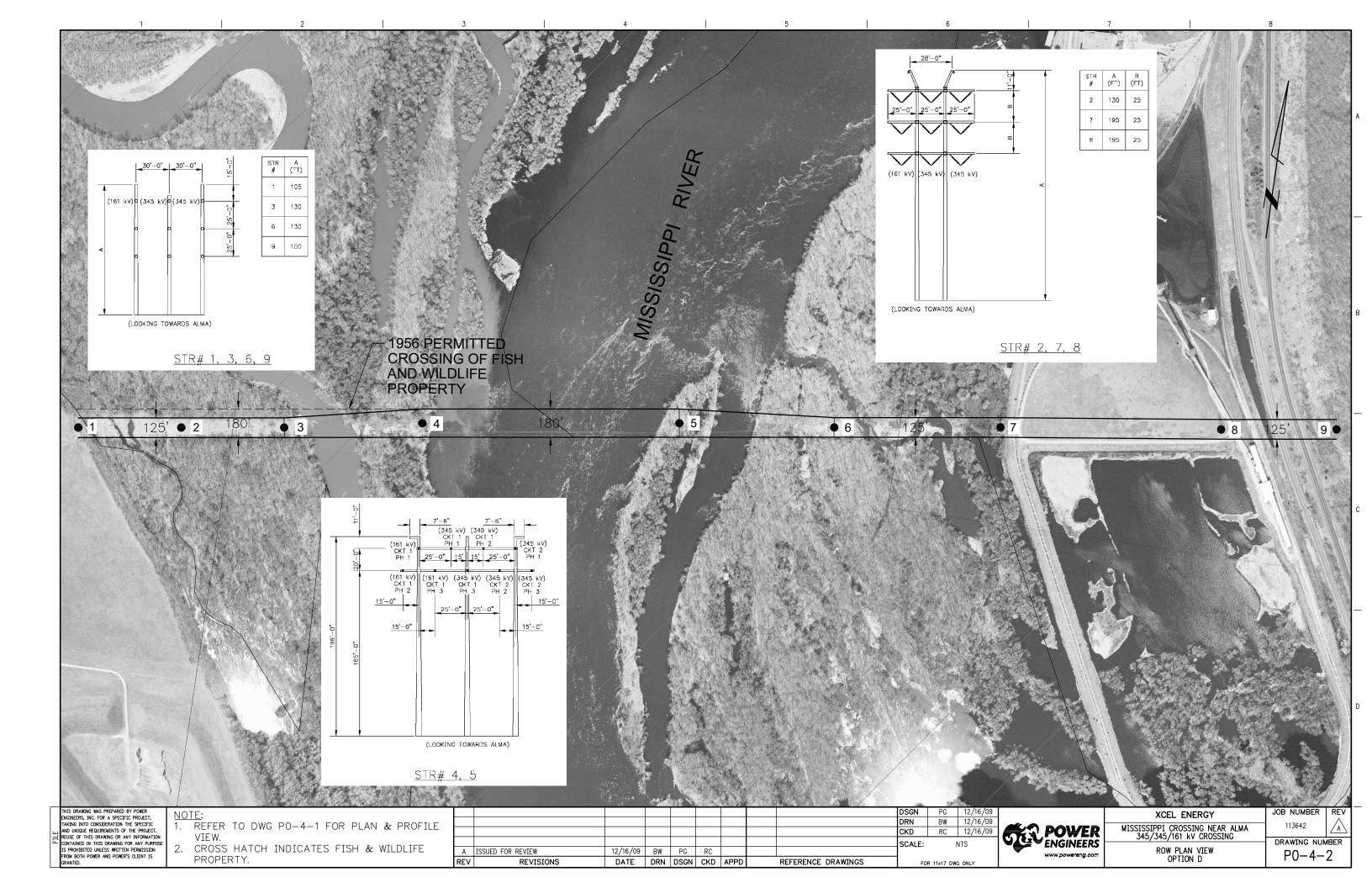
Ta le F:

ption C ississippi i er Crossing


tr ct re	eight feet	Width of ight of Wa at tr ct re feet	Location Comment
1	105	125	Private property
2	130	125	Wildlife refuge
3	130	125	Wildlife refuge
4	199	280	Wildlife refuge; river
			crossing structure
5	199	280	Dairyland Power property;
			river crossing structure
6	80	280	Dairyland Power property
7	140	280	Dairyland Power property
8	140	280	Dairyland Power property
9	60	270	Private property


Ta le F:


ption ississippi i er Crossing


tr ct re	eight feet	Width of ight of Wa at tr ct re feet	Location Comment	
1	105	125	Private property	
2	130	125	Wildlife refuge	
3	130	125	Wildlife refuge	
4	196	180	Wildlife refuge; river crossing	
			structure	
5	196	180	Dairyland Power property;	
			river crossing structure	
6	130	125	Dairyland Power property	
7	195	125	Dairyland Power property	
8	195	125	Dairyland Power property	
9	100	125	Private property	

Appendix F: ndergro nd Feasi ilit Anal sis Alma Crossing Applicants Concl sions

Appendix F:

ississippi i er ndergro nd Crossing Feasi ilit Anal sis

Applicant s Concl sions and Comments

The Applicant engaged an engineering firm to determine the feasibility of underground installation for the double circuit 345 kV line at the Alma River Crossing. That analysis is attached.

The length of the underground alternative studied is 1.3 miles and has an estimated cost of \$90 million. This is approximately \$70 million per mile for underground double circuit 345 kV compared to approximately \$2 million per mile for overhead.

Underground transmission cable, especially at high voltages such as 345 kV, is much different than underground distribution cable. Transmission cables are several inches in diameter and must be contained in 10 to 30 inch pipes. Multiple conductors per phase are required. When open trench methods place the conductors close to the surface, they must be encased in concrete to protect them from potential damage.

Based on the engineer's analysis and the Applicant's own experience, the Applicant concluded that undergrounding is not a prudent alternative because there are not benefits that justify a \$90 million additional expenditure. The key considerations were aesthetic impacts, avian impacts, cost and reliability.

Overhead and underground alternatives have different aesthetic and avian impacts. However, these impacts can be successfully mitigated with wire marking techniques and appropriate design alternatives. The Project's overhead options consolidate the existing and proposed transmission lines into single structures.

Aesthetic impacts and the risk of bird impacts can be reduced with underground construction. However, with the underground alternative studied, the existing double circuit overhead line at the Alma Crossing would remain in place. In addition, underground construction would involve more ground disturbance during construction than overhead alternatives due to the need to construct with horizontal directional drill and open trench methods. In this instance, the underground alternative results in a 235 foot wide cleared right-of-way containing eight 10-inch borings under the river spaced 25 feet apart. Temporary construction areas would require additional tree clearing. High pressure fluid-filled pipe technology contains a mineral oil dielectric coolant that, while manageable, is a potential environmental issue that is not present with overhead construction. In addition, the underground design would require is transition stations. Similar to small fenced substations, a transition station is required at each end to transition from underground to overhead cable. Each transition station would be approximately one acre in size.

The underground alternative also has unique reliability concerns. Failures of underground cables take longer to locate and repair than overhead alternatives. Complete replacement of a span of cable, if necessary, would leave the transmission line out of service for several months.

The attached underground feasibility report was prepared using aerial photographs and USGS topographic maps. No further site-specific investigation was conducted during this feasibility stage. Potential environmental issues discussed in the report are general to underground installations and are not necessarily project specific.

Appendix F: ndergro nd Feasi ilit eport

XCEL ENERGY

CapX Hampton – Rochester – La Crosse 345kV Project

Alma Mississippi River Crossing **Underground Report**

PROJECT NUMBER:

PROJECT CONTACT:

RON CARRINGTON

EMAIL:
RCARRINGTON@POWERENG.COM

PHONE:

(970) 226-3706

PROJECT CONTACT: JERRY JOHNSON

EMAIL:

JJOHNSON@POWERENG.COM

PHONE:

(208) 788-0364

TABLE OF CONTENTS

SEC.	<u>TION</u>	PAGE
I.	EXECUTIVE SUMMARY	1
	SCOPE OF WORK	
	UNDERGROUND CABLE SYSTEMS	
	Extruded Dielectric Cable Systems	
	HPFF Pipe Type Cable Systems	
	CABLE CASE SUMMARY	
	COST ESTIMATES	
II.	PROJECT DESCRIPTION	4
	CABLE SYSTEM EVALUATION REPORT	
	AMPACITY STUDIES	
	345KV XLPE INSTALLATION CONCERNS	
III.	UNDERGROUND CABLE SYSTEMS	10
	INTRODUCTION	
	RELIABILITY	
	EXTRUDED DIELECTRIC CABLE SYSTEMS	
	Cable	
	Cable Accessories	
	Cable Maintenance and Repair	
	Pros and Cons	
	HIGH-PRESSURE PIPE-TYPE CABLE SYSTEMS	
	Cable	
	Cable Accessories	
	Maintenance and Repair	
	Pros and Cons	18
IV.	TERMINATION STRUCTURE/STATION	19
	TERMINATION STRUCTURE	19
	TERMINATION STATION	19
V.	COST ESTIMATE	20
	INTRODUCTION	
	COST ESTIMATE ASSUMPTIONS	
	SUMMARY OF COST ESTIMATES	20
VI.	INSTALLATION METHODS	
	OVERVIEW OF HORIZONTAL DIRECTIONAL DRILLING (HDD)	21
	Development and Uses	
	Technology Limits	21
	Advantages	21
	Machine Types	
	Technique	
	Layout and Design	
	Work Space	
	Profile Design Parameters	
	Special Considerations for Water Crossings	

TABLE OF CONTENTS

OPERATION AND RELIABILITY	20
OVERHEAD TRANSMISSION	26
UNDERGROUND TRANSMISSION	26
COMPARISON OF ENVIRONMENTAL IMPACTS OF OVERHEAD AND	
UNDERGROUND TRANSMISSION LINE CONSTRUCTION	27
GROUND DISTURBANCE	27
LAND USE AND AESTHETICS	28
HEALTH ISSUES AND NOISE	28
	OVERHEAD TRANSMISSIONUNDERGROUND TRANSMISSION

APPENDIX

Ampacity Studies Cost Estimates HDD Detail Termination Details Plan and Profile

I. EXECUTIVE SUMMARY

Scope of Work

Xcel Energy (Xcel) requested that a comparison be made of alternative 345kV underground cable systems for the CapX Hampton – Rochester – La Crosse 345kV Project Alma Mississippi River Underground Crossing.

Underground Cable Systems

Two basic types of underground cable systems were considered for the CapX Hampton – Rochester – La Crosse 345kV Project Alma Mississippi River Underground Crossing, namely an extruded dielectric, cross-linked polyethylene (XLPE), (extruded) cable system and a high-pressure fluid-filled pipe-type (HPFF) cable system. Details of the construction of the cables and major accessories for each of these cable systems are included in Section II. The major pros and cons of each of these cable systems are as follows:

Extruded Dielectric Cable Systems

Pros:

- Essentially no operation and maintenance requirements.
- High reliability reported for systems of modern design at voltages 230kV and below in the USA, Japan and European countries.
- Higher normal operating and short circuit temperature ratings as compared to HPFF systems.
- Installation environmental condition requirements for splicing and terminating less stringent.
- Lower dielectric loses.
- Shorter time required for repair.
- Concrete encased duct bank systems provide mechanical protection from dig-ins and allow for short lengths of trench to be opened for construction activities.

Cons:

- Susceptible to damage from dig-ins if direct buried, more so than HPFF pipe-type cable systems.
- Potential for induced sheath voltages and losses.
- Trench for installation of each cable length (direct buried) must be left open for the entire length during cable installation.
- Duct bank/conduit installation may reduce thermal performance and increases cost.
- XLPE insulation not as forgiving (fluidimpregnated paper insulation is more tolerant of manufacturing defects, and variances).
- Limited use at 345kV in US.

HPFF Pipe Type Cable Systems

Pros:

- Long experience record dating from 1930's with extensive use in the U.S.
- Very high reliability based on utility records.
- Steel pipe affords mechanical strength and protection from "dig-ins."
- Short length of trench can be opened for construction activities.
- The cable and other materials can be manufactured and installed by firms located in the United States.
- For direction drilling installations the casing installed can also be utilized as the cable conduit.
- Allows for dielectric fluid circulation to help increase ampacity.

Cons:

- Pipe susceptible to corrosion.
- Requires very large specially designed equipment for installation activities.
- Requires specialists for specific installation activities.
- May require long repair time in case of faults in the cable system.
- Requires installation and maintenance of a cathodic protection system.
- Requires maintenance of monitoring and pressurization system.

Cable Case Summary

The options for installation of the 345kV circuits circuit are summarized below. For each case, the cable system type, number of cables per phase, installation depth and ampacity are provided.

Table 1: Ampacity Results

Case #	345kV Circuit	Cables per Phase	Cable Type Burial Depth		Number of Bores - Spacing	Total Ampacity
1	5000 kcmil	6*	XLPE	30-ft	6 - 40-ft	3700A
2	2500 kcmil	4	HPFF	20-ft	4 - 25-ft	3700A

^{*} Due to software limitation, the 345kV XLPE case attached in the appendix shows only 4 cables per phase. The total of 6 required cables per phase was extrapolated from the cable rating in the aforementioned case.

Cost Estimates

The estimated installed costs for the XLPE and HPFF pipe-type insulated cable systems for the CapX Hampton – Rochester – La Crosse 345kV Project Alma Mississippi River Underground Crossing are:

Table 2: Cost Summary Table *

Demonitori	Material	Labor	Total	Total	
Description	(One Circuit)	(One Circuit)	(One Circuit)	(Two Circuits)	
345kV XLPE					
5000 kcmil Copper	\$64,631,645	\$33,099,965	\$97,731,610	\$195,463,220	
Conductor	\$04,031,043	\$33,077,703	\$77,731,010	\$175,405,220	
345kV HPFF					
2500 kcmil Copper	\$25.426.149	¢10 (75)75	¢45 101 422	\$90,202,846	
Conductor \$25,426,148		\$19,675,275	\$45,101,423	\$90,202,840	

^{*} A 15 % contingency is included in the estimates.

The addition of a multiple circuits will require additional materials, horizontal directional drills, open trenching, manholes, and transition stations. There will be little to no overlap between additional circuits. The costs included in the table above for multiple circuits can be accounted for by simply summing the relevant individual circuit costs.

II. PROJECT DESCRIPTION

POWER prepared this report for Xcel's CapX Hampton – Rochester – La Crosse 345kV Project Alma Mississippi River Underground Crossing.

Cross-linked polyethylene (XLPE) and high-pressure fluid-filled (HPFF) systems were analyzed for the underground portion of the line. The following describes the design criteria and assumptions used in the analysis.

For both types of cable systems a number of variables remain constant. These include but are not limited to: bore length, earth ambient temperature, thermal resistivites, load factors, and burial depths as described in the Cable System Evaluation Report as well as the Ampacity Design Criteria.

The Horizontal Directional Drill (HDD) depth is controlled largely by the casing bending limitations. For example, the HDD reaches a depth of 20-ft for the HPFF system using a 10-inch casing. The heat dissipation characteristics decrease as depth increases, which ultimately increases the spacing and size of cables needed to achieve the target ampacity. For this reason a 345kV XLPE requires six (6) bores using smaller casings to decrease the overall required depth to 30-ft. However, even at this depth a 40-ft spacing is required between each bore. The drawings included in the appendices show the profile view of the HDD and typical cross sections for each configuration.

Cable System Evaluation Report

Cable	System	HPF	F ☑		LPFF		Soli	d Dielectric ☑
Codes		AEIC ☑		EC 🗆				IEEE ☑
	Conductor Size (kcmil/AWG)				1750-50	00		
	ctor Typ			_	Copper			
		ckness (mils)		_		023, PPP: 600		
	ion Mat			_	PPP/XL	PE		
	ation Me	ethod			HDD			
Shield	Type			_				
Jacket		1 (7) (7)			Yes ☑	No □	TYPE:	polyethylene
	•	rand (PMT)			Yes □	No ☑		
Descri	be	a) Valta a	· Class	2451-3	. 7			
b)	Candu	a) Voltage	_	345k\ X		n11m		
b)	Condu	Construction	opper	A Segm	Alumi	<u>.</u>		
	•	Zonsu ucuon	_	Segiii	ented			
c)	Insulat	ion: *XLPl	E ✓ E	PR □		Kraft Paper	r 🗆	Poly Paper
*XLPE	E maxim	num stress desi	gn AEIC CS	89-06		Yes □		No ☑
As an o	option							
	•	ure-Fluid-File	d (HPFF) X	K				
		ure-Gas-Filled						
Sel	f-Conta	ined-Fluid-Fill	ed (SCFF)					
d)	Shiel	d:						
e)	Jacke	et:	XLPE: Poly	yethyl	lene			
f)	Skid	Wire Type	Stainless St	teel				
Cal	ble Ope	erating Param	neters					
	-							
1. An	npacity	Requirements						
a	ı.) I	Maximum Stea	dy State	3700	0 A @ 34	45kV		
t) .)]	Emergency/Lo	ad		_			
c	:.)	Load Factor				75%		
Ċ	l.) I	Ultimate Short	Circuit		1	Amps		Cycles
е	e.) S	Shield Operation	on			Cross-bonded Single-point		Multi-Point □
1	f.)	Shield Open C	ircuit Voltag	ge Lin	nit	150V		

A.

B.	Operating Design Criteria	
1.	Earth Rho (C°-cm/Watt) - Per Geotherm	90 C°-cm/Watt
2.	Earth Ambient (C°) (as provided)	_15° C
3.	Air Ambient (C°)	N/A

Temperature (C°) EPR XLPE 90 Paper 85 5. Emergency Conductor Operating

Temperature (C°) EPR XLPE 105 Paper 105

6. Soil Thermal Resistivity (Rho) (C°-cm/Watt) 90°C-cm/W Grout Resistivity (Co-cm/Watt) $70^{\circ}\text{C}\cdot\text{cm/W}$

C. **Installation Parameters**

4. Maximum Conductor Operating

1.	Substation Terminator Constrain	nts				
2.	Cable System Burial Depth	60-ft	Maximum	20-ft	Minimum	
3.	Manholes					

a.) Burial Depth

b.) Single Circuit ☑ Double Circuit □

c.) Comments

4. Route Criteria

5. Cathodic Protection Thermocouples included at CP test stations. ISP/ Rectifier/ Anode Bed

Obtained by Xcel Energy 6. Permits

7. Duct Bank/Pipe Encasement (Configuration)

N/A 8. Communication Ducts:

9. a.)	Splices	Per cable manufacturer's recommendation	
b.)	Arresters Leakage Distance Duty Cycle Rating	MCOV Per cable manufacturer's recommendation	
c.)	Terminations	Per cable manufacturer's recommendation	_
d.)	Cable Clamps	Per cable manufacturer's recommendation	
e.)	Link Boxes (Sheath Grou	unding) Per cable manufacturer's recommendation	

Ampacity Studies

POWER Engineers, Inc. (POWER) performed an XLPE and HPFF cable sizing/ampacity study for the CapX Hampton – Rochester – La Crosse 345kV Project Alma Mississippi River Underground Crossing. The primary purpose of the study was to determine a minimum conductor size based on the design requirements provided by XCEL.

POWER used CYME International's Cable Ampacity Program (CAP) to model the cable system. The cable systems analyzed were Cross-Linked Polyethylene (XLPE) and High-Pressure Fluid-Filled (HPFF). These cable systems were analyzed using the following design criteria.

• Amp	pacity	
]	Normal	.3,700 Amps at 345kV
• Load	l Factor	.75%
• Cone	ductor Material	. Copper
• Ther	mal Resistivity (ρ, rho)	
]	Native Soil	.90°C-cm/W
(Grout	.70°C-cm/W
 Amb 	pient Temperature	
	Earth	.15°C
Max	imum Conductor Operating Temperatur	re
<u> </u>	Steady State	
	XLPE	.90°C
]	HPFF	.85°C
]	Emergency	
	XLPE	.105°C
]	HPFF	.105°C
• Buri	al Depth (Top of System)	
	Minimum	
]	Maximum	.60 feet
• Bore	Length	.3000 feet

Four cases were successfully run using depths determined by the drill path for the appropriate casing size. Multiple cables per phase were used since it is impractical to achieve the required ampacities at the given depths with a single cable. Note that the native thermal resistivity is assumed to be 90°C·cm/W. This value is a typical value and may actually be higher or lower depending on the particular soil conditions found at the project site. Table 3 includes a summary of the cases including number of bores, spacing, casing size, depth, and ampacity with operating temperature.

Table 3: Ampacity Results

Cable System Type and Conductor Size	Cables Per Phase	Number of Bores (Spacing)	Bore Casing Size	Depth	Ampacity per Cable (Temperature)
345kV XLPE 5,000 kcmil CU	6*	6 (40-ft)	30-inch	30-ft	625A (88°C)
345kV HPFF 2,500 kcmil CU	4	4 (25-ft)	10-inch	20-ft	925A (82°C)

^{*} Due to software limitation, the 345kV XLPE case attached in the appendix shows only 4 cables per phase. The total of 6 required cables per phase was extrapolated from the cable rating in the aforementioned case.

Detailed ampacity calculations are located at the end of this report.

345kV XLPE Installation Concerns

Due to the high ampacity requirements, a 345kV XLPE system is not feasible when compared to a 345kV HPFF system. This system would require a large conductor size and the use of multiple cables per phase. The cable itself would be available only from a limited number of manufacturers and would have a high cost. In addition, the cable would weigh approximately 40 pounds per foot and would have a required reel length of 3,000-ft. A reel of this length would weigh 12,000 pounds and would pose a problem for transportation to the work site. The total amount of cable required for the line would likely require the use of a barge for transportation. Once at the site, the cable could either be offloaded and installed or installed directly from the barge. Both options have their own difficulties and high cost. In addition to these problems, the 345kV XLPE installation requires additional bores with much larger spacing. This greatly increases the impact of the line since the actual work site as well as the final installation itself will take up a much larger area. A higher number of cables means a larger transition station will be required on each end as well. The end result is that the footprint of the 345kV XLPE installation will likely be about twice as large as that of the 345kV HPFF installation, and it would cost about twice as much per circuit. Due to the concerns about materials, procurement, transportation, installation, cost, and overall impact, a 345kV XLPE system is not as feasible for this project as a 345kV HPFF system.

III. UNDERGROUND CABLE SYSTEMS

Introduction

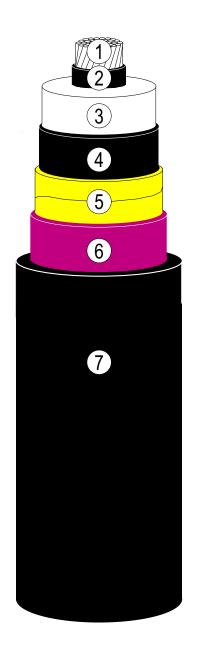
Two basic types of underground cable systems are being considered. These systems are an extruded cross-linked polyethylene cross-linked polyethylene (XLPE) insulated cable system and a high-pressure-fluid-filled pipe-type (HPFF) cable system. A brief summary of the construction of the cables and accessories for each of these cable systems follows. The pros and cons of these two cable systems are included.

Reliability

While underground transmission lines are highly reliable, their down times are significantly longer than their overhead counterparts when trouble is encountered. As a result, particular design practices are used to alleviate the problem with alternative T-lines or 100% redundancy. By implementing a design to ensure continuous operation, the reliability of underground transmission lines significantly increases.

Extruded Dielectric Cable Systems

Cable


The components of a typical dielectric cable are shown in Figure 1. The typical cable consists of a stranded copper or aluminum conductor, semi-conducting extruded conductor shield, extruded dielectric insulation, extruded semiconducting insulation shield, a lead, aluminum, copper or stainless steel sheath moisture barrier, and a protective jacket. The inclusion of a moisture barrier is typical of French and other non-U.S. cables, but has not been a standard feature of U.S. extruded dielectric cables until recently (last ten years).

A metallic shield, tape or drainwire, is required to carry fault current when a sheath is not used.

Insulation materials used for extruded dielectric cables include:

• Thermoplastic Polyethylene Compounds

Typical thermoplastic polyethylene insulation materials are low-density polyethylene (LDPE), high molecular weight polyethylene (HMWPE) and high-density polyethylene (HDPE).

1 - CONDUCTOR

Cross-section: 1750 kcmil, segmental

Material: copper

2 - INNER SEMI-CONDUCTIVE LAYER

Indicative thickness: 60 mils Minimum point thickness: 24 mils

3 - INSULATION

Material: cross-linked polyethylene Minimum average thickness: 900 mils *

4 - OUTER SEMI-CONDUCTIVE LAYER

Indicative thickness: 63 mils
Minimum point thickness: 40 mils
Maximum point thickness: 100 mils

5 - SWELLING TAPE

6 - LEAD SHEATH

Minimum average thickness: 45 mils *

7 - OUTER SHEATH AND EXTRUDED SEMICONDUCTING LAYER

Material: medium density polyethylene Minimum average thickness: 120 mils *

Figure 1: Typical XLPE Cable

• Thermosetting Compounds

Ethylene propylene rubber (EPR) and cross-linked polyethylene (XLPE) are typical thermosetting insulation compounds.

It is interesting to note that each of these insulation materials enjoys preferential use in different parts of the world. For instance, the preferred extruded dielectric insulation in France is LDPE, in Italy EPR, and in most of Europe, Japan and the U.S. XLPE. The reason for this difference is likely that no one extruded dielectric insulation material has emerged as conclusively superior to the others in all aspects for every application, including manufacturing, cost and reliability.

Materials used for semi-conducting extruded conductor and insulation shields are semi-conducting PE, XLPE and EPR compounds. PE compounds are used with PE and XLPE insulation, XLPE compounds with XLPE insulation, and EPR compounds with EPR insulation.

Cable Jackets are typically extruded PE and on rare occasions polyvinyl chloride (PVC).

Extruded dielectric cables are manufactured using one of the following extrusion techniques:

- The conductor shield and insulation are extruded in tandem over the conductor. Extrusion of the insulation shield is a separate operation.
- The insulation shield, insulation and conductor shield is extruded in tandem over the conductor. This
 method is known as triple tandem extrusion. Triple extrusion is the preferred and recommended
 technique.

The metallic shield, tape, concentric neutrals, etc., and jacket, as applicable, are applied later in separate operations.

Vulcanization of thermosetting insulation compounds, EPR and XLPE, occurs via a dry cure or steam cure process in a tube called a curing tube. After vulcanization, the insulation is cooled with water or gas in a cooling tube.

Three major types of extruder lines are used to produce extruded dielectric cable; they are catenary, MDCV (long land die) and vertical extruder lines. Vertical extruder lines are often used when heavy insulation walls are required, for cables rated in excess of 35kV and for guaranteeing concentricity.

The manufacturing process for extruded cables is of critical importance in ensuring a reliable end product, since extruded dielectric insulations are not self-healing. Fluid-impregnated paper insulation is much more tolerant of manufacturing defects. As such, quality control during manufacture of extruded dielectric cables is critical to minimize moisture contamination, voids, contaminants and protrusions. Insulation contamination can be minimized by manufacture of and use of super clean insulation compounds; transportation and storage of the compounds in sealed facilities; and screening out of contaminants at the extruder head.

Voids and moisture contamination are inevitable results of steam vulcanizing, water-cooling and cross-linking agent decomposition. Dry (gas) curing produces smaller and fewer voids and less moisture contamination.

Lead sheaths are typically extruded (see end of this section for typical cable cross-section drawings and data); however, other types of water impervious material are available. The following table compares the various types of sheath materials.

Table 4: Cable Sheath Comparison

	Extruded Lead	Extruded Aluminum	Metallic Foil Laminate	Copper	Stainless Steel
Dimensional Stability	Poor	Good	Poor	Very Good	Very Good
Fluid-Imperviousness	Very Good	Very Good	Good	Very Good	Very Good
Flexibility	Good	Poor	Very Good	Very Good	Very Good
Mechanical Strength	Good	Very Good	Poor	Very Good	Very Good
Cable Diameter (per unit)	1.0	1.0	1.0	1.05	1.14
Cable Weight (per unit)	1.59	1.0	1.09	1.27	1.34
Minimum Bending Radius	15Ds	15Ds	15Ds	12Ds	12Ds
Corrosion Resistance	Very Good	Poor	Poor	Very Good	Very Good

Ds = Diameter of metallic sheath

Cable Accessories

The three basic cable accessories for extruded dielectric cables are splices, terminations and sheath bonding materials.

Premolded splices are recommended to joint 345kV extruded dielectric cables. Cable preparation for splicing is as follows:

Insulation and shields are removed from the conductor; and the insulation is penciled. The conductor ends are then joined by a compression splice or MIG welding (aluminum conductor only).

The perceived disadvantages of traditional jointing methods compared to premolded are, as assembly is complex, specially trained craftsmen required and no factory testing is possible. The premolded joint offers simpler construction. Also all parts produced can be factory tested prior to field installation (see end of this section for premolded splice cross-section for extruded dielectric cable)

Terminations are available for extruded dielectric cable to allow transitions to overhead lines or above ground equipment. A manufacturer's catalog page showing a cross-section of a typical termination follows. A synthetic rubber stress cone is placed over the insulation to control stress and the interior of the termination body is filled with a synthetic or silicone fluid. Termination bodies are typically made of porcelain and include skirts to minimize the probability of external flashovers due to contamination.

Sheath cross bonding may be required for long extruded dielectric cable systems to minimize or eliminate sheath currents, sheath losses and sheath voltage.

Cable Maintenance and Repair

XLPE cable requires little maintenance since it is usually installed in a duct bank. Duct inspections are performed in conjunction with routine manhole inspections. Furthermore, ducts are seldom cleaned unless a new circuit, cathodic protection, or grounding is being installed. Unless environmental conditions dictate more frequent inspections, a yearly manhole inspection is generally sufficient to examine cable sheaths, protective jackets, joint casings, cable neutrals, and general physical condition of the manhole. Terminations should also be visually checked on a yearly basis to ensure a properly operating system. In the unlikely event of an electrical fault, the cable failure must be located which requires specialized equipment as well as a knowledgeable crew to pinpoint the failure. The time it takes to locate the fault location depends largely on the environmental surroundings and access to the cable for testing. Once pinpointed, an entire section of cable can be removed and replaced between manhole sections, or the duct bank can be opened up and an experienced splicing crew can rejoin the cable ends. The amount of time the system is depends entirely on the fault location and the repair method that provides the most advantageous solution. Typical repair time can range from two to four weeks.

Pros and Cons

The pros and cons of extruded dielectric cable systems for use in high voltage applications are as follows:

Pros:

- Essentially no operation and maintenance requirements.
- High reliability reported for systems of modern design at voltages of 230kV and below in Japan, the US and European countries. Extensive use and success at 400kV in France and Japan.
- Higher normal operating and short circuit temperature ratings as compared to HPFF systems.
- Installation environmental condition requirements for splicing and terminating less stringent.
- Shorter time required for repair.
- Dielectric losses for extruded cable systems considerably less than paper insulated cable systems.
- Less specialized installation equipment required.

Cons:

- Susceptible to damage from dig-ins if direct buried more so than HPFF cable systems.
- Potential for induced sheath voltages and losses.
- Trench for installation of each cable length (direct buried) must be left open during cable installation.
- Duct bank/conduit installation reduces thermal performance and increases cost.
- XLPE insulation not forgiving (fluid-impregnated paper insulation is more tolerant of manufacturing defects, and variances).
- Limited splicing/terminating workforce in USA.

High-Pressure Pipe-Type Cable Systems

Cable

The construction of a typical high-pressure pipe-type (HPPT) cable (high-pressure-gas-filled pipe-type and high-pressure-fluid-filled pipe-type cables) is shown on the following manufacturer's drawing. The cables are typically composed of a conductor, conductor shield (carbon black or metalized paper tapes), insulation (Kraft paper or paper/polypropylene laminate impregnated with polybutene or alkylbenzene fluids), insulation shield (carbon black or metalized paper tapes), a moisture barrier (non-magnetic tapes and metalized mylar tapes), and skid wires (zinc, stainless, brass). The moisture barrier prevents moisture and other contamination and loss of impregnating fluid prior to installation. The skid wires prevent damage to the cable during pulling.

Three HPPT cables are pulled into a low-carbon steel pipe to constitute a cable system. The pipe is coated on the inside with an epoxy coating to prevent oxidation prior to fluid-filling and to reduce pulling friction and tension. The pipe exterior is coated with HDPE or Polypropylene to protect the pipe from environmental corrosion and to isolate the pipe from "ground" to allow use of a cathodic protection system.

A triangular cable configuration is preferred in contrast to a cradle configuration, as it reduces pipe losses and, as a direct result, increases load capacity. Increases in pipe losses for cradled versus triangular cable configuration ranges from 20% to 45%.

HPFF cable systems are filled with pressurized low viscosity polybutene or alkylbenzene fluids.

Cathodic protection is applied to pipes used in HPFF cable systems. This protection inhibits pipe corrosion, thereby minimizing pipe leaks due to corrosion. Most forms of cathodic protection utilize one of two methods: the galvanic-anode system or the impressed-current system. With both systems, anodes are placed in the ground to draw a DC current along the cable pipe into the anodes where metallic deterioration and corrosion are allowed to occur. In most systems an isolator/surge protector is used to block the DC current from entering the station grounding grid but allowing for large AC surges to be safely discharged in the station grid. Through the use of cathodic protection, the reliability of the pipe type system can maintain a high level of performance.

The manufacturing process for HPFF cables is similar to the process used for paper insulated lead-covered cables. A conductor core is covered by helically wound layers of metalized or carbon black paper tape for conductor and insulation shield and high quality Kraft paper or paper/polypropylene laminated for insulation. The insulated cable is dried and then impregnated with fluid in large pressurized tanks.

Cable Accessories

Splicing of HPFF cables begins with removal of the insulation and shields from the conductor, the insulation is step-penciled. The conductor ends are then joined by a ram press, compression connector or MIG welding (aluminum conductor only). Insulation paper tape is wound around the spliced conductor, filling the step-penciled area of the insulation. Metalized tapes or carbon black tapes are used to reestablish the conductor and insulation shields. Small rolls of paper tape are used, as the three cables are very close together.

Maintenance and Repair

To ensure reliable, uninterrupted service, routine maintenance must be completed on cable systems as well as the associated components. Because of the more intricate systems involved with the high pressure fluid filled system, maintenance and occasional repair can be expected to be higher than that of the solid dielectric system. The hardest and often times most over looked component of the pipe type system is the pipe coating, which left un-inspected can cause catastrophic failure to the entire system. Because the cable itself is contained inside of a steel pipe, the pipe coating must be maintained in order to ensure proper operating pressures, and should be tested at least every other year. Repair of the cable pipe is an extensive process but will generally only leave the system off line for a number of days. Routine inspections and testing of the pumping plant must be preformed in order to sustain the proper operating pressures. Although the plant has a number of different sensors and alarms, a thorough yearly inspection is recommended. Other components of the cathodic protection system should be routinely tested such as the rectifier and the isolator/surge protector (ISP). Current levels, as well as voltage levels, should be tested monthly and any significant changes noted as a possible system breakdown. Anodes output levels should also be tested and replaced when necessary. As with extruded cables, electrical failures require locating the fault followed by the on site determination of repair needs. However, because the high pressure fluid filled system utilizes a pressure filled pipe, the dielectric fluid must be capped off while repairs are made. To do this a pipe freeze is initiated using liquid nitrogen to inhibit the fluid flow. Once cable splicing is finished and a repair sleeve installed, the freeze can be removed and any contaminates can be evacuated from the system. In the event of termination failure, the cable generally must be replaced all the way back to the splicing trifurcator. Typical repair time can range from two to six weeks.

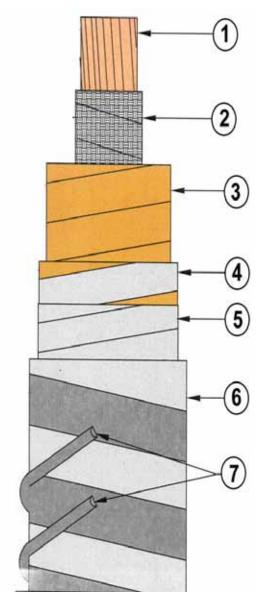


Figure 2: Typical HPFF Cable

1 - CONDUCTOR

Cross-section: 2500 kcmil segmental

Material: copper

2 – CONDUCTOR SHIELD Carbon Black Paper Tapes

3 - INSULATION

Material: Impregnated Paper (LPP)

4 – Insulation ShieldMetalized Paper Tape

5 - Insulation ShieldMetalized Polyester Tape

6 - ZINC ALLOY TAPE

7 - D-SHAPED SKID WIRES

Material: Zinc or Stainless Steel

Terminations are made by first separating the three cables using a trifurcator. Single-phase terminations are then made in fluid-filled terminators.

Pros and Cons

The advantage and disadvantages of HPFF cable systems for use in high voltage applications are as follows:

Pros:

- Long experience record dating from 1930's with extensive use in the U.S.
- Very high reliability based on utility records.
- Steel pipe affords mechanical strength and protection from "dig-ins."
- Short lengths of trench can be opened for construction activities.
- The cable and other materials are manufactured and installed by firms located in the U.S.
- For directional drilling installations, the casing installed can also be utilized as the cable conduit.

Cons:

- Pipe susceptible to corrosion, cathodic protection required.
- Requires very large specially designed equipment for installation activities.
- Requires specialists for specific installation activities.
- Requires very long repair time in case of faults in the cable system.
- Requires installation and maintenance of a cathodic protection system.
- Requires maintenance of pressurization system.

IV. TERMINATION STRUCTURE / STATION

The difference in the two cable systems comes from the manufacturing process and operation characteristics of each type of cable. For the XLPE system, typically larger insulation thicknesses are seen, but a pumping plant and cathodic protection is not required like that of an HPFF system. Further considerations arise at the termination locations. For the HPFF system a transition station must be erected to facilitate the pumping plant, oil filled terminations, and the cathodic protection system. Typical termination stations have a footprint in the range of 250-ft by 250-ft. However, this may be a benefit as a number of switching arrangements can be attained, as well as the addition of circuit protection, monitoring, and voltage regulation. The XLPE system can be converted to an overhead line in a much simpler fashion with the use of a transition structure, because the underground cables, as well as all of the required terminations, can be attached directly to the structure.

The Pros and Cons of each configuration are provided below:

Termination Structure

Pros:

- Essentially no operation and maintenance requirements.
- High reliability
- Small structural footprint
- Terminations can be located on structure
- Lower installation cost

Cons:

- Can only be used for XLPE cable
- Failure of structure may result in prolonged outage

Termination Station

Pros:

- Works with both cable systems
- More switching capabilities
- Increased protection capabilities/schemes
- SCADA can be installed in the station
- Voltage regulation, if required can be incorporated

Cons:

- Larger footprint
- Higher cost
- Higher maintenance costs

V. COST ESTIMATE

Introduction

The cost estimate for the cable system was compiled using quotations from high voltage cable manufacturers and contractors familiar with the installation of high voltage underground cable systems.

Cost Estimate Assumptions

- 1) Single point bonding of XLPE cable sheaths was assumed.
- 2) Materials used in the cost estimates meet all applicable industry standards.
- 3) It was assumed construction will be performed by craftsmen experienced in installing high voltage underground transmission systems.
- 4) XCEL to obtain all environmental, local, state, and federal permits as required.
- 5) No contingency for internal XCEL costs.
- 6) No contingency for dewatering costs.
- 7) A 15% contingency was added.
- 8) No contingency for rock excavation costs.

Summary of Cost Estimates

A summary of the costs for the cable investigated has been included in Table 5 below.

<u>Table 5: Cost Summary Table *</u>

Daganintian	Material	Labor	Total	Total
Description	(One Circuit)	(One Circuit)	(One Circuit)	(Two Circuits)
345kV XLPE				
5000 kcmil Copper	\$64,631,645	\$33,099,965	\$97,731,610	\$195,463,220
Conductor	\$04,031,043	\$33,077,703	\$77,731,010	\$173,703,220
345kV HPFF				
2500 kcmil Copper	\$25,426,148	\$19,675,275	\$45,101,423	\$90,202,846
Conductor	\$23,420,148	\$19,073,273	\$45,101,425	\$90,202,840

^{*} A 15 % contingency is included in the estimates.

The costs included in the table above for multiple circuits can be accounted for by simply summing the relevant individual circuit costs.

VI. Installation Methods

Overview of Horizontal Directional Drilling (HDD)

Development and Uses

Originally used in the 1970s, directional crossings are a marriage of conventional road boring and directional drilling of oil wells. Pipelines have been installed for carrying oil, natural gas, water and other products using HDD. Ducts have been installed to carry electric and fiber optic cables. Besides crossing under rivers and waterways, HDD installations have been made crossing under highways, railroads, airport runways, shore approaches, islands, areas congested with buildings, pipeline corridors and future water channels.

Technology Limits

The longest installation, since the inception of HDD, has been about 6,000 feet with pipe diameters up to 60 inches. Although directional drilling was originally used primarily on the U.S. Gulf Coast through alluvial soils, more and more crossings are being undertaken through gravel, cobble, glacial till and hard rock. Adequate space must be available to allow rigs to set up for the duration of the installation.

Advantages

HDD installations have the least environmental impact of any alternate method. The technology also offers maximum depth of cover under the obstacle, thereby affording maximum protection and minimizing maintenance costs. HDD crossings have a reasonably predictable and short construction schedule. Directional drilling may minimize social impacts such as extensive highway closures and traffic congestion under the right conditions. Perhaps most significant advantage is that HDD crossings are in select cases, less expensive than other methods.

Machine Types

There are several types of machines available for HDD. They are primarily separated into small or mini, medium and large sizes, according to thrust and pull back force capabilities.

Small or mini size rigs have thrust and pull back forces of less than 30,000 pounds. Typically these rigs have ranges limited to 2 to 300 feet and can install 2 to 6 inch product casings.

Medium size rigs have thrust and pull back forces in the range of 30 to 100,000 pounds. Ranges are longer with the upper limit approaching 1,500 to 2,000 feet. These rigs can install 6 to 20 inch product casings, depending on length and specific forces.

Large size rigs have thrust and pull back forces in the range of 125 to 750,000 pounds. Ranges of installation can exceed 5,000 feet and product casings can be 6 to 60 inches.

Technique

A pilot hole is drilled beginning at a prescribed angle from horizontal and continues under and across the obstacle along a design profile made up of straight tangents and long radius arcs. Concurrent to drilling the pilot hole, the contractor may elect to run a larger diameter "wash pipe" that will encase the pilot drill string. The wash pipe acts as a conductor casing providing rigidity to the smaller diameter pilot drill string and will also save the drilled hole, should it be necessary to retract the pilot string for bit changes. The directional control is brought about by a small bend in the drill string just behind the cutting head. The pilot drill string is not rotated except to orient the bend. If the bend is oriented to the right, the drill path then proceeds in a smooth radius bend to the right. The drill path is monitored by an electronic package housed in the pilot drill string near the cutting head. The electronic package detects the relationship of the drill string to the earth's magnetic field, gravitational field and its inclination. This data is transmitted back to the surface where calculations are made as to the location of the cutting head. Surface location of the drill head also can be used where there is reasonable access.

Once the pilot hole is complete, the hole must be enlarged to a suitable diameter for the product pipeline. For instance, if the pipeline to be installed is 36 inch in diameter, the hole may be enlarged to 48 inch diameter or larger. This is accomplished by "pre-reaming" the hole to successively larger diameters. Generally, the reamer is attached to the drill string on the bank opposite the drilling rig and pulled back into the pilot hole. Joints of drill pipe are added as the reamer makes its way back to the drilling rig. Large quantities of slurry are pumped into the hole to maintain the integrity of the hole and to flush out cuttings.

Once the drilled hole is enlarged, the product pipeline can be pulled through it. The pipeline is prefabricated at the end of the bore opposite the drilling rig. A reamer is attached to the drill string and then connected to the pipeline pullhead via a swivel. The swivel prevents any translation of the reamer's rotation into the pipeline string allowing for a smooth pull into the drilled hole. The drilling rig then begins the pullback operation, rotating and pulling on the drill string and once again circulating high volumes of drilling slurry. The pullback continues until the reamer and pipeline break ground at the drilling rig.

After the pipe has been pulled through the drilled hole, bore spacers and conduit are installed in the pipe. The bore spacers are typically spaced five feet apart to allow support of the conduit. Once the conduit is installed, one end of the pipe is temporarily sealed and grout is pumped into the opposite end until the pipe system is full.

Prior to construction there are several activities that must be accomplished. These activities include: soil borings, thermal resistivity testing of the soil and surveying the route. The daily activities for a typical HDD operation are presented below. This timetable is based on drilling 1200 feet.

<u>Mobilize</u>: The mobilization of the HDD equipment will require a minimum of 30 days with an additional minimum 30 days notice.

<u>Day 1</u>: The drilling equipment is setup. (This assumes setup location has been identified and approved by Xcel and Permitting Agencies)

Day 1-5: Product casing is laid out and prepared on exit side of the drilling operation.

<u>Day 2</u>: Excavation and setup of entry position and the anticipated exit position is located.

<u>Day 2-4</u>: The pilot hole is drilled beginning at the prescribed angle and under and across the obstacle along the designed profile. Expected minimum drilling rate of 40 feet/hour for the pilot hole (30 drilling hours based on 12 hour shifts).

Day 5: The drilling equipment is reset for back ream and pullback of product pipe.

<u>Day 6-8</u>: The drilled hole is enlarged and the product pipe (casing) is pulled into the enlarged borehole. Expected drilling rate of 35 feet/hour for the back ream and casing installation. (30 drilling hours based on 12 hour shifts).

<u>Day 8</u>: The area around the exit hole is excavated and the casing lowered to design depth and configuration.

<u>Day 9</u>: The drilling equipment is disassembled and demobilized.

<u>Day 10</u>: The area around the entry hole is excavated and the casing lowered to the design depth and configuration. The equipment for the conduit installation is setup.

<u>Day 11-12</u>: The installation of the bore spacers and conduit are installed in the pipe. Once the conduit is installed, grout is pumped into the pipe system.

<u>Day 13</u>: Installation of the land-side duct bank begins.

Layout and Design

Heavy equipment is required at both ends of the installation. This equipment must remain in position while the installation progresses to completion.

Work Space

The rig spread requires a minimum 100-foot wide by 150-feet long area as shown in Figure 3. This area should extend from the entry point away from the installation, although the entry point should be at least 10 feet inside the prescribed area. Since many components of the rig spread have no predetermined position, the rig site can be made up of smaller irregular areas. Operations are facilitated if the area is level, hard standing and clear of overhead obstructions. The drilling operation requires large volumes of water for the mixing of the drilling slurry. A nearby source of water is necessary.

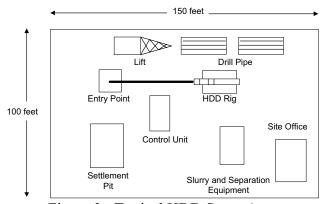


Figure 3: Typical HDD Setup Area

Strong consideration should be given to provide a sufficient length of workspace to fabricate the product pipeline into one string. The width will be as necessary for normal pipeline construction although a workspace of 100-feet wide by 150-feet long should be provided at the exit point. The length will assure that during the pullback the pipe can be installed in one uninterrupted operation. Tie-ins of successive strings during the pullback operation increase the risk considerably because of the tension changes going from dynamic friction to static friction with respect to the product being used. If manholes are located 600 feet apart, then a space of 600 feet should be available beyond the exit pit for product pipe laydown prior to pulling it into the drilled path.

Once the work locations have been chosen, the area should be surveyed and detailed drawings prepared. The eventual accuracy of the drill profile and alignment is dependent on the accuracy of the survey information.

Profile Design Parameters

Once the installation profile has been taken and the geotechnical investigation completed, a determination of the depth of cover under the existing groundline is made. Factors considered may be the presence of existing pipeline or cable crossings at the locations along the desired route. Minimum depth recommended is 10 feet to prevent loss of drilling fluids.

An entry angle between 8° and 20° can be used for most installations. It is preferable that straight tangent sections are drilled before the introduction of a long radius curve. The radius of the curve is determined by the bending characteristic of the product pipeline, increasing with the diameter. A general "rule of thumb" for the radius of curvature is 100 feet/inch diameter for steel line pipe. The curve usually brings the profile to the elevation providing the design cover of the pipeline under groundline and obstructions. Long horizontal runs can be made at this elevation before curving up towards the exit point. Exit angle should be kept between 5° and 12° to facilitate handling of the product pipeline during pullback. Most downhole survey tools are electronic devices that give a magnetic azimuth (for "right/left" control) and inclination (for "up/down" control). Surface locators can also be used in conjunction with the downhole electronic package.

The accuracy of the drill profile is largely dependent on variations in the earth's magnetic field. For instance, large steel structures (bridges, pilings, other pipelines, etc.) and electric power transmission lines affect magnetic field readings. However, a reasonable drill target at the pilot hole exit location is 10 feet left or right, and -10 feet to + 30 feet in length, although greater accuracy has been achieved.

Normally, survey calculations are conducted every 30 feet during pilot hole operations. The contractor should provide as-built drawings that are based on these calculations. Alternate methods such as gyroscoping, ground penetrating radar or sound transmitting devices may also be used to determine the as-built position.

Special Considerations for Water Crossings

When crossing any body of water a number of concerns arise, and generally these concerns are area specific. The main issues involve the type of the body of water to be crossed, whether or not the area is environmentally sensitive, the location of any access points, environmental control, and permitting. When performing any work around bodies of water special permitting is usually required, as is an environmental impact study. In addition, extensive measures must be taken in preserving the natural water flow. This can range anywhere from erosion control to complete removal of all excavated soils. Because horizontal directional drilling uses bentonite, a clay type drilling fluid to stabilize the bore and reduce mechanical wear, concerns of frac-out into the water body arise. However, because bentonite is of a natural origin, fracing-out into the body of water generally is not a large concern

VII. Operation and Reliability

Overhead Transmission

Overhead line is relatively easy to operate, maintain, troubleshoot and repair. Overhead lines are susceptible to outages resulting from lightning, high wind, wind blown debris, equipment failure and vandalism. At the 345kV level, phase spacing is sufficient to eliminate most problems from flying debris such as tree limbs and proper design eliminates problems with conductor slap. This leaves lightning, high winds, equipment failure and vandalism as the predominant causes of outages. In the case of a short circuit the protective relays normally detect the fault and trip the circuit opens within three to five cycles. Since the line is above ground, faulted sections are usually quickly identified by line patrols with direction from fault locating relays and digital fault recorders. Repair time for most components can be completed within a few hours.

Overhead line currents are limited by annealing of the conductor material which reduces the mechanical strength. High currents also increase the sag due to thermal expansion which reduces ground clearance. Transmission lines with ACSR conductors are designed for normal operation at about 75° C but they can be operated up to 100° C for a number of hours during emergency conditions and may be operated up to 125° C for a short duration.

Underground Transmission

Underground line is relatively easy to operate and maintain although it is more difficult to troubleshoot and repair. Maintenance procedures for XLPE systems include various items such as visual and/or operational inspections of the cable terminations, manholes, and temperature monitoring system inspection and testing. With proper maintenance, the design life of an underground line is approximately 40 years. Underground lines are susceptible to outages resulting from dig in's and cable, splice or equipment failure.

Generally, the conductor of an underground transmission line will be twice the size of an equivalent overhead transmission line. This is a result of the limited heat dissipation due to cable insulation and below grade encasement. This extra mass of copper or aluminum combined with the slow thermal transients of the encasement provides a significant advantage when it comes to short-term overloads. A typical underground transmission line may operate at 20-30 percent above nominal rating for up to 3 days without any degradation to the cable.

Operating losses in cable systems include conductor losses, dielectric losses, proximity effect losses, and sheath losses. Generally, underground cable losses are higher than that for an equivalent overhead circuit.

Underground transmission lines may be designed for future upgrade with a relatively small capital cost. Even lines that were not originally planned for upgrade may be converted by any of the following options:

- Reconductoring
- Accepting a higher voltage stress on the cable.
- Changing cable insulation for higher voltage operation by using a reduced wall thickness or changing from laminated paper insulation to LPP insulation.
- Dynamic ampacity ratings associated with continuous monitoring.

VIII. Comparison of Environmental Impacts of Overhead and Underground Transmission Line Construction

The environmental impacts of overhead transmission line construction differs substantially from underground construction. These differences are discussed below:

Right of Way Widths

Underground right of way widths can be limited to the area containing the line and an area on each side of the line set aside to protect the line from unintentional excavation damage and for access. The underground line can be placed adjacent to the existing 161kV overhead line river crossing. Assuming a separation of 25-ft to the north of the overhead lines, a right of way of 235-ft would be sufficient for the 345kV HPFF cable system installation. For the 345kV XLPE installation, approximately 360-ft would be required.

Ground Disturbance

Ground disturbance for overhead construction is limited to structure locations. Underground construction involves extensive ground disturbance including trenching along the entire line length, bore pit excavation at each end of a directional boring, and installation of splicing and pull-through vaults as necessary.

Long underground cable systems may also require intermediate stations to install reactors. Each of these stations will require installation of equipment inside a fenced area with a footprint of about 40,000 square feet.

Sensitive features such as streams and rivers, etc. exist in the line route. While overhead construction has the flexibility to span features such as rivers, streams and wetlands, underground construction does not have as much flexibility and requires construction through these sensitive features if they are crossed by the line route. Directional drilling or boring may be required for underground construction in order to avoid impacts to streams, rivers and wetlands. However, where directional drilling is not feasible, trenching through sensitive areas would be required for underground construction.

Underground construction requires extensive coordination with other underground utilities to avoid damage during construction. This level of coordination usually exceeds that required for overhead construction. The potential to disrupt or damage underground utilities is usually greater with underground construction.

Replacement or repair activities may have additional ground disturbance for underground lines. Overhead repair work usually involves light impact at the structure locations. Secondary off-site ground disturbing impacts may be required for underground lines if selective fill is required for heat dissipation. Materials source sites must be excavated to obtain this select fill material.

Land Use and Aesthetics

Overhead construction can be visually intrusive in sensitive visual environments. Urban underground construction, if properly rehabilitated, typically has lower visual impacts than overhead construction. In rural areas, underground rights of way may be highly visual due to the clearing required for the right of way.

Overhead construction may not be suitable for congested urban areas and may impact urban land uses more than underground construction. In rural settings, underground construction may be much more disruptive to agricultural or rural land uses than overhead construction. Farming can usually be conducted under overhead lines (with the exception of structure locations) while it would be prohibited over underground lines to avoid damaging the line.

Electric fields, magnetic fields and Noise

Underground construction in pipes or shielded cable eliminates electrical fields at the right of way boundary. Magnetic fields are generally higher directly over an underground installation compared to an overhead installation. Magnetic fields tend to decrease more rapidly with distance for underground installations compared to overhead.

Overhead lines emit a hiss or low hum (corona) during rainstorms or humid periods. Underground lines are silent for the most part with the exception of the immediate area near termination points.

Right of Way Clearing and Vegetation Control

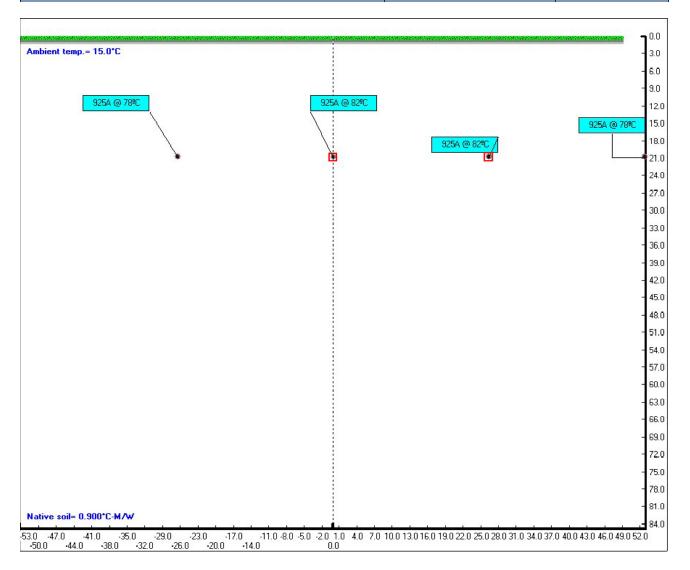
In undeveloped areas, underground construction requires the right of way to be totally cleared to allow for construction and establishment of the right of way. This includes trees, brush, and ground cover. While low growing vegetation can be reestablished over an underground installation, trees or plants with woody roots cannot be allowed to grow over the line.

Overhead construction requires complete clearing only in the area of the structures and removal of trees along the line route to provide for electrical clearance and maintenance. Lower vegetation such as brush, shrubs, and ground covers can usually be left as long as it will not interfere with maintenance and access to the line. Both underground and overhead construction techniques may require long term vegetation control in the right of way.

Erosion Control in Unstable Areas

Extensive erosion control measures are required for underground lines because a trench is dug the entire line length and the right of way is totally cleared. In areas with hilly terrain and erosive soils, significant erosion and sedimentation impacts can arise from underground construction. Due to less ground disturbing activity, overhead lines usually result in lesser erosion impacts.

Careful placement of structure locations or engineered foundation arrangements can avoid or mitigate unstable geology or soils in overhead construction. Underground construction does not have the flexibility to avoid unstable areas encountered by the line route; thus the potential for impacts to unstable areas may be greater with underground construction.


Study: Xcel Energy 345kV HPFF River Crossing

Execution: 02 345kV 2500kcmil Cu 600milPPP rho=90 15°C, d=25',925A@82°C

Date: 4/23/2008 **Frequency:** 60 Hz

Conductor Resistances: IEC-228

Installation Type: Buried Pipes					
Parameter	Unit	Value			
Ambient Soil Temperature at Installation Depth	°C	15			
Thermal Resistivity of Native Soil	°C.m/W	0.9			
Non-Isothermal Earth surface modeling	Enabled/Disabled	Disabled			

Summary Res	Summary Results								
Solution co	Solution converged								
Cable\Cable	Circuit	Phase	Loca	ation	Load Factor	Temperature	Ampacity		
type no	Circuit	Pilase	X[ft]	Y[ft]	[p.u.]	[°C]	[A]		
1 \ 1	1	ABC	0	20.833	0.75	82.4	925		
2 \ 1	2	ABC	26.416	20.833	0.75	82.4	925		
3 \ 1	3	ABC	-26.416	20.833	0.75	78	925		
4 \ 1	4	ABC	52.833	20.833	0.75	78	925		

32

Temperature coefficient

Cables input data

Study: Xcel Energy 345kV HPFF River Crossing

Execution: 02 345kV 2500kcmil Cu 600milPPP rho=90 15°C, d=25',925A@82°C

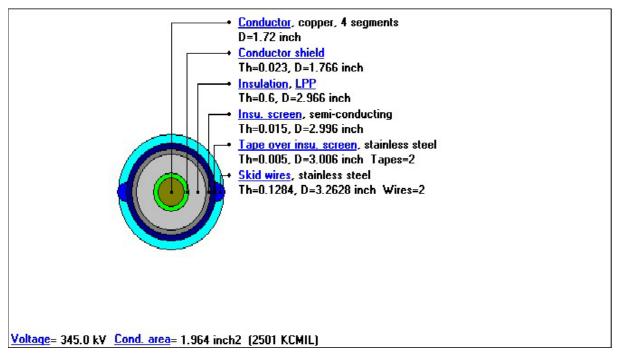
Date: 4/23/2008

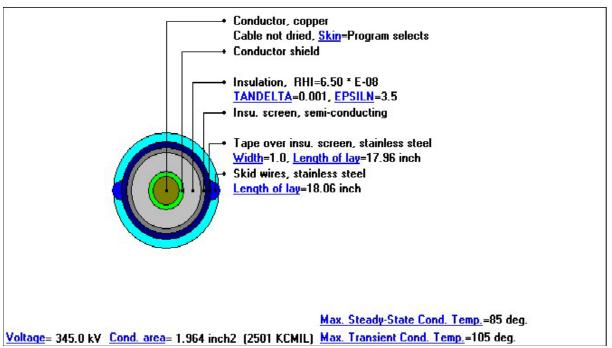
Date:	4/23/2008		
No	Description	Unit	1
Gene	ral cable information		
1	Cable type no		1
2	Number of cores		3
3	Voltage	kV	345
4	Conductor area	inch ²	1.964
5	Maximum Steady-State Conductor Temperature	°C	85
6	Maximum Emergency Conductor Temperature	°C	105
Cons	truction		
Con	ductor		
7	Material		copper
8	Resistivity @20°C	uΩ.cm	1.7241
9	Temperature coefficient	1/K	0.00393
10	Construction		4 segments
11	Is cable dried?		No
12	ks (Skin effect coefficient)		0.44
13	kp (Proximity effect coefficient)		0.37
14	Diameter	inch	1.72
	ductor shield		1.72
15	Is layer present?		Yes
16	Thickness	inch	0.023
17	Diameter	inch	1.766
	ılation		
18	Is layer present?		Yes
19	Material		LPP
20	Thermal resistivity	K.m/w	6.5
21	Dielectric loss factor - (tan δ)		0.001
22	Relative permeability (ε)		3.5
23	Thickness	inch	0.6
24	Diameter	inch	2.966
Insu	llation screen		l
25	Is layer present?		Yes
26	Material		semi-conducting
27	Thickness	inch	0.015
28	Diameter	inch	2.996
	ath reinforcing tape/Tape over insulation screen	ı	1
29	Is layer present?		Yes
30	Material		stainless steel
31	Resistivity @20°C	uΩ.cm	70
			1.7

1/K

33	Tape width	inch	1
34	Length of lay	inch	17.96
35	Number of tapes		2
36	Thickness	inch	0.005
37	Diameter	inch	3.006
Con	centric neutral/Skid wires		
38	Is layer present?		Yes
39	Is around each core? (Only for Three core cable)		No
40	Material		stainless steel
41	Resistivity @20°C	uΩ.cm	70
42	Temperature coefficient	1/K	
43	Length of lay	inch	18.06
44	Number of wires		2
45	Wire gauge		Unknown
46	Thickness	inch	0.1284
47	Diameter	inch	3,2628

No	Description/Value	Unit	1				
SPEC	SPECIFIC INSTALLATION DATA						
Loss	Loss factor constant						
1	Loss factor constant		0.3				
Duc	construction						
2	High pressure oil filled pipe type		Yes				
3	Resistivity (RH)		0				
Cabi	es touching						
4	Single conductor cables touching		Yes				
Pipe	coating						
5	Polyethylene		Yes				
6	Resistivity (RH)		6				
Pipe	material						
7	Steel pipe		Yes				
8	Pipe material factor		1.7				
Duc	Duct/Pipe dimensions						
9	Inside diameter of Duct/Pipe	inch	10.0200003				
10	Outside diameter of Duct/Pipe	inch	10.7500003				
11	Pipe coating diameter	inch	10.8500003				

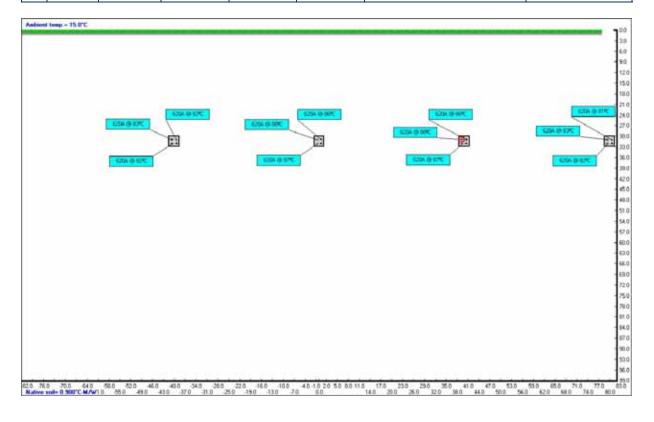

No	Symbol	Description	Unit	1	2	3	4
Temp	erature ca	alculations					
1		Cable type no		1	1	1	1
2		Circuit no		1	2	3	4
3		Phase		ABC	ABC	ABC	ABC
4	$\theta_{\rm c}$	Conductor temperature	°C	82.4	82.4	78	78
5	$\theta_{\rm i}$	Sheath/Shield temperature	°C	70.4	70.4	66.2	66.2
6	$\theta_{\rm j}$	Armour/Pipe or Jacket temperature	°C	65.7	65.7	61.2	61.2
7	$\theta_{\rm s}$	Exterior duct temperature	°C	65.3	65.3	60.8	60.8
8	θ_{a}	Ambient temperature	°C	15	15	15	15


Cable type no: 1

Cable type: PIPE TYPE (TRIANGULAR)

Cable ID: 345CU2.50H

Cable title: 345kV 2500kcmil Cu 600 mils LPP HPFF


Study: Xcel Energy 345kV River Crossing

Execution: 05 345kV 5000kcmil CU 1023mil XLPE, d=30', 620A, 87°C

Date: 5/9/2008 **Frequency:** 60 Hz

Conductor Resistances: IEC-228

			Parameter	Unit	Value		
Ambient Soil Temperature at Installation Depth						°C	15
Therm	al Resistivity	of Native Soil				°C.m/W	0.9
L	Layers Dimensions [ft]			T	Thermal		
No.	Name	X Center	Y Center	Width	Height	Туре	Resistivity [°C.m/W]
1	DB 2X2	-40	31.469	2.938	2.938	Standard ductbank	0.6
2	DB 2X2	0	31.469	2.938	2.938	Standard ductbank	0.6
3	DB 2X2	40	31.469	2.938	2.938	Standard ductbank	0.6
4	DB 2X2	80	31.469	2.938	2.938	Standard ductbank	0.6

Solution converged									
Cable\Cable	Circuit	Phase	Location		Load Factor	Temperature	Ampacity		
type no	Circuit	Pilase	X[ft]	Y[ft]	[p.u.]	[°C]	[A]		
1 \ 1	1	A	-40.609	30.977	0.75	82.8	620		
2 \ 1	1	В	-39.391	30.977	0.75	81.6	620		
3 \ 1	1	С	-40.609	32.195	0.75	82.2	620		
4 \ 1	2	A	-0.609	30.977	0.75	87.5	620		
5 \ 1	2	В	0.609	30.977	0.75	86	620		
6 \ 1	2	С	-0.609	32.195	0.75	87.1	620		
7 \ 1	3	A	39.391	30.977	0.75	87.6	620		
8 \ 1	3	В	40.609	30.977	0.75	86	620		
9\1	3	С	39.391	32.195	0.75	87.1	620		
10 \ 1	4	A	79.391	30.977	0.75	82.9	620		
11\1	4	В	80.609	30.977	0.75	81.2	620		
12 \ 1	4	С	79.391	32.195	0.75	82.3	620		

Cables input data

Study: Xcel Energy 345kV River Crossing

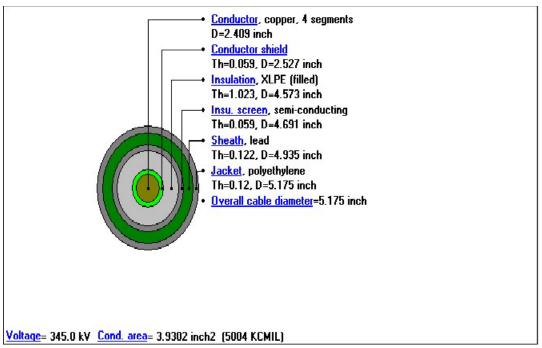
05 345kV 5000kcmil CU 1023mil XLPE, d=30', 620A, 87°C **Execution:**

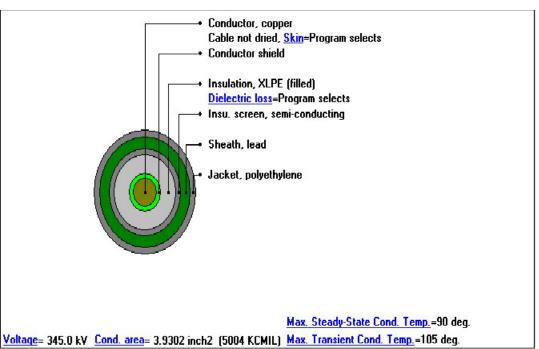
Date: 5/9/2008

Date	: 5/9/2008									
No	Description	Unit	1							
General cable information										
1	Cable type no		1							
2	Number of cores		1							
3	Voltage	kV	345							
4	Conductor area	inch ²	3.9302							
5	Maximum Steady-State Conductor Temperature	°C	90							
6	Maximum Emergency Conductor Temperature	°C	105							
Cons	truction									
Con	ductor									
7	Material		copper							
8	Resistivity @20°C	uΩ.cm	1.7241							
9	Temperature coefficient	1/K	0.00393							
10	Construction		4 segments							
11	Is cable dried?		No							
12	ks (Skin effect coefficient)		0.44							
13	kp (Proximity effect coefficient)		0.37							
14	Diameter	inch	2.409							
Con	ductor shield	1	•							
15	Is layer present?		Yes							
16	Thickness	inch	0.059							
17	Diameter	inch	2.527							
Ins	ulation		•							
18	Is layer present?		Yes							
19	Material		XLPE (filled)							
20	Thermal resistivity	K.m/w	3.5							
21	Dielectric loss factor - (tan δ)		0.005							
22	Relative permeability (ε)		3							
23	Thickness	inch	1.023							
24	Diameter	inch	4.573							
Ins	ulation screen		•							
25	Is layer present?		Yes							
26	Material		semi-conducting							
27	Thickness	inch	0.059							
28	Diameter	inch	4.691							
	-									

She	Sheath								
29	Is layer present?		Yes						
30	Is around each core? (Only for Three core cable)		No						
31	Material		lead						
32	Resistivity @20°C	uΩ.cm	21.4						
33	Temperature coefficient	1/K	0.004						
34	Corrugated construction		Non-corrugated						
35	Thickness	inch	0.122						
36	Diameter	inch	4.935						
Jack	ret								
37	Is layer present?		Yes						
38	Material		polyethylene						
39	Thermal resistivity	K.m/w	3.5						
40	Thickness	inch	0.12						
41	Diameter	inch	5.175						
Ove	Overall cable diameter								
42	Diameter	inch	5.175						

No	Description/Value	Unit	1								
SPEC	SPECIFIC INSTALLATION DATA										
Bon	Bonding										
1	1-CON, sheaths single point bonded, triang. configuration		Yes								
Loss	Loss factor constant										
2	Loss factor constant	0.3									
Duc	Duct construction										
3	PVC duct in concrete or buried		Yes								
4	Resistivity (RH)										
Cab	les touching										
5	Single conductor cables NOT touching		Yes								


No	Symbol	Description	Unit	1	2	3	4	5			
Temp	Temperature calculations										
1		Cable type no		1	1	1	1	1			
2		Circuit no		1	1	1	2	2			
3		Phase		A	В	С	A	В			
4	$\theta_{\rm c}$	Conductor temperature	°C	82.8	81.6	82.2	87.5	86			
5	$\theta_{\rm i}$	Sheath/Shield temperature	°C	77.3	76.1	76.7	82.1	80.6			
6	$\theta_{\rm j}$	Armour/Pipe or Jacket temperature	°C	76.6	75.5	76	81.4	79.9			
7	$\theta_{\rm s}$	Exterior duct temperature	°C	69.7	68.5	69.1	74.6	73.1			
8	θ_{a}	Ambient temperature	°C	15	15	15	15	15			


6	7	8	9	10	11	12
1	1	1	1	1	1	1
2	3	3	3	4	4	4
С	A	В	С	A	В	С
87.1	87.6	86	87.1	82.9	81.2	82.3
81.6	82.1	80.5	81.6	77.4	75.7	76.9
80.9	81.5	79.8	81	76.8	75.1	76.2
74.1	74.7	73	74.2	69.9	68.1	69.3
15	15	15	15	15	15	15

Cable type no: 1

Cable type: EXTRUDED **Cable ID:** 345CU5.00X

Cable title: 345kV 5000 kcmil Cu 1023 mils XLPE 122 mils Pb Sheath

Xcel Energy, CapX Hampton – Rochester – La Crosse 345kV Project Alma Mississippi River Underground Crossing 345kV HPFF Transmission Line

Prepared by: JWH Checked by: kcmil Cu Cables/phase Amps feet - Total Length Number of Operational Circuits Number of Spare Pipes (Pipe only, no Cable) Number of communication ducts 2500

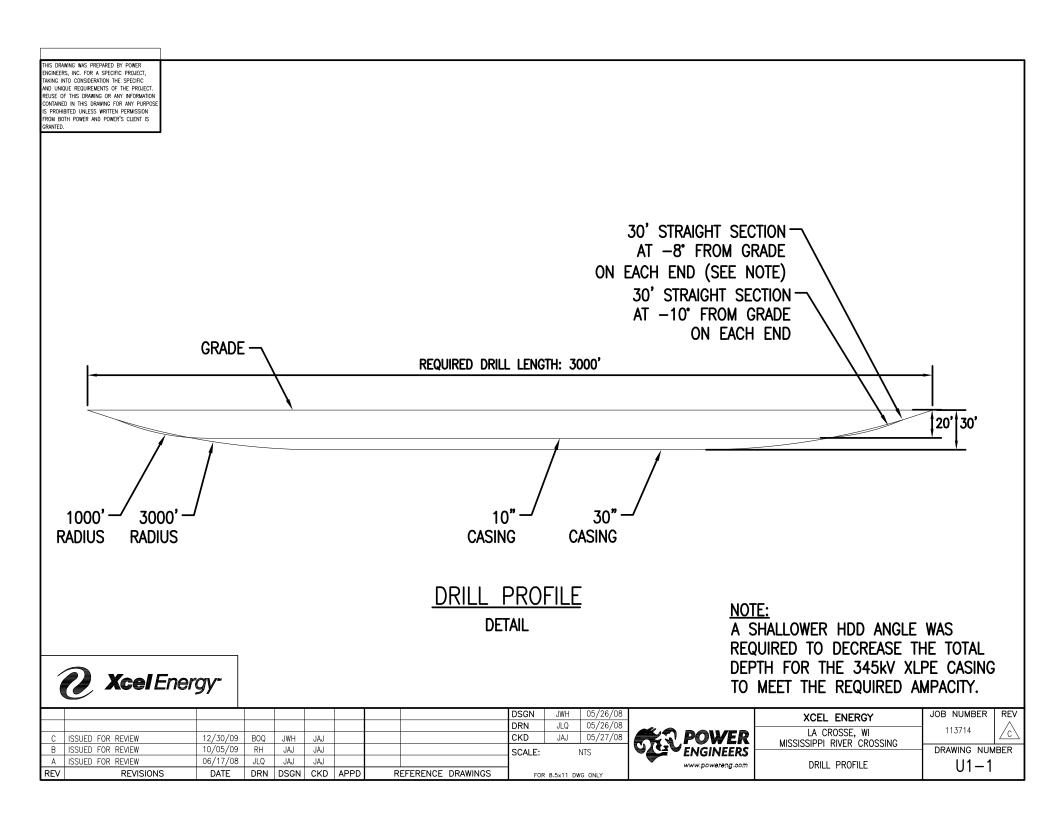
4 3700 6900 1

Description	Quantity	Material Price	Total Material	Labor Price	Total Labor	Total Price
Pipe and Accessories Section:	,		Price		Price	
Cable pipe, 10" nominal, Pritec, per foot	14500	\$40.00	\$580,000	\$65.00	\$942,500	\$1,522,500
Cable pipe, 10" nominal, Fritec, per loct Cable pipe, 10" nominal, Fusion Bonded, per foo		\$45.00	\$594,000	\$65.00	\$858,000	\$1,452,000
Cable pipe field flares, each	13200	\$85.00	\$935	\$226.00	\$2,486	\$3,421
Cable pipe chill rings, each	382	\$34.50	\$13,179	\$224.00	\$85,568	\$98.747
Cable pipe joint and pipe-coating repair sleeves,	400	\$22.00	\$8,800	\$125.00	\$50.000	\$58,800
Trifurcator, each	8	\$9,500.00	\$76,000	\$5,000.00	\$40,000	\$116,000
Riser pipe stainless steel 5-inch, per foot	960	\$50.00	\$48,000	\$29.00	\$27.840	\$75.840
Cathodic Protection:		,,,,,,,	4 ,		+ =-,	7. 5,5
Anodes/grounding, each	5	\$200.00	\$1,000	\$100.00	\$500	\$1,500
Rectifiers, each	1	\$4,000.00	\$4,000	\$4,800.00	\$4,800	\$8,800
Isolator Protectors, each	4	\$8,200.00	\$32,800	\$4,800.00	\$19,200	\$52,000
Cathodic Protection Test Stations, each	8	\$1,500.00	\$12,000	\$1,100.00	\$8,800	\$20,800
Anode Junction boxes, each	1	\$1,500.00	\$1,500	\$1,100.00	\$1,100	\$2,600
Pressurization Plant, each	1	\$500,000.00	\$500,000	\$50,000.00	\$50,000	\$550,000
Polybutene dielectric fluid (HPFF) (gal.)	89200	\$11.00	\$981,200	\$6.00	\$535,200	\$1,516,400
Other (provide a description)						
Cable and Accessories Section:						
Cable, feet	86800	\$113.00	\$9,808,400	\$15.00	\$1,302,000	\$11,110,400
Terminators, each	24	\$81,000.00	\$1,944,000	\$15,000.00	\$360,000	\$2,304,000
Arresters, each	24	\$10,000.00	\$240,000	\$2,500.00	\$60,000	\$300,000
Splices, each	24	\$28,500.00	\$684,000	\$66,000.00	\$1,584,000	\$2,268,000
Spare Terminations	2	\$81,000.00	\$162,000	\$0.00	\$0	\$162,000
Earthwork:						
	22100	\$15.00	\$331,500	\$30.00	\$663,000	\$994,500
Excavation, no rock, per cubic yard, including ha Soil Backfill, including hauling, per cubic yard	20484	\$25.00	\$512,100	\$25.00	\$512,100	\$1.024.200
Concrete Encasement, per cubic yard	1616	\$130.00	\$210.080	\$20.00	\$32,320	\$242,400
Vault, each	8	\$40,000.00	\$320,000	\$25,000.00	\$200,000	\$520,000
Horizontal direction drill, per foot	13200	\$300.00	\$3,960,000	\$500.00	\$6,600,000	\$10,560,000
Dewatering, per trench foot	14400	\$8.00	\$115,200	\$15.00	\$216,000	\$331,200
Sheeting and shoring, per trench foot	1500	\$20.00	\$30,000	\$25.00	\$37,500	\$67,500
Landscape restoration, lot	144000	\$2.50	\$360,000	\$2.50	\$360,000	\$720,000
Loam and seed, per square foot	360000	\$0.25	\$90,000	\$0.25	\$90,000	\$180,000
			, ,	•	, , , , , ,	,,
Termination Work						
Substation Termination Structures	8	\$20,000.00	\$160,000	\$16,000.00	\$128,000	\$288,000
Substation Foundations	8		\$64,000	\$12,000.00	\$96,000	\$160,000
Transition Structures, includes relay equipment	0	\$40,000.00	\$0	\$15,000.00	\$0	\$0
Transition Structure Foundations	0	\$20,000.00	\$0	\$10,000.00	\$0	\$0
Other (provide a description)		* 005 000 00	#005.000	* 050,000,00	* 050,000	CO4E 000
Substation	1	\$265,000.00	\$265,000	\$650,000.00	\$650,000	\$915,000
			\$0		\$0	\$0
			φυ		Φ U	φυ
Subtotal			\$22,109,694		\$15.516.914	\$37.626.608
Contingency	15%		\$3,316,454		\$2,327,537	\$5,643,991
Subtotal	13 /0		\$25,426,148		\$17,844,451	\$43,270,599
Unallocated Costs:			Ψ20, 120, 140		Ψ17,011, τ01	ψ 10,£10,000
2% Engineering, lot	1	\$0.00	\$0	\$865,411.98	\$865,412	\$865,412
2% Construction Management, lot	1	\$0.00	\$0	\$865,411.98	\$865,412	\$865,412
Mobilization, each	1	\$0.00	\$0	\$50,000.00	\$50,000	\$50,000
Demobilization, each	1	\$0.00	\$0	\$50,000.00	\$50,000	\$50,000
0% Real Estate/Permitting	0	\$0.00	\$0	\$0.00	\$0	\$0
	Ť	71.00	Ψ	71.00	70	40
Total Price (should add up to Lump Sum			\$25,426,148		\$19,675,275	\$45,101,423

HLY 019-166 (DES-02) XCEL (12/30/09)JH 113714 REV. D

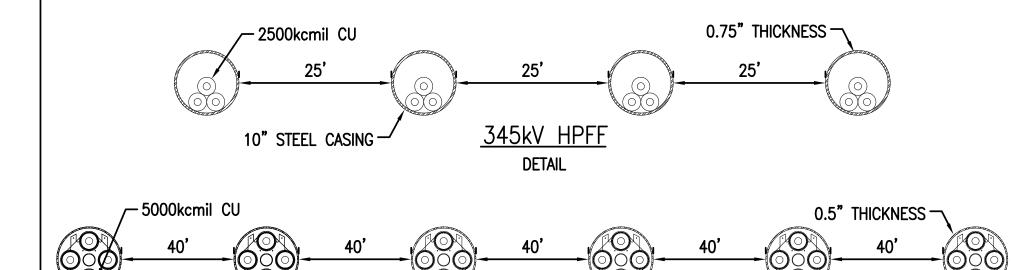
Summary of Costs	Quantity	Material Price	Labor Price	Unit Cost	Total Price
Earthwork, ft	14400	\$1.648.880	\$1,910,920	\$248	\$3,559,800
Trenchless Installations, ft	13200	\$3,960,000	\$6,600,000	\$800	\$10,560,000
Manholes,ea	8	\$320,000	\$200,000	\$65,000	\$520,000
Cable,ft	86800	\$9,808,400	\$1,302,000	\$128	\$11,110,400
Splices, ea	24	\$684,000	\$1,584,000	\$94,500	\$2,268,000
Terminations, ea	26	\$2,106,000	\$360,000	\$94,847	\$2,466,000
Arresters, ea	24	\$240,000	\$60,000	\$12,500	\$300,000
Pipe, ft	27700	\$1,174,000	\$1,800,500	\$108	\$2,974,500
Pipe Accessories, ft	801	\$1,628,114	\$791,094	\$3,021	\$2,419,208
Cathodic Protection System, ea	1	\$51,300	\$34,400	\$85,700	\$85,700
Termination Structures, ea	8	\$489,000	\$874,000	\$170,375	\$1,363,000
Subtotal	I 0	\$22,109,694	\$15,516,914		\$37,626,608
15% Contingency		\$3,316,454	\$2,327,537		\$5,643,991
MOB & DEMOB	1	\$0	\$100,000		\$100,000
4% Engineering & Construction Man.	1	\$0	\$1,730,824		\$1,730,824
0% Real Estate/Permitting	1	\$0	\$0		\$0
Total	j	\$25,426,148	\$19,675,275		\$45,101,423
0% Escalation Factor		\$0	\$0		\$0
Grand Total	I	\$25,426,148	\$19,675,275		\$45,101,423

HLY 019-166 (DES-02) XCEL (12/30.09)JH 113714 2 REV. D


Xcel Energy, CapX Hampton – Rochester – La Crosse 345kV Project Alma Mississippi River Underground Crossing 345 kV XLPE Transmission Line

Prepared by: JWH Checked by: kcmil CU
Cables
Amps
feet
Number of Duct Banks
Number of Cable Ducts
Number of Comm Ducts

5000 18 1600 6900 1 24 0


Description	Quantity	Material Price	Total Material	Labor Price	Total Labor	Total Price
Cable and Accessories Section:	,		Price		Price	
XLPE cable, per foot	132100	\$225.00	\$29,722,500	\$15.00	\$1,981,500	\$31,704,000
Terminators, each	36	\$81,000.00	\$2,916,000	\$15,000.00	\$540,000	\$3,456,000
Arresters, each	36	\$10,000.00	\$360,000	\$2,500.00	\$90,000	\$450,000
Splices, each	36	\$30,000.00	\$1,080,000	\$70,000.00	\$2,520,000	\$3,600,000
Grounding system for vaults, each	24	\$2,500.00	\$60,000	\$3,500.00	\$84,000	\$144,000
Link boxes, single phases	24		\$120,000	\$500.00	\$12,000	\$132,000
Cable clamps, each	600		\$120,000	\$100.00	\$60,000	\$180,000
Continuity conductor, per foot	15000		\$60,000	\$2.00	\$30,000	\$90,000
Continuity conduit	41900		\$62.850	\$8.00	\$335,200	\$398,050
Jacket Integrity Test, cable segment	18		\$0	\$2,500.00	\$45,000	\$45,000
Other (provide a description)	10	ψ0.00	Ψΰ	Ψ2,000.00	ψ10,000	ψ 10,000
Duct Bank and Earthwork:						
Conduit, per foot	167300		\$1,171,100	\$15.00	\$2,509,500	\$3,680,60
Spacers, each	34560		\$276,480	\$15.00	\$518,400	\$794,88
Bore Spacers, each	3960		\$693,000	\$15.00	\$59,400	\$752,400
Excavation, no rock, per cubic yard, including	9200		\$138,000	\$30.00	\$276,000	\$414,000
Soil Backfill, including hauling, per cubic yard	6000	\$25.00	\$150,000	\$25.00	\$150,000	\$300,000
Duct encasement concrete, per cubic yard	3200		\$416,000	\$20.00	\$64,000	\$480,000
Vault, each	24	\$40,000.00	\$960,000	\$25,000.00	\$600,000	\$1,560,000
Horizontal direction drill, per foot	19800	\$300.00	\$5,940,000	\$500.00	\$9,900,000	\$15,840,000
30" Bore Casing, per foot	19800	\$500.00	\$9,900,000	\$200.00	\$3,960,000	\$13,860,000
Casing Fill, cubic yards	2898	\$150.00	\$434,700	\$75.00	\$217,350	\$652,050
Dewatering, per trench foot	21600	\$8.00	\$172,800	\$15.00	\$324,000	\$496,800
Sheeting and shoring, per trench foot	2200		\$44,000	\$25.00	\$55,000	\$99,000
Landscape restoration, lot	216000		\$540,000	\$2.50	\$540,000	\$1,080,000
Loam and seed, per square foot	540000	\$0.25	\$135,000	\$0.25	\$135,000	\$270,000
Other (provide a description)					,	
Termination Work						
Substation Termination Structures	12		\$240,000		\$120,000	\$360,000
Substation Foundations	12	\$3,000.00	\$36,000	\$2,000.00	\$24,000	\$60,000
Other (provide a description)						
Substation	1	\$398,000.00	\$398,000	\$225,000.00	\$225,000	\$623,000
Subtotal			\$56,201,430		\$25,430,350	\$81,631,780
15% Contingency			\$8,430,215		\$3,814,553	\$12,244,768
Subtotal			\$64,631,645		\$29,244,903	\$93,876,548
Unallocated Costs:			ψ04,001,040		Ψ20,244,300	
Engineering, lot (2%)	1	\$0.00	\$0	\$1,877,530.96	\$1,877,531	\$1,877,53
Construction Management, lot (2%)	1	\$0.00	\$0		\$1,877,531	\$1,877,53
Mobilization, lot	1	\$0.00	\$0		\$50,000	\$50,000
Demobilization, lot	1	\$0.00	\$0	\$50,000.00	\$50,000	\$50,000
Real Estate/Permitting	0	\$0.00	\$0	\$0.00	\$0	\$(
Other (provide a description)						
Total Price (should add up to Lump Sum		\$	\$64.631.645	¢ .	\$33.099.965	\$97,731,610

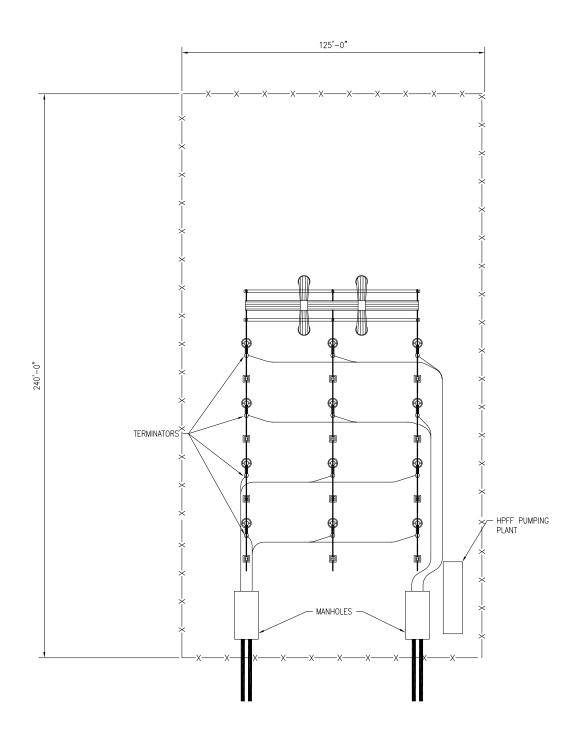
Summary of Costs	Quantity	Material Price	Labor Price	Unit Cost	Total Price
Duct Bank, ft	20700	\$14,126,080	\$8,863,650	\$1,111	\$22,989,730
Trenchless Installations, ft	19800	\$5,940,000	\$9,900,000	\$800	\$15,840,000
Manholes,ea	24	\$960,000	\$600,000	\$65,000	\$1,560,000
Cable,ft	132100	\$29,722,500	\$1,981,500	\$240	\$31,704,000
Splices, ea	36	\$1,080,000	\$2,520,000	\$100,000	\$3,600,000
Terminations, ea	36	\$2,916,000	\$540,000	\$96,000	\$3,456,000
Arresters, ea	36	\$360,000	\$90,000	\$12,500	\$450,000
Additional Cable Accessories, ft	20700	\$422,850	\$566,200	\$48	\$989,050
Termination Structures, ea	12	\$674,000	\$369,000	\$86,917	\$1,043,000
15% Contingency		\$8,430,215	\$3,814,553		\$12,244,768
MOB & DEMOB	1	\$0	\$100,000		\$100,000
Engineering Construction Management Services	1	\$0	\$3,755,062		\$3,755,062
Total	-	\$64,631,645	\$33,099,965	_	\$97,731,610

THIS DRAWING WAS PREPARED BY POWER ENGINEERS, INC. FOR A SPECIFIC PROJECT, TAKING INTO CONSIDERATION THE SPECIFIC AND UNQUE REQUIREMENTS OF THE PROJECT. REUSE OF THIS DRAWING OR ANY INFORMATION CONTAINED IN THIS DRAWING FOR ANY PURPOSI IS PROHIBITED UNLESS WRITTEN PERMISSION FROM BOTH POWER AND POWER'S CLIENT IS GRANATED.

345kV XLPE

DETAIL

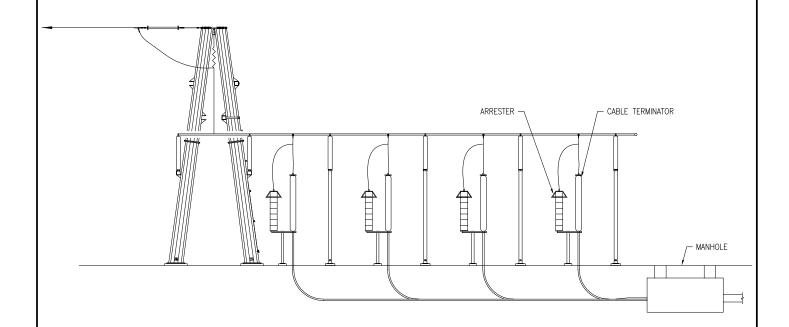
									DSGN	JWH	05/26/08
									DRN	BOQ	05/26/08
С	ISSUED FOR REVIEW	12/30/09	BOQ	JWH	JAJ				CKD	JAJ	05/26/08
В	ISSUED FOR REVIEW	10/05/09	RH	JAJ	JAJ				SCALE:		NTS
Α	ISSUED FOR REVIEW	00/00/00	RH	JAJ	JAJ]		
REV	REVISIONS	DATE	DRN	DSGN	CKD	APPD	R	EFERENCE DRAWINGS	FOF	8.5×11 DW	/G ONLY


30" STEEL CASING

XCEL ENERGY	JOB NUMBER	REV
LA CROSSE, WI	113714	<u></u>
MISSISSIPPI RIVER CROSSING	DRAWING NUM	IBER
CASING DETAILS	U1-2	

THIS DRAWING WAS PREPARED BY POWER ENGINEERS, INC. FOR A SPECIFIC PROJECT, TAKING INTO CONSIDERATION THE SPECIFIC AND UNIQUE REQUIREMENTS OF THE PROJECT. REUSE OF THIS DRAWING OR ANY INFORMATION CONTAINED IN THIS DRAWING FOR ANY PURPOSE IS PROHIBITED UNLESS WRITTEN PERMISSION FROM BOTH POWER AND POWER'S CLIENT IS GRANTED.

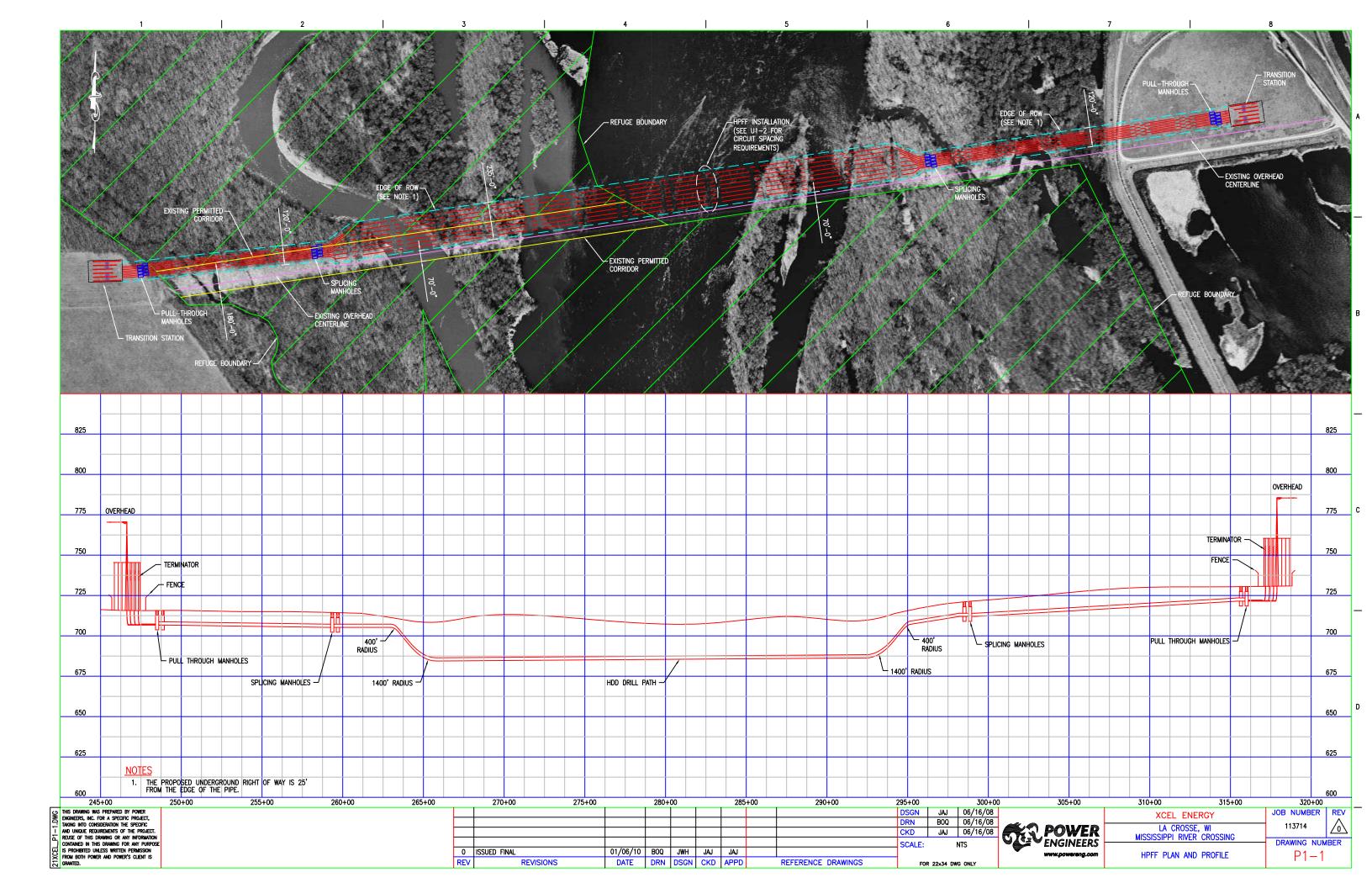
REV	REVISIONS	DATE	DRN	DSGN	CKD	APPD
Α	ISSUED FOR REVIEW	06/17/08	JLQ	JAJ	JAJ	
В	ISSUED FOR REVIEW	10/05/09	RH	JAJ	JAJ	
С	ISSUED FOR REVIEW	12/30/09	BOQ	JAJ	JAJ	


				DSGN	JAJ	06/16/08	
				DRN	JLQ	06/16/08	
lщ				CKD	JAJ	06/16/08	
≝				SCALE:	1	NTS	
	REFERENCE DRAWINGS				FOR 8.5×11 DWG ONLY		

XCEL_ENERGY	JOB NUMBER	REV
NOLE LIVERO		$ \wedge $
LA CROSSE, WI	113714	[/c_
MISSISSIPPL RIVER CROSSING		
MIDDIDDILLI KIVEK CIKODDING	DRAWING NUM	IBER
HPFF TERMINATION STATION DETAILS	l	
]	

THIS DRAWING WAS PREPARED BY POWER ENGINEERS, INC. FOR A SPECIFIC PROJECT, TAKING INTO CONSIDERATION THE SPECIFIC AND UNIQUE REQUIREMENTS OF THE PROJECT. AND UNIQUE REQUIREMENTS OF THE PROJECT OF A WINDOW FROM THE PRANKS FOR ANY PURPOSE SEED FROMHER OF UNLESS WHITTON PERMISSION FROM BOTH POWER AND POWER'S CLIENT IS GRANTED.

RFV	REVISIONS	DATE	DRN	DSCN	ראח	APPD
Α	ISSUED FOR REVIEW	06/17/08	JLQ	JAJ	JAJ	
В	ISSUED FOR REVIEW	10/05/09	RH	JAJ	JAJ	
С	ISSUED FOR REVIEW	12/30/09	BOQ	JAJ	JAJ	



O Xcel Energy

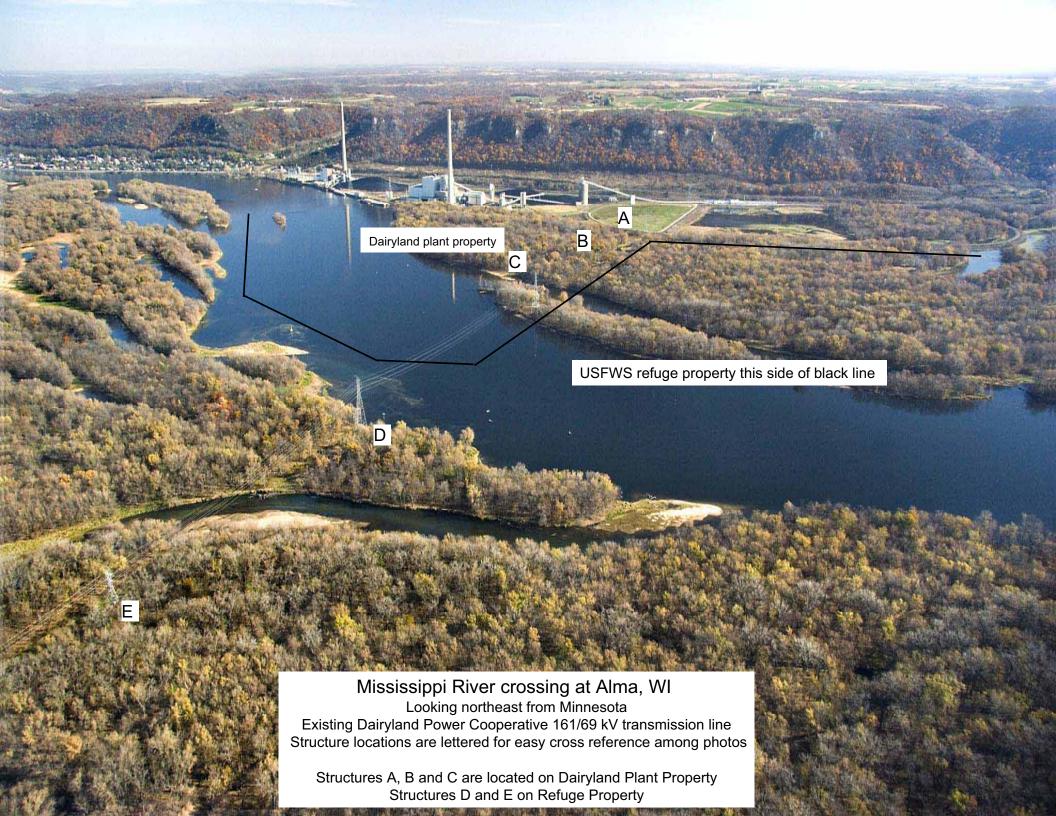
9					
2.DWG		DSGN	JAJ	06/16/08	
1.1		DRN	JLQ	06/16/08	
S1		CKD	JAJ	06/16/08	
21XCEL		SCALE:	: NTS		
<u>2</u>					
	REFERENCE DRAWINGS	FOR	8.5x11 DW	G ONLY	

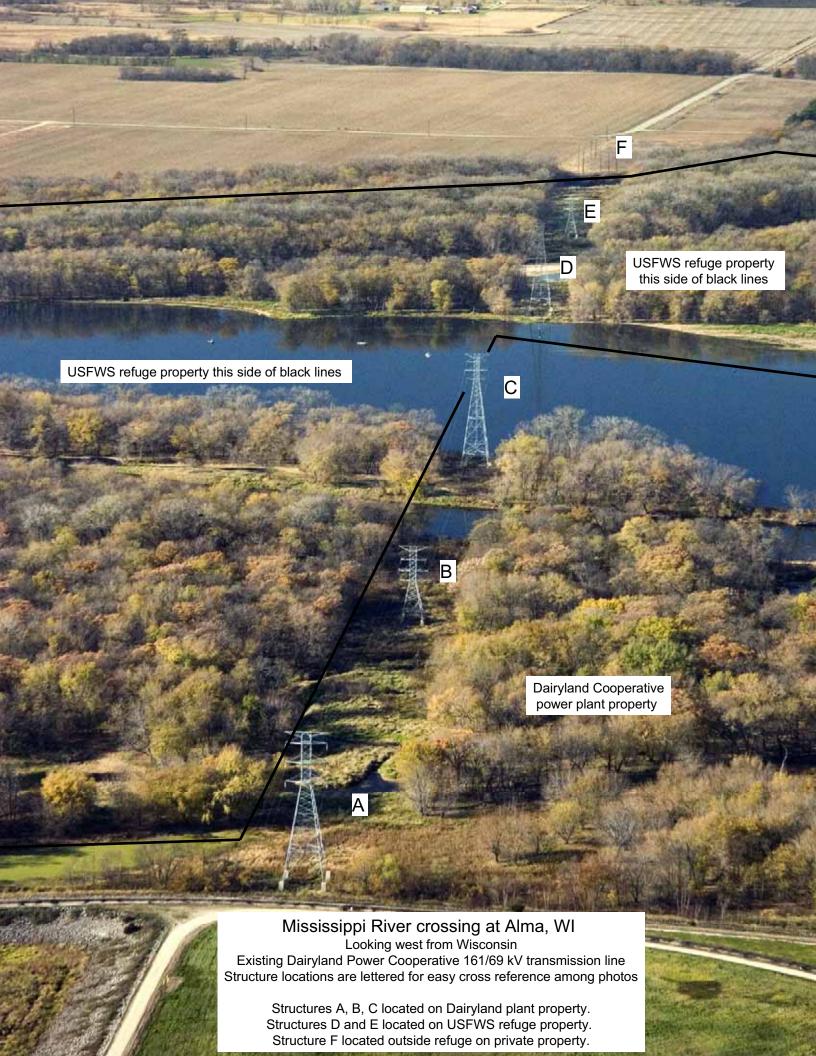
3		L
3	POWER	
	ENGINEERS	H
	www.powereng.com	

XCEL ENERGY	JOB NUMBER	REV
LA CROSSE, WI MISSISSIPPI RIVER CROSSING	113714	<u></u>
MISSISSII I I IIIVEII CINOSSIINO	DRAWING NUM	IBER
HPFF TERMINATION STATION DETAILS	S1-2	

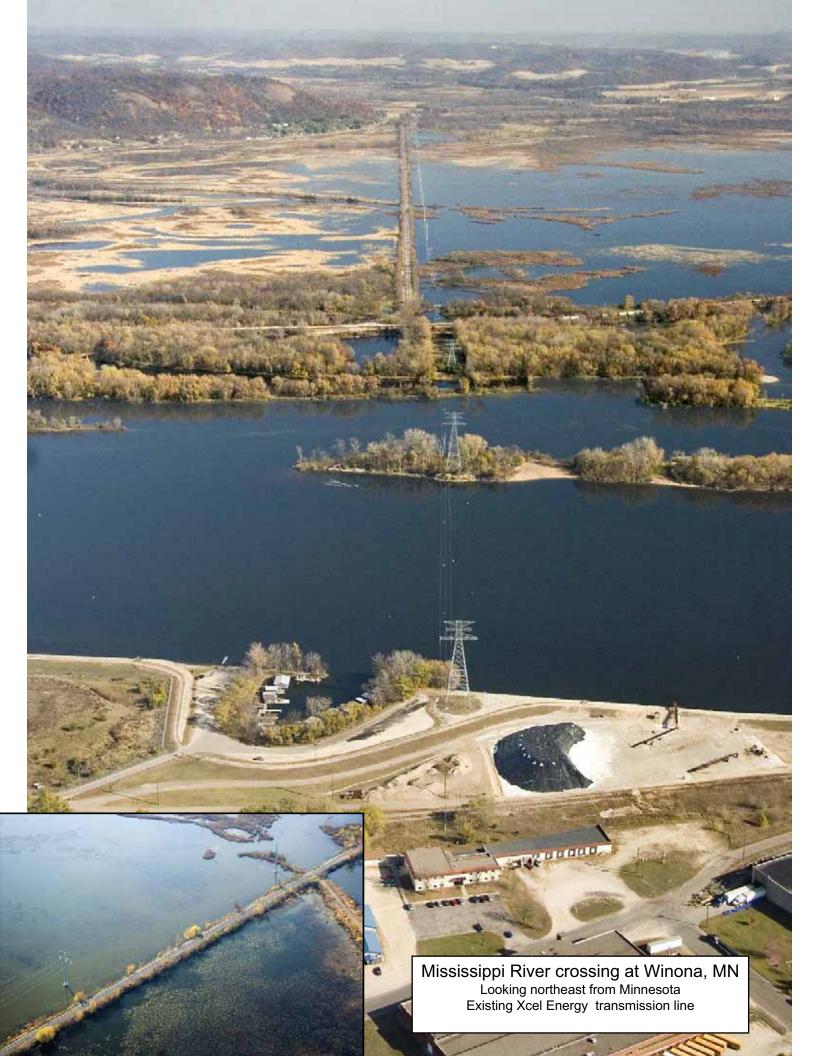
CapX2020

Appendix F: Mississippi River Crossing Analysis




Appendix F1:

Photos of Existing Transmission Line Crossings at Alma, Winona and La Crescent



Hampton • Rochester • La Crosse 345 kV Transmission Project

Appendix F: ississippi i er Crossing esign ptions Alma

Appendix F:

ississippi i er Crossing esign ra ings

The Mississippi River presents unique considerations that will require the use of multiple-circuit, specialty structures. A portion of this crossing is on Upper Mississippi River Wildlife Refuge (Refuge) lands managed by the U.S. Fish and Wildlife Service (USFWS). A Special Use Permit will be required to cross the Refuge and the Applicant will work closely with the USFWS to identify the most appropriate structure design.

An existing double-circuit transmission line crosses the Mississippi River and Refuge at the Project's proposed crossing location. The existing line crosses approximately 0.5 mile of Refuge lands and includes two structures on refuge property. The line is constructed on a 180-foot-wide permitted ROW. An area approximately 125 feet wide and 1,900 feet long is maintained cleared of trees. The two main river crossing structures are 180 feet tall.

Several possible designs for the proposed river crossing are described in this appendix. The design options demonstrate tradeoffs between structure height and easement width while maintaining only three structures on refuge lands. Minimum conductor clearance over the Mississippi River main channel in all instances is approximately 90 feet, per by US Army Corps of Engineers requirements.

- Option A: A design that stays within the existing 125-foot wide tree clearing. However, this results in main channel crossing structures of 275 feet in height. The Federal Aviation Administration (FAA) requires lighting of poles exceeding 200 feet above ground level, and may also require poles to be painted alternating red and white.
- Option B: The shortest possible pole design with horizontal circuit configuration. This keeps the main channel crossing structures less than 200 feet tall, avoiding FAA lighting requirements and keeps all the conductors in one plane, which is often preferred by those who are concerned about bird impacts. This design requires a 280-foot cleared ROW.
- Options C and D: A combination of options A and B keeps main channel crossing structures of less than 200 feet while using narrower structures elsewhere to minimize the need for additional ROW and tree clearing on refuge lands.

These overhead options are represented in the attached pages through the use of plan view, or aerial photo, drawings. These drawings incorporate black and white aerial photographs, obtained by the Applicant in November 2008, as a background. Numbered black dots represent transmission structure locations. Also noted on each drawing is the right-of-way width required by each option, and a black line with grey cross hatching that represents US Fish and Wildlife Service Upper Mississippi National Wildlife Refuge lands. The oval train tracks at Dairyland Power Cooperative's Alma generating station is at the bottom right. The distance between the western most structure, 1, and the eastern most structure, 9, is approximately 1.5 miles, or slightly wider than the river flood plane in this area. Sketches of the various structure types proposed for each design are inset in the drawings and are numbered and dimensioned. The following tables summarize structure height and right-of-way width for each option.

Ta le F1:

ption A ississippi i er Crossing

tr ct re	eight feet	Width of ight of Wa at tr ct re feet	Location Comment
1	105	125	Private property
2	130	125	Wildlife refuge
3	130	125	Wildlife refuge
5	275 275	125	Wildlife refuge; river crossing structure; height triggers FAA lighting requirements Dairyland Power property; river crossing structure; height triggers FAA lighting
6	135	125	requirements Dairyland Power property
7	195	125	Dairyland Power property
8	195	125	Dairyland Power property
9	100	125	Private property

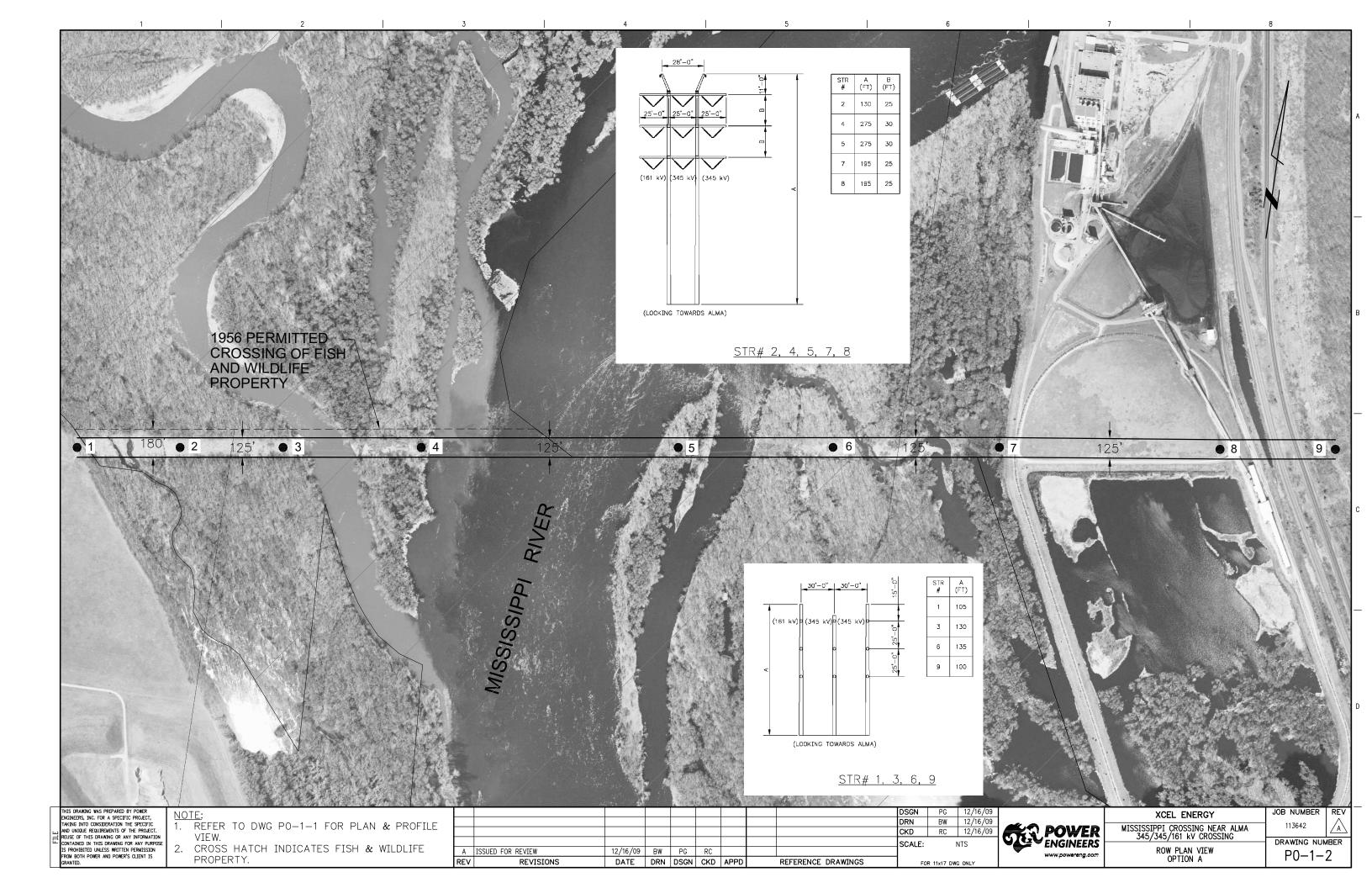
Ta le F:

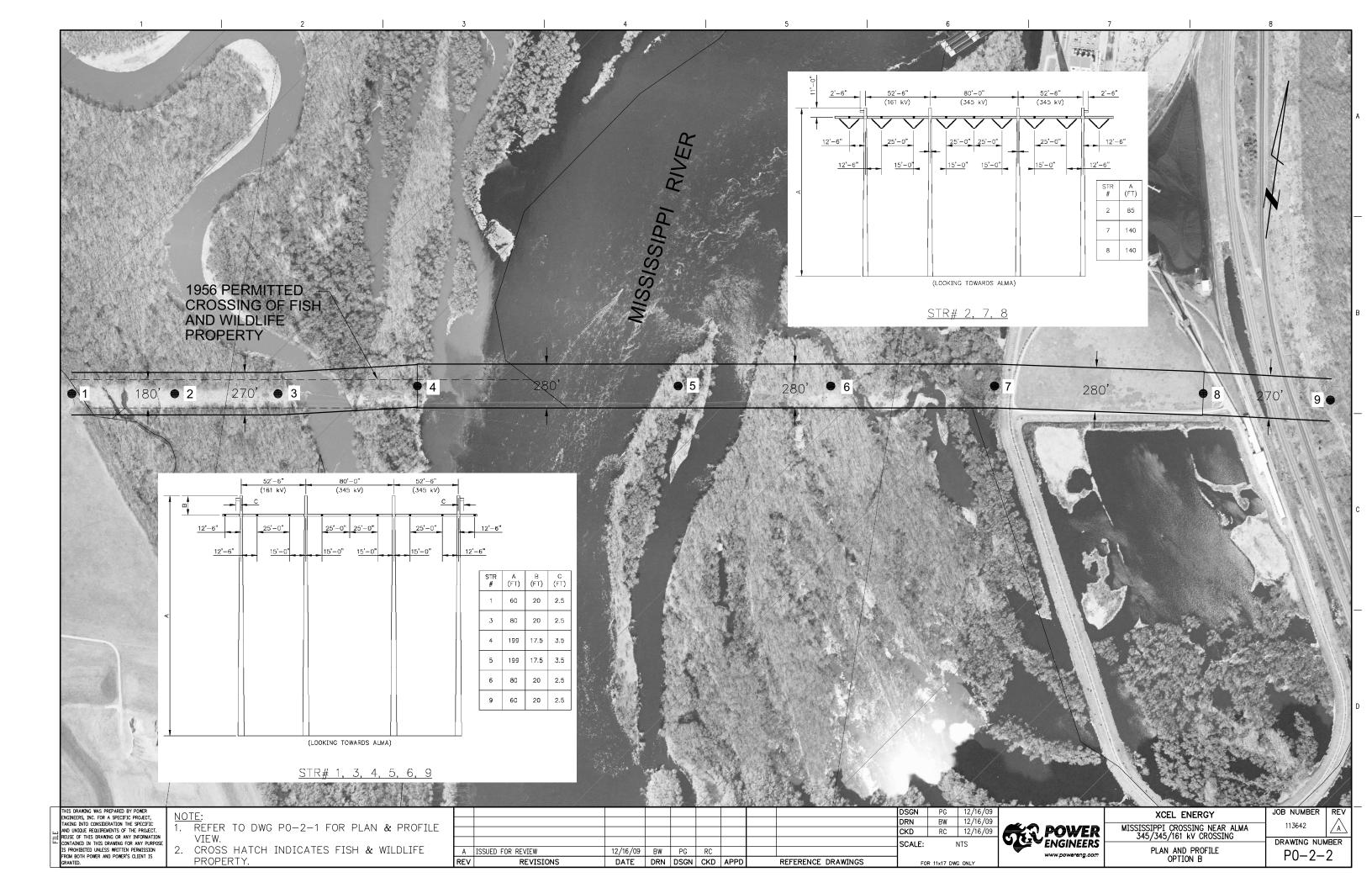
ption ississippi i er Crossing

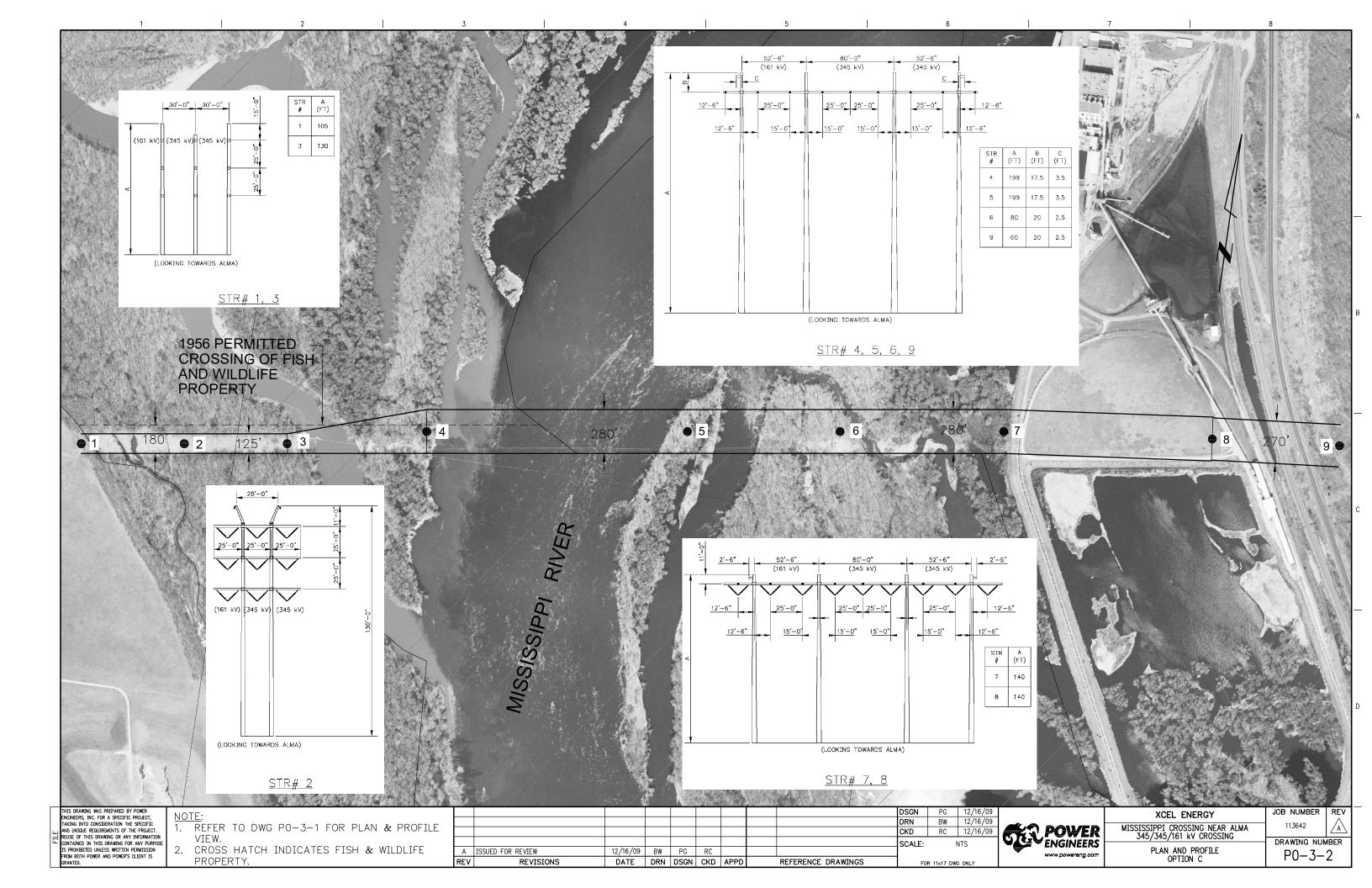
tr ct re	eight feet	Width of ight of Wa at tr ct re feet	Location Comment
1	60	270	Private property
2	85	270	Wildlife refuge
3	80	270	Wildlife refuge
4	199	280	Wildlife refuge; river
			crossing structure
5	199	280	Dairyland Power property;
			river crossing structure
6	80	280	Dairyland Power property
7	140	280	Dairyland Power property
8	140	280	Dairyland Power property
9	60	270	Private property

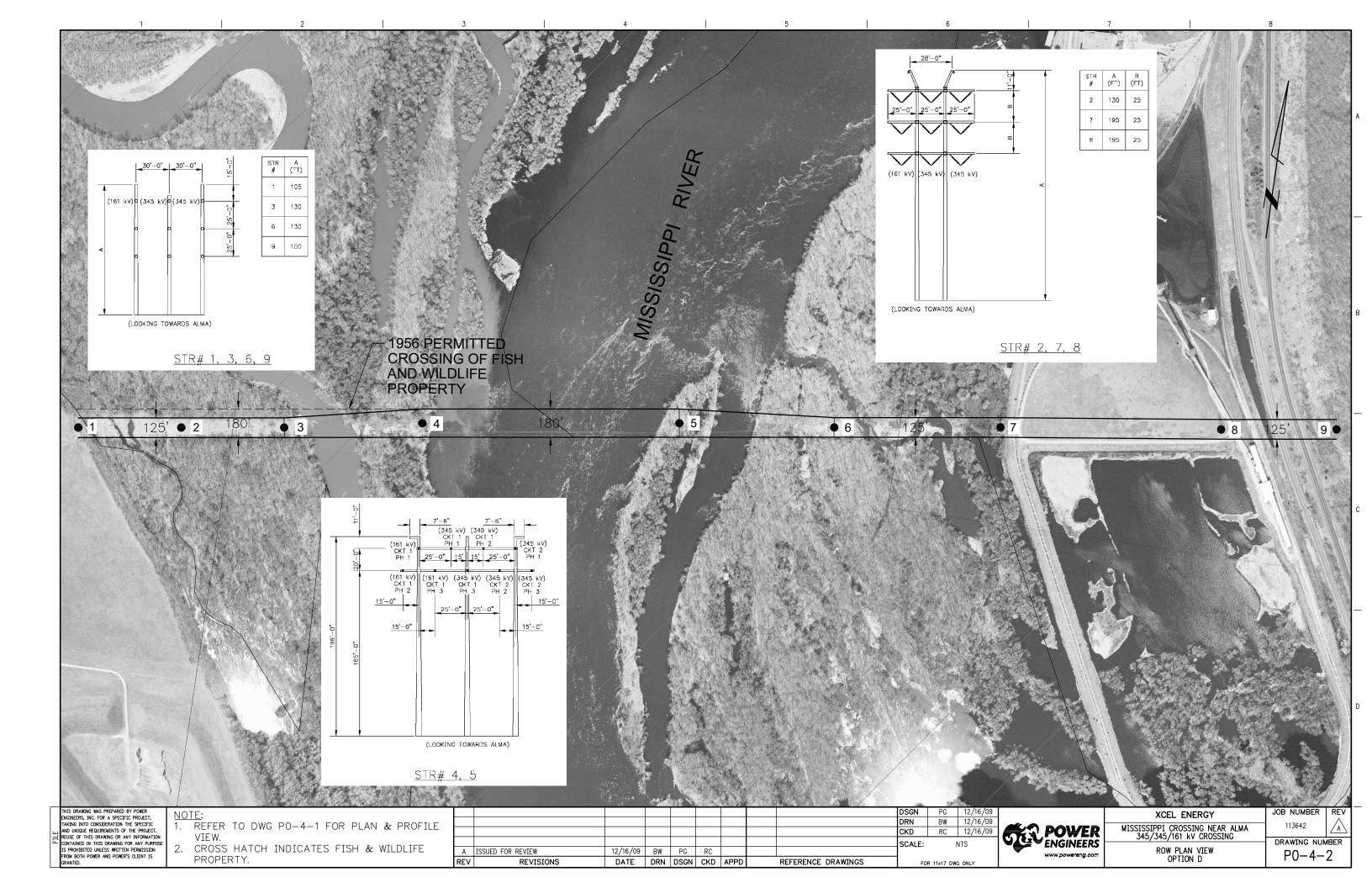
Ta le F:

ption C ississippi i er Crossing


tr ct re	eight feet	Width of ight of Wa at tr ct re feet	Location Comment
1	105	125	Private property
2	130	125	Wildlife refuge
3	130	125	Wildlife refuge
4	199	280	Wildlife refuge; river
			crossing structure
5	199	280	Dairyland Power property;
			river crossing structure
6	80	280	Dairyland Power property
7	140	280	Dairyland Power property
8	140	280	Dairyland Power property
9	60	270	Private property


Ta le F:


ption ississippi i er Crossing


tr ct re	eight feet	Width of ight of Wa at tr ct re feet	Location Comment
1	105	125	Private property
2	130	125	Wildlife refuge
3	130	125	Wildlife refuge
4	196	180	Wildlife refuge; river crossing
			structure
5	196	180	Dairyland Power property;
			river crossing structure
6	130	125	Dairyland Power property
7	195	125	Dairyland Power property
8	195	125	Dairyland Power property
9	100	125	Private property

Appendix F: ndergro nd Feasi ilit Anal sis Alma Crossing Applicants Concl sions

Appendix F:

ississippi i er ndergro nd Crossing Feasi ilit Anal sis

Applicant s Concl sions and Comments

The Applicant engaged an engineering firm to determine the feasibility of underground installation for the double circuit 345 kV line at the Alma River Crossing. That analysis is attached.

The length of the underground alternative studied is 1.3 miles and has an estimated cost of \$90 million. This is approximately \$70 million per mile for underground double circuit 345 kV compared to approximately \$2 million per mile for overhead.

Underground transmission cable, especially at high voltages such as 345 kV, is much different than underground distribution cable. Transmission cables are several inches in diameter and must be contained in 10 to 30 inch pipes. Multiple conductors per phase are required. When open trench methods place the conductors close to the surface, they must be encased in concrete to protect them from potential damage.

Based on the engineer's analysis and the Applicant's own experience, the Applicant concluded that undergrounding is not a prudent alternative because there are not benefits that justify a \$90 million additional expenditure. The key considerations were aesthetic impacts, avian impacts, cost and reliability.

Overhead and underground alternatives have different aesthetic and avian impacts. However, these impacts can be successfully mitigated with wire marking techniques and appropriate design alternatives. The Project's overhead options consolidate the existing and proposed transmission lines into single structures.

Aesthetic impacts and the risk of bird impacts can be reduced with underground construction. However, with the underground alternative studied, the existing double circuit overhead line at the Alma Crossing would remain in place. In addition, underground construction would involve more ground disturbance during construction than overhead alternatives due to the need to construct with horizontal directional drill and open trench methods. In this instance, the underground alternative results in a 235 foot wide cleared right-of-way containing eight 10-inch borings under the river spaced 25 feet apart. Temporary construction areas would require additional tree clearing. High pressure fluid-filled pipe technology contains a mineral oil dielectric coolant that, while manageable, is a potential environmental issue that is not present with overhead construction. In addition, the underground design would require is transition stations. Similar to small fenced substations, a transition station is required at each end to transition from underground to overhead cable. Each transition station would be approximately one acre in size.

The underground alternative also has unique reliability concerns. Failures of underground cables take longer to locate and repair than overhead alternatives. Complete replacement of a span of cable, if necessary, would leave the transmission line out of service for several months.

The attached underground feasibility report was prepared using aerial photographs and USGS topographic maps. No further site-specific investigation was conducted during this feasibility stage. Potential environmental issues discussed in the report are general to underground installations and are not necessarily project specific.

Appendix F: ndergro nd Feasi ilit eport

THIS PAGE INTENTIONALLY LEFT BLANK.

XCEL ENERGY

CapX Hampton – Rochester – La Crosse 345kV Project

Alma Mississippi River Crossing **Underground Report**

PROJECT NUMBER:

PROJECT CONTACT:

RON CARRINGTON

EMAIL:
RCARRINGTON@POWERENG.COM

PHONE:

(970) 226-3706

PROJECT CONTACT: JERRY JOHNSON

EMAIL:

JJOHNSON@POWERENG.COM

PHONE:

(208) 788-0364

TABLE OF CONTENTS

SEC.	<u>TION</u>	PAGE
I.	EXECUTIVE SUMMARY	1
	SCOPE OF WORK	
	UNDERGROUND CABLE SYSTEMS	
	Extruded Dielectric Cable Systems	
	HPFF Pipe Type Cable Systems	
	CABLE CASE SUMMARY	
	COST ESTIMATES	
II.	PROJECT DESCRIPTION	4
	CABLE SYSTEM EVALUATION REPORT	
	AMPACITY STUDIES	
	345KV XLPE INSTALLATION CONCERNS	
III.	UNDERGROUND CABLE SYSTEMS	10
	INTRODUCTION	
	RELIABILITY	
	EXTRUDED DIELECTRIC CABLE SYSTEMS	
	Cable	
	Cable Accessories	
	Cable Maintenance and Repair	
	Pros and Cons	
	HIGH-PRESSURE PIPE-TYPE CABLE SYSTEMS	
	Cable Assessming	
	Cable Accessories	
	Maintenance and Repair	
	Pros and Cons	18
IV.	TERMINATION STRUCTURE/STATION	19
	TERMINATION STRUCTURE	19
	TERMINATION STATION	19
V.	COST ESTIMATE	20
	INTRODUCTION	
	COST ESTIMATE ASSUMPTIONS	20
	SUMMARY OF COST ESTIMATES	20
VI.	INSTALLATION METHODS	
	OVERVIEW OF HORIZONTAL DIRECTIONAL DRILLING (HDD)	21
	Development and Uses	21
	Technology Limits	21
	Advantages	21
	Machine Types	
	Technique	
	Layout and Design	
	Work Space	
	Profile Design Parameters	
	Special Considerations for Water Crossings	

TABLE OF CONTENTS

VII.	OPERATION AND RELIABILITY	26
	OVERHEAD TRANSMISSION	26
	UNDERGROUND TRANSMISSION	26
VIII.	COMPARISON OF ENVIRONMENTAL IMPACTS OF OVERHEAD AND	
	UNDERGROUND TRANSMISSION LINE CONSTRUCTION	27
	RIGHT OF WAY WIDTHS	
	GROUND DISTURBANCE	27
	LAND USE AND AESTHETICS	28
	HEALTH ISSUES AND NOISE	28
	RIGHT OF WAY CLEARING AND VEGETATION CONTROL	28
	EROSION CONTROL IN UNSTABLE AREAS	

APPENDIX

Ampacity Studies Cost Estimates HDD Detail Termination Details Plan and Profile

I. EXECUTIVE SUMMARY

Scope of Work

Xcel Energy (Xcel) requested that a comparison be made of alternative 345kV underground cable systems for the CapX Hampton – Rochester – La Crosse 345kV Project Alma Mississippi River Underground Crossing.

Underground Cable Systems

Two basic types of underground cable systems were considered for the CapX Hampton – Rochester – La Crosse 345kV Project Alma Mississippi River Underground Crossing, namely an extruded dielectric, cross-linked polyethylene (XLPE), (extruded) cable system and a high-pressure fluid-filled pipe-type (HPFF) cable system. Details of the construction of the cables and major accessories for each of these cable systems are included in Section II. The major pros and cons of each of these cable systems are as follows:

Extruded Dielectric Cable Systems

Pros:

- Essentially no operation and maintenance requirements.
- High reliability reported for systems of modern design at voltages 230kV and below in the USA, Japan and European countries.
- Higher normal operating and short circuit temperature ratings as compared to HPFF systems.
- Installation environmental condition requirements for splicing and terminating less stringent.
- Lower dielectric loses.
- Shorter time required for repair.
- Concrete encased duct bank systems provide mechanical protection from dig-ins and allow for short lengths of trench to be opened for construction activities.

Cons:

- Susceptible to damage from dig-ins if direct buried, more so than HPFF pipe-type cable systems.
- Potential for induced sheath voltages and losses.
- Trench for installation of each cable length (direct buried) must be left open for the entire length during cable installation.
- Duct bank/conduit installation may reduce thermal performance and increases cost.
- XLPE insulation not as forgiving (fluidimpregnated paper insulation is more tolerant of manufacturing defects, and variances).
- Limited use at 345kV in US.

HPFF Pipe Type Cable Systems

Pros:

- Long experience record dating from 1930's with extensive use in the U.S.
- Very high reliability based on utility records.
- Steel pipe affords mechanical strength and protection from "dig-ins."
- Short length of trench can be opened for construction activities.
- The cable and other materials can be manufactured and installed by firms located in the United States.
- For direction drilling installations the casing installed can also be utilized as the cable conduit.
- Allows for dielectric fluid circulation to help increase ampacity.

Cons:

- Pipe susceptible to corrosion.
- Requires very large specially designed equipment for installation activities.
- Requires specialists for specific installation activities.
- May require long repair time in case of faults in the cable system.
- Requires installation and maintenance of a cathodic protection system.
- Requires maintenance of monitoring and pressurization system.

Cable Case Summary

The options for installation of the 345kV circuits circuit are summarized below. For each case, the cable system type, number of cables per phase, installation depth and ampacity are provided.

Table 1: Ampacity Results

Case #	345kV Circuit	Cables per Phase	Cable Type	Burial Depth	Number of Bores - Spacing	Total Ampacity
1	5000 kcmil	6*	XLPE	30-ft	6 - 40-ft	3700A
2	2500 kcmil	4	HPFF	20-ft	4 - 25-ft	3700A

^{*} Due to software limitation, the 345kV XLPE case attached in the appendix shows only 4 cables per phase. The total of 6 required cables per phase was extrapolated from the cable rating in the aforementioned case.

Cost Estimates

The estimated installed costs for the XLPE and HPFF pipe-type insulated cable systems for the CapX Hampton – Rochester – La Crosse 345kV Project Alma Mississippi River Underground Crossing are:

Table 2: Cost Summary Table *

Description	Material	Labor	Total	Total
Description	(One Circuit)	(One Circuit)	(One Circuit)	(Two Circuits)
345kV XLPE				
5000 kcmil Copper	\$64,631,645	\$33,099,965	\$97,731,610	\$195,463,220
Conductor	\$04,031,043	\$33,077,703	Ψ27,731,010	\$175,405,220
345kV HPFF				
2500 kcmil Copper	\$25,426,148	\$19,675,275	\$45,101,423	\$90,202,846
Conductor	\$23,420,148	\$19,073,273	\$45,101,425	\$90,202,840

^{*} A 15 % contingency is included in the estimates.

The addition of a multiple circuits will require additional materials, horizontal directional drills, open trenching, manholes, and transition stations. There will be little to no overlap between additional circuits. The costs included in the table above for multiple circuits can be accounted for by simply summing the relevant individual circuit costs.

II. PROJECT DESCRIPTION

POWER prepared this report for Xcel's CapX Hampton – Rochester – La Crosse 345kV Project Alma Mississippi River Underground Crossing.

Cross-linked polyethylene (XLPE) and high-pressure fluid-filled (HPFF) systems were analyzed for the underground portion of the line. The following describes the design criteria and assumptions used in the analysis.

For both types of cable systems a number of variables remain constant. These include but are not limited to: bore length, earth ambient temperature, thermal resistivites, load factors, and burial depths as described in the Cable System Evaluation Report as well as the Ampacity Design Criteria.

The Horizontal Directional Drill (HDD) depth is controlled largely by the casing bending limitations. For example, the HDD reaches a depth of 20-ft for the HPFF system using a 10-inch casing. The heat dissipation characteristics decrease as depth increases, which ultimately increases the spacing and size of cables needed to achieve the target ampacity. For this reason a 345kV XLPE requires six (6) bores using smaller casings to decrease the overall required depth to 30-ft. However, even at this depth a 40-ft spacing is required between each bore. The drawings included in the appendices show the profile view of the HDD and typical cross sections for each configuration.

Cable System Evaluation Report

Cal	ble S	Systen	1	HPF	F 🗹		LPFI	₹ 🗆	Soli	d Dielectric 🗹
Co	des		A	AEIC 🗹		IEC □		ICEA \Box		IEEE ☑
			•	nil/AWG	i)		1750-50	000		
		ctor T	_				Copper			
			ickness	(mils)				1023, PPP: 6	00	
			aterial				PPP/XI	LPE		
			1ethod				HDD			
		Type								
	ket						Yes ☑	No □	TYPE:	polyethylene
		-	Strand (I	PMT)			Yes □	No ☑		
De	scrit	be	-)	V - 14	- Class.	2.451	- X /			
h		Cond	a) luctor:	•	e Class:	$\frac{3451}{X}$	Alum	inum		
b	')	Cond	Constr		Copper		Alum nented	iiiiuiii		
			Collsu	uction		Segi	nemeu			<u></u>
c)	Insul	ation:	*XLP	E 🗹	EPR [Kraft Pa	per 🗆	Poly Paper
*X	LPE	maxi	mum st	ress desi	gn AEIC (CS9-06	<u>,</u>	Yes		No ☑
Λc	an c	ption								
АЗ		-	ssure_F1	uid-File	d (HPFF)	X				
					(HPGF)	<u> </u>				
	_				ed (SCFF))				
	d)	Shi								
	e)	Jacl	ket:		XLPE: P	olvethy	vlene			
	f)		d Wire	Type	Stainless		,			
	1)	OKI	a wiic	Турс	Stanness	Bicci				
	Cal	ole Op	<u>perating</u>	g Paran	<u>neters</u>					
1.	An	nnacity	v Reaui	rements						
		.)	_		ndy State	370	00 A @ 3	345kV		
		.)		ency/Lo	•				_	
				•	au		-	750/		
		.)	Load I				-	75%		
	d)	Ultima	ite Short	Circuit			Amps		Cycles
	e	.)	Shield	Operation	on			Cross-bonde Single-point		Multi-Point □
	f	` .)	Shield	Open C	ircuit Volt	age Li	mit	150V		

A.

B.	Operating Design Criteria	
1.	Earth Rho (C°-cm/Watt) - Per Geotherm	90 C°-cm/Watt
2.	Earth Ambient (C°) (as provided)	_15° C
3.	Air Ambient (C°)	N/A

Temperature (C°) EPR XLPE 90 Paper 85 5. Emergency Conductor Operating

Temperature (C°) EPR XLPE 105 Paper 105

6. Soil Thermal Resistivity (Rho) (C°-cm/Watt) 90°C-cm/W Grout Resistivity (Co-cm/Watt) $70^{\circ}\text{C}\cdot\text{cm/W}$

C. **Installation Parameters**

4. Maximum Conductor Operating

1.	Substation Terminator Constrain	nts				
2.	Cable System Burial Depth	60-ft	Maximum	20-ft	Minimum	
3.	Manholes					

a.) Burial Depth

b.) Single Circuit ☑ Double Circuit □

c.) Comments

4. Route Criteria

5. Cathodic Protection Thermocouples included at CP test stations. ISP/ Rectifier/ Anode Bed

Obtained by Xcel Energy 6. Permits

7. Duct Bank/Pipe Encasement (Configuration)

N/A 8. Communication Ducts:

9. a.)	Splices	Per cable manufacturer's recommendation	
b.)	Arresters Leakage Distance Duty Cycle Rating	MCOV Per cable manufacturer's recommendation	
c.)	Terminations	Per cable manufacturer's recommendation	_
d.)	Cable Clamps	Per cable manufacturer's recommendation	
e.)	Link Boxes (Sheath Grou	unding) Per cable manufacturer's recommendation	

Ampacity Studies

POWER Engineers, Inc. (POWER) performed an XLPE and HPFF cable sizing/ampacity study for the CapX Hampton – Rochester – La Crosse 345kV Project Alma Mississippi River Underground Crossing. The primary purpose of the study was to determine a minimum conductor size based on the design requirements provided by XCEL.

POWER used CYME International's Cable Ampacity Program (CAP) to model the cable system. The cable systems analyzed were Cross-Linked Polyethylene (XLPE) and High-Pressure Fluid-Filled (HPFF). These cable systems were analyzed using the following design criteria.

• Amp	pacity	
]	Normal	.3,700 Amps at 345kV
• Load	l Factor	.75%
• Cone	ductor Material	. Copper
• Ther	mal Resistivity (ρ, rho)	
]	Native Soil	.90°C-cm/W
(Grout	.70°C-cm/W
 Amb 	pient Temperature	
	Earth	.15°C
Max	imum Conductor Operating Temperatur	re
<u> </u>	Steady State	
	XLPE	.90°C
]	HPFF	.85°C
]	Emergency	
	XLPE	.105°C
]	HPFF	.105°C
• Buri	al Depth (Top of System)	
	Minimum	
]	Maximum	.60 feet
• Bore	Length	.3000 feet

Four cases were successfully run using depths determined by the drill path for the appropriate casing size. Multiple cables per phase were used since it is impractical to achieve the required ampacities at the given depths with a single cable. Note that the native thermal resistivity is assumed to be 90°C·cm/W. This value is a typical value and may actually be higher or lower depending on the particular soil conditions found at the project site. Table 3 includes a summary of the cases including number of bores, spacing, casing size, depth, and ampacity with operating temperature.

Table 3: Ampacity Results

Cable System Type and Conductor Size	Cables Per Phase	Number of Bores (Spacing)	Bore Casing Size	Depth	Ampacity per Cable (Temperature)
345kV XLPE 5,000 kcmil CU	6*	6 (40-ft)	30-inch	30-ft	625A (88°C)
345kV HPFF 2,500 kcmil CU	4	4 (25-ft)	10-inch	20-ft	925A (82°C)

^{*} Due to software limitation, the 345kV XLPE case attached in the appendix shows only 4 cables per phase. The total of 6 required cables per phase was extrapolated from the cable rating in the aforementioned case.

Detailed ampacity calculations are located at the end of this report.

345kV XLPE Installation Concerns

Due to the high ampacity requirements, a 345kV XLPE system is not feasible when compared to a 345kV HPFF system. This system would require a large conductor size and the use of multiple cables per phase. The cable itself would be available only from a limited number of manufacturers and would have a high cost. In addition, the cable would weigh approximately 40 pounds per foot and would have a required reel length of 3,000-ft. A reel of this length would weigh 12,000 pounds and would pose a problem for transportation to the work site. The total amount of cable required for the line would likely require the use of a barge for transportation. Once at the site, the cable could either be offloaded and installed or installed directly from the barge. Both options have their own difficulties and high cost. In addition to these problems, the 345kV XLPE installation requires additional bores with much larger spacing. This greatly increases the impact of the line since the actual work site as well as the final installation itself will take up a much larger area. A higher number of cables means a larger transition station will be required on each end as well. The end result is that the footprint of the 345kV XLPE installation will likely be about twice as large as that of the 345kV HPFF installation, and it would cost about twice as much per circuit. Due to the concerns about materials, procurement, transportation, installation, cost, and overall impact, a 345kV XLPE system is not as feasible for this project as a 345kV HPFF system.

III. UNDERGROUND CABLE SYSTEMS

Introduction

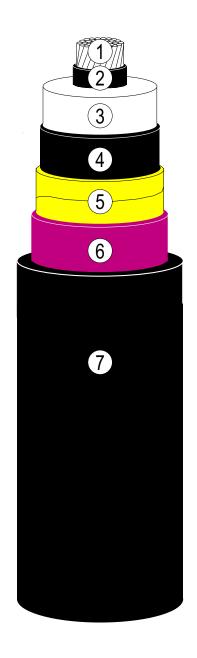
Two basic types of underground cable systems are being considered. These systems are an extruded cross-linked polyethylene cross-linked polyethylene (XLPE) insulated cable system and a high-pressure-fluid-filled pipe-type (HPFF) cable system. A brief summary of the construction of the cables and accessories for each of these cable systems follows. The pros and cons of these two cable systems are included.

Reliability

While underground transmission lines are highly reliable, their down times are significantly longer than their overhead counterparts when trouble is encountered. As a result, particular design practices are used to alleviate the problem with alternative T-lines or 100% redundancy. By implementing a design to ensure continuous operation, the reliability of underground transmission lines significantly increases.

Extruded Dielectric Cable Systems

Cable


The components of a typical dielectric cable are shown in Figure 1. The typical cable consists of a stranded copper or aluminum conductor, semi-conducting extruded conductor shield, extruded dielectric insulation, extruded semiconducting insulation shield, a lead, aluminum, copper or stainless steel sheath moisture barrier, and a protective jacket. The inclusion of a moisture barrier is typical of French and other non-U.S. cables, but has not been a standard feature of U.S. extruded dielectric cables until recently (last ten years).

A metallic shield, tape or drainwire, is required to carry fault current when a sheath is not used.

Insulation materials used for extruded dielectric cables include:

• Thermoplastic Polyethylene Compounds

Typical thermoplastic polyethylene insulation materials are low-density polyethylene (LDPE), high molecular weight polyethylene (HMWPE) and high-density polyethylene (HDPE).

1 - CONDUCTOR

Cross-section: 1750 kcmil, segmental

Material: copper

2 - INNER SEMI-CONDUCTIVE LAYER

Indicative thickness: 60 mils Minimum point thickness: 24 mils

3 - INSULATION

Material: cross-linked polyethylene Minimum average thickness: 900 mils *

4 - OUTER SEMI-CONDUCTIVE LAYER

Indicative thickness: 63 mils
Minimum point thickness: 40 mils
Maximum point thickness: 100 mils

5 - SWELLING TAPE

6 - LEAD SHEATH

Minimum average thickness: 45 mils *

7 - OUTER SHEATH AND EXTRUDED SEMICONDUCTING LAYER

Material: medium density polyethylene Minimum average thickness: 120 mils *

Figure 1: Typical XLPE Cable

• Thermosetting Compounds

Ethylene propylene rubber (EPR) and cross-linked polyethylene (XLPE) are typical thermosetting insulation compounds.

It is interesting to note that each of these insulation materials enjoys preferential use in different parts of the world. For instance, the preferred extruded dielectric insulation in France is LDPE, in Italy EPR, and in most of Europe, Japan and the U.S. XLPE. The reason for this difference is likely that no one extruded dielectric insulation material has emerged as conclusively superior to the others in all aspects for every application, including manufacturing, cost and reliability.

Materials used for semi-conducting extruded conductor and insulation shields are semi-conducting PE, XLPE and EPR compounds. PE compounds are used with PE and XLPE insulation, XLPE compounds with XLPE insulation, and EPR compounds with EPR insulation.

Cable Jackets are typically extruded PE and on rare occasions polyvinyl chloride (PVC).

Extruded dielectric cables are manufactured using one of the following extrusion techniques:

- The conductor shield and insulation are extruded in tandem over the conductor. Extrusion of the insulation shield is a separate operation.
- The insulation shield, insulation and conductor shield is extruded in tandem over the conductor. This
 method is known as triple tandem extrusion. Triple extrusion is the preferred and recommended
 technique.

The metallic shield, tape, concentric neutrals, etc., and jacket, as applicable, are applied later in separate operations.

Vulcanization of thermosetting insulation compounds, EPR and XLPE, occurs via a dry cure or steam cure process in a tube called a curing tube. After vulcanization, the insulation is cooled with water or gas in a cooling tube.

Three major types of extruder lines are used to produce extruded dielectric cable; they are catenary, MDCV (long land die) and vertical extruder lines. Vertical extruder lines are often used when heavy insulation walls are required, for cables rated in excess of 35kV and for guaranteeing concentricity.

The manufacturing process for extruded cables is of critical importance in ensuring a reliable end product, since extruded dielectric insulations are not self-healing. Fluid-impregnated paper insulation is much more tolerant of manufacturing defects. As such, quality control during manufacture of extruded dielectric cables is critical to minimize moisture contamination, voids, contaminants and protrusions. Insulation contamination can be minimized by manufacture of and use of super clean insulation compounds; transportation and storage of the compounds in sealed facilities; and screening out of contaminants at the extruder head.

Voids and moisture contamination are inevitable results of steam vulcanizing, water-cooling and cross-linking agent decomposition. Dry (gas) curing produces smaller and fewer voids and less moisture contamination.

Lead sheaths are typically extruded (see end of this section for typical cable cross-section drawings and data); however, other types of water impervious material are available. The following table compares the various types of sheath materials.

Table 4: Cable Sheath Comparison

	Extruded Lead	Extruded Aluminum	Metallic Foil Laminate	Copper	Stainless Steel
Dimensional Stability	Poor	Good	Poor	Very Good	Very Good
Fluid-Imperviousness	Very Good	Very Good	Good	Very Good	Very Good
Flexibility	Good	Poor	Very Good	Very Good	Very Good
Mechanical Strength	Good	Very Good	Poor	Very Good	Very Good
Cable Diameter (per unit)	1.0	1.0	1.0	1.05	1.14
Cable Weight (per unit)	1.59	1.0	1.09	1.27	1.34
Minimum Bending Radius	15Ds	15Ds	15Ds	12Ds	12Ds
Corrosion Resistance	Very Good	Poor	Poor	Very Good	Very Good

Ds = Diameter of metallic sheath

Cable Accessories

The three basic cable accessories for extruded dielectric cables are splices, terminations and sheath bonding materials.

Premolded splices are recommended to joint 345kV extruded dielectric cables. Cable preparation for splicing is as follows:

Insulation and shields are removed from the conductor; and the insulation is penciled. The conductor ends are then joined by a compression splice or MIG welding (aluminum conductor only).

The perceived disadvantages of traditional jointing methods compared to premolded are, as assembly is complex, specially trained craftsmen required and no factory testing is possible. The premolded joint offers simpler construction. Also all parts produced can be factory tested prior to field installation (see end of this section for premolded splice cross-section for extruded dielectric cable)

Terminations are available for extruded dielectric cable to allow transitions to overhead lines or above ground equipment. A manufacturer's catalog page showing a cross-section of a typical termination follows. A synthetic rubber stress cone is placed over the insulation to control stress and the interior of the termination body is filled with a synthetic or silicone fluid. Termination bodies are typically made of porcelain and include skirts to minimize the probability of external flashovers due to contamination.

Sheath cross bonding may be required for long extruded dielectric cable systems to minimize or eliminate sheath currents, sheath losses and sheath voltage.

Cable Maintenance and Repair

XLPE cable requires little maintenance since it is usually installed in a duct bank. Duct inspections are performed in conjunction with routine manhole inspections. Furthermore, ducts are seldom cleaned unless a new circuit, cathodic protection, or grounding is being installed. Unless environmental conditions dictate more frequent inspections, a yearly manhole inspection is generally sufficient to examine cable sheaths, protective jackets, joint casings, cable neutrals, and general physical condition of the manhole. Terminations should also be visually checked on a yearly basis to ensure a properly operating system. In the unlikely event of an electrical fault, the cable failure must be located which requires specialized equipment as well as a knowledgeable crew to pinpoint the failure. The time it takes to locate the fault location depends largely on the environmental surroundings and access to the cable for testing. Once pinpointed, an entire section of cable can be removed and replaced between manhole sections, or the duct bank can be opened up and an experienced splicing crew can rejoin the cable ends. The amount of time the system is depends entirely on the fault location and the repair method that provides the most advantageous solution. Typical repair time can range from two to four weeks.

Pros and Cons

The pros and cons of extruded dielectric cable systems for use in high voltage applications are as follows:

Pros:

- Essentially no operation and maintenance requirements.
- High reliability reported for systems of modern design at voltages of 230kV and below in Japan, the US and European countries. Extensive use and success at 400kV in France and Japan.
- Higher normal operating and short circuit temperature ratings as compared to HPFF systems.
- Installation environmental condition requirements for splicing and terminating less stringent.
- Shorter time required for repair.
- Dielectric losses for extruded cable systems considerably less than paper insulated cable systems.
- Less specialized installation equipment required.

Cons:

- Susceptible to damage from dig-ins if direct buried more so than HPFF cable systems.
- Potential for induced sheath voltages and losses.
- Trench for installation of each cable length (direct buried) must be left open during cable installation.
- Duct bank/conduit installation reduces thermal performance and increases cost.
- XLPE insulation not forgiving (fluid-impregnated paper insulation is more tolerant of manufacturing defects, and variances).
- Limited splicing/terminating workforce in USA.

High-Pressure Pipe-Type Cable Systems

Cable

The construction of a typical high-pressure pipe-type (HPPT) cable (high-pressure-gas-filled pipe-type and high-pressure-fluid-filled pipe-type cables) is shown on the following manufacturer's drawing. The cables are typically composed of a conductor, conductor shield (carbon black or metalized paper tapes), insulation (Kraft paper or paper/polypropylene laminate impregnated with polybutene or alkylbenzene fluids), insulation shield (carbon black or metalized paper tapes), a moisture barrier (non-magnetic tapes and metalized mylar tapes), and skid wires (zinc, stainless, brass). The moisture barrier prevents moisture and other contamination and loss of impregnating fluid prior to installation. The skid wires prevent damage to the cable during pulling.

Three HPPT cables are pulled into a low-carbon steel pipe to constitute a cable system. The pipe is coated on the inside with an epoxy coating to prevent oxidation prior to fluid-filling and to reduce pulling friction and tension. The pipe exterior is coated with HDPE or Polypropylene to protect the pipe from environmental corrosion and to isolate the pipe from "ground" to allow use of a cathodic protection system.

A triangular cable configuration is preferred in contrast to a cradle configuration, as it reduces pipe losses and, as a direct result, increases load capacity. Increases in pipe losses for cradled versus triangular cable configuration ranges from 20% to 45%.

HPFF cable systems are filled with pressurized low viscosity polybutene or alkylbenzene fluids.

Cathodic protection is applied to pipes used in HPFF cable systems. This protection inhibits pipe corrosion, thereby minimizing pipe leaks due to corrosion. Most forms of cathodic protection utilize one of two methods: the galvanic-anode system or the impressed-current system. With both systems, anodes are placed in the ground to draw a DC current along the cable pipe into the anodes where metallic deterioration and corrosion are allowed to occur. In most systems an isolator/surge protector is used to block the DC current from entering the station grounding grid but allowing for large AC surges to be safely discharged in the station grid. Through the use of cathodic protection, the reliability of the pipe type system can maintain a high level of performance.

The manufacturing process for HPFF cables is similar to the process used for paper insulated lead-covered cables. A conductor core is covered by helically wound layers of metalized or carbon black paper tape for conductor and insulation shield and high quality Kraft paper or paper/polypropylene laminated for insulation. The insulated cable is dried and then impregnated with fluid in large pressurized tanks.

Cable Accessories

Splicing of HPFF cables begins with removal of the insulation and shields from the conductor, the insulation is step-penciled. The conductor ends are then joined by a ram press, compression connector or MIG welding (aluminum conductor only). Insulation paper tape is wound around the spliced conductor, filling the step-penciled area of the insulation. Metalized tapes or carbon black tapes are used to reestablish the conductor and insulation shields. Small rolls of paper tape are used, as the three cables are very close together.

Maintenance and Repair

To ensure reliable, uninterrupted service, routine maintenance must be completed on cable systems as well as the associated components. Because of the more intricate systems involved with the high pressure fluid filled system, maintenance and occasional repair can be expected to be higher than that of the solid dielectric system. The hardest and often times most over looked component of the pipe type system is the pipe coating, which left un-inspected can cause catastrophic failure to the entire system. Because the cable itself is contained inside of a steel pipe, the pipe coating must be maintained in order to ensure proper operating pressures, and should be tested at least every other year. Repair of the cable pipe is an extensive process but will generally only leave the system off line for a number of days. Routine inspections and testing of the pumping plant must be preformed in order to sustain the proper operating pressures. Although the plant has a number of different sensors and alarms, a thorough yearly inspection is recommended. Other components of the cathodic protection system should be routinely tested such as the rectifier and the isolator/surge protector (ISP). Current levels, as well as voltage levels, should be tested monthly and any significant changes noted as a possible system breakdown. Anodes output levels should also be tested and replaced when necessary. As with extruded cables, electrical failures require locating the fault followed by the on site determination of repair needs. However, because the high pressure fluid filled system utilizes a pressure filled pipe, the dielectric fluid must be capped off while repairs are made. To do this a pipe freeze is initiated using liquid nitrogen to inhibit the fluid flow. Once cable splicing is finished and a repair sleeve installed, the freeze can be removed and any contaminates can be evacuated from the system. In the event of termination failure, the cable generally must be replaced all the way back to the splicing trifurcator. Typical repair time can range from two to six weeks.

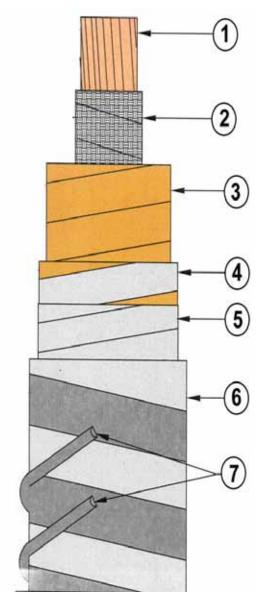


Figure 2: Typical HPFF Cable

1 - CONDUCTOR

Cross-section: 2500 kcmil segmental

Material: copper

2 – CONDUCTOR SHIELD Carbon Black Paper Tapes

3 - INSULATION

Material: Impregnated Paper (LPP)

4 – Insulation ShieldMetalized Paper Tape

5 - Insulation ShieldMetalized Polyester Tape

6 - ZINC ALLOY TAPE

7 - D-SHAPED SKID WIRES

Material: Zinc or Stainless Steel

Terminations are made by first separating the three cables using a trifurcator. Single-phase terminations are then made in fluid-filled terminators.

Pros and Cons

The advantage and disadvantages of HPFF cable systems for use in high voltage applications are as follows:

Pros:

- Long experience record dating from 1930's with extensive use in the U.S.
- Very high reliability based on utility records.
- Steel pipe affords mechanical strength and protection from "dig-ins."
- Short lengths of trench can be opened for construction activities.
- The cable and other materials are manufactured and installed by firms located in the U.S.
- For directional drilling installations, the casing installed can also be utilized as the cable conduit.

Cons:

- Pipe susceptible to corrosion, cathodic protection required.
- Requires very large specially designed equipment for installation activities.
- Requires specialists for specific installation activities.
- Requires very long repair time in case of faults in the cable system.
- Requires installation and maintenance of a cathodic protection system.
- Requires maintenance of pressurization system.

IV. TERMINATION STRUCTURE / STATION

The difference in the two cable systems comes from the manufacturing process and operation characteristics of each type of cable. For the XLPE system, typically larger insulation thicknesses are seen, but a pumping plant and cathodic protection is not required like that of an HPFF system. Further considerations arise at the termination locations. For the HPFF system a transition station must be erected to facilitate the pumping plant, oil filled terminations, and the cathodic protection system. Typical termination stations have a footprint in the range of 250-ft by 250-ft. However, this may be a benefit as a number of switching arrangements can be attained, as well as the addition of circuit protection, monitoring, and voltage regulation. The XLPE system can be converted to an overhead line in a much simpler fashion with the use of a transition structure, because the underground cables, as well as all of the required terminations, can be attached directly to the structure.

The Pros and Cons of each configuration are provided below:

Termination Structure

Pros:

- Essentially no operation and maintenance requirements.
- High reliability
- Small structural footprint
- Terminations can be located on structure
- Lower installation cost

Cons:

- Can only be used for XLPE cable
- Failure of structure may result in prolonged outage

Termination Station

Pros:

- Works with both cable systems
- More switching capabilities
- Increased protection capabilities/schemes
- SCADA can be installed in the station
- Voltage regulation, if required can be incorporated

Cons:

- Larger footprint
- Higher cost
- Higher maintenance costs

V. COST ESTIMATE

Introduction

The cost estimate for the cable system was compiled using quotations from high voltage cable manufacturers and contractors familiar with the installation of high voltage underground cable systems.

Cost Estimate Assumptions

- 1) Single point bonding of XLPE cable sheaths was assumed.
- 2) Materials used in the cost estimates meet all applicable industry standards.
- 3) It was assumed construction will be performed by craftsmen experienced in installing high voltage underground transmission systems.
- 4) XCEL to obtain all environmental, local, state, and federal permits as required.
- 5) No contingency for internal XCEL costs.
- 6) No contingency for dewatering costs.
- 7) A 15% contingency was added.
- 8) No contingency for rock excavation costs.

Summary of Cost Estimates

A summary of the costs for the cable investigated has been included in Table 5 below.

<u>Table 5: Cost Summary Table *</u>

Daganintian	Material	Labor	Total	Total
Description	(One Circuit)	(One Circuit)	(One Circuit)	(Two Circuits)
345kV XLPE				
5000 kcmil Copper	\$64,631,645	\$33,099,965	\$97,731,610	\$195,463,220
Conductor	\$04,031,043	\$33,077,703	Ψ27,731,010	\$175,705,220
345kV HPFF				
2500 kcmil Copper	\$25,426,148	\$19,675,275	\$45,101,423	\$90,202,846
Conductor	\$23,420,148	\$19,073,273	\$45,101,425	\$90,202,840

^{*} A 15 % contingency is included in the estimates.

The costs included in the table above for multiple circuits can be accounted for by simply summing the relevant individual circuit costs.

VI. Installation Methods

Overview of Horizontal Directional Drilling (HDD)

Development and Uses

Originally used in the 1970s, directional crossings are a marriage of conventional road boring and directional drilling of oil wells. Pipelines have been installed for carrying oil, natural gas, water and other products using HDD. Ducts have been installed to carry electric and fiber optic cables. Besides crossing under rivers and waterways, HDD installations have been made crossing under highways, railroads, airport runways, shore approaches, islands, areas congested with buildings, pipeline corridors and future water channels.

Technology Limits

The longest installation, since the inception of HDD, has been about 6,000 feet with pipe diameters up to 60 inches. Although directional drilling was originally used primarily on the U.S. Gulf Coast through alluvial soils, more and more crossings are being undertaken through gravel, cobble, glacial till and hard rock. Adequate space must be available to allow rigs to set up for the duration of the installation.

Advantages

HDD installations have the least environmental impact of any alternate method. The technology also offers maximum depth of cover under the obstacle, thereby affording maximum protection and minimizing maintenance costs. HDD crossings have a reasonably predictable and short construction schedule. Directional drilling may minimize social impacts such as extensive highway closures and traffic congestion under the right conditions. Perhaps most significant advantage is that HDD crossings are in select cases, less expensive than other methods.

Machine Types

There are several types of machines available for HDD. They are primarily separated into small or mini, medium and large sizes, according to thrust and pull back force capabilities.

Small or mini size rigs have thrust and pull back forces of less than 30,000 pounds. Typically these rigs have ranges limited to 2 to 300 feet and can install 2 to 6 inch product casings.

Medium size rigs have thrust and pull back forces in the range of 30 to 100,000 pounds. Ranges are longer with the upper limit approaching 1,500 to 2,000 feet. These rigs can install 6 to 20 inch product casings, depending on length and specific forces.

Large size rigs have thrust and pull back forces in the range of 125 to 750,000 pounds. Ranges of installation can exceed 5,000 feet and product casings can be 6 to 60 inches.

Technique

A pilot hole is drilled beginning at a prescribed angle from horizontal and continues under and across the obstacle along a design profile made up of straight tangents and long radius arcs. Concurrent to drilling the pilot hole, the contractor may elect to run a larger diameter "wash pipe" that will encase the pilot drill string. The wash pipe acts as a conductor casing providing rigidity to the smaller diameter pilot drill string and will also save the drilled hole, should it be necessary to retract the pilot string for bit changes. The directional control is brought about by a small bend in the drill string just behind the cutting head. The pilot drill string is not rotated except to orient the bend. If the bend is oriented to the right, the drill path then proceeds in a smooth radius bend to the right. The drill path is monitored by an electronic package housed in the pilot drill string near the cutting head. The electronic package detects the relationship of the drill string to the earth's magnetic field, gravitational field and its inclination. This data is transmitted back to the surface where calculations are made as to the location of the cutting head. Surface location of the drill head also can be used where there is reasonable access.

Once the pilot hole is complete, the hole must be enlarged to a suitable diameter for the product pipeline. For instance, if the pipeline to be installed is 36 inch in diameter, the hole may be enlarged to 48 inch diameter or larger. This is accomplished by "pre-reaming" the hole to successively larger diameters. Generally, the reamer is attached to the drill string on the bank opposite the drilling rig and pulled back into the pilot hole. Joints of drill pipe are added as the reamer makes its way back to the drilling rig. Large quantities of slurry are pumped into the hole to maintain the integrity of the hole and to flush out cuttings.

Once the drilled hole is enlarged, the product pipeline can be pulled through it. The pipeline is prefabricated at the end of the bore opposite the drilling rig. A reamer is attached to the drill string and then connected to the pipeline pullhead via a swivel. The swivel prevents any translation of the reamer's rotation into the pipeline string allowing for a smooth pull into the drilled hole. The drilling rig then begins the pullback operation, rotating and pulling on the drill string and once again circulating high volumes of drilling slurry. The pullback continues until the reamer and pipeline break ground at the drilling rig.

After the pipe has been pulled through the drilled hole, bore spacers and conduit are installed in the pipe. The bore spacers are typically spaced five feet apart to allow support of the conduit. Once the conduit is installed, one end of the pipe is temporarily sealed and grout is pumped into the opposite end until the pipe system is full.

Prior to construction there are several activities that must be accomplished. These activities include: soil borings, thermal resistivity testing of the soil and surveying the route. The daily activities for a typical HDD operation are presented below. This timetable is based on drilling 1200 feet.

<u>Mobilize</u>: The mobilization of the HDD equipment will require a minimum of 30 days with an additional minimum 30 days notice.

<u>Day 1</u>: The drilling equipment is setup. (This assumes setup location has been identified and approved by Xcel and Permitting Agencies)

Day 1-5: Product casing is laid out and prepared on exit side of the drilling operation.

<u>Day 2</u>: Excavation and setup of entry position and the anticipated exit position is located.

<u>Day 2-4</u>: The pilot hole is drilled beginning at the prescribed angle and under and across the obstacle along the designed profile. Expected minimum drilling rate of 40 feet/hour for the pilot hole (30 drilling hours based on 12 hour shifts).

Day 5: The drilling equipment is reset for back ream and pullback of product pipe.

<u>Day 6-8</u>: The drilled hole is enlarged and the product pipe (casing) is pulled into the enlarged borehole. Expected drilling rate of 35 feet/hour for the back ream and casing installation. (30 drilling hours based on 12 hour shifts).

<u>Day 8</u>: The area around the exit hole is excavated and the casing lowered to design depth and configuration.

<u>Day 9</u>: The drilling equipment is disassembled and demobilized.

<u>Day 10</u>: The area around the entry hole is excavated and the casing lowered to the design depth and configuration. The equipment for the conduit installation is setup.

<u>Day 11-12</u>: The installation of the bore spacers and conduit are installed in the pipe. Once the conduit is installed, grout is pumped into the pipe system.

<u>Day 13</u>: Installation of the land-side duct bank begins.

Layout and Design

Heavy equipment is required at both ends of the installation. This equipment must remain in position while the installation progresses to completion.

Work Space

The rig spread requires a minimum 100-foot wide by 150-feet long area as shown in Figure 3. This area should extend from the entry point away from the installation, although the entry point should be at least 10 feet inside the prescribed area. Since many components of the rig spread have no predetermined position, the rig site can be made up of smaller irregular areas. Operations are facilitated if the area is level, hard standing and clear of overhead obstructions. The drilling operation requires large volumes of water for the mixing of the drilling slurry. A nearby source of water is necessary.

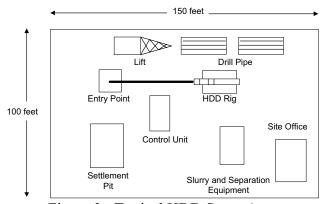


Figure 3: Typical HDD Setup Area

Strong consideration should be given to provide a sufficient length of workspace to fabricate the product pipeline into one string. The width will be as necessary for normal pipeline construction although a workspace of 100-feet wide by 150-feet long should be provided at the exit point. The length will assure that during the pullback the pipe can be installed in one uninterrupted operation. Tie-ins of successive strings during the pullback operation increase the risk considerably because of the tension changes going from dynamic friction to static friction with respect to the product being used. If manholes are located 600 feet apart, then a space of 600 feet should be available beyond the exit pit for product pipe laydown prior to pulling it into the drilled path.

Once the work locations have been chosen, the area should be surveyed and detailed drawings prepared. The eventual accuracy of the drill profile and alignment is dependent on the accuracy of the survey information.

Profile Design Parameters

Once the installation profile has been taken and the geotechnical investigation completed, a determination of the depth of cover under the existing groundline is made. Factors considered may be the presence of existing pipeline or cable crossings at the locations along the desired route. Minimum depth recommended is 10 feet to prevent loss of drilling fluids.

An entry angle between 8° and 20° can be used for most installations. It is preferable that straight tangent sections are drilled before the introduction of a long radius curve. The radius of the curve is determined by the bending characteristic of the product pipeline, increasing with the diameter. A general "rule of thumb" for the radius of curvature is 100 feet/inch diameter for steel line pipe. The curve usually brings the profile to the elevation providing the design cover of the pipeline under groundline and obstructions. Long horizontal runs can be made at this elevation before curving up towards the exit point. Exit angle should be kept between 5° and 12° to facilitate handling of the product pipeline during pullback. Most downhole survey tools are electronic devices that give a magnetic azimuth (for "right/left" control) and inclination (for "up/down" control). Surface locators can also be used in conjunction with the downhole electronic package.

The accuracy of the drill profile is largely dependent on variations in the earth's magnetic field. For instance, large steel structures (bridges, pilings, other pipelines, etc.) and electric power transmission lines affect magnetic field readings. However, a reasonable drill target at the pilot hole exit location is 10 feet left or right, and -10 feet to + 30 feet in length, although greater accuracy has been achieved.

Normally, survey calculations are conducted every 30 feet during pilot hole operations. The contractor should provide as-built drawings that are based on these calculations. Alternate methods such as gyroscoping, ground penetrating radar or sound transmitting devices may also be used to determine the as-built position.

Special Considerations for Water Crossings

When crossing any body of water a number of concerns arise, and generally these concerns are area specific. The main issues involve the type of the body of water to be crossed, whether or not the area is environmentally sensitive, the location of any access points, environmental control, and permitting. When performing any work around bodies of water special permitting is usually required, as is an environmental impact study. In addition, extensive measures must be taken in preserving the natural water flow. This can range anywhere from erosion control to complete removal of all excavated soils. Because horizontal directional drilling uses bentonite, a clay type drilling fluid to stabilize the bore and reduce mechanical wear, concerns of frac-out into the water body arise. However, because bentonite is of a natural origin, fracing-out into the body of water generally is not a large concern

VII. Operation and Reliability

Overhead Transmission

Overhead line is relatively easy to operate, maintain, troubleshoot and repair. Overhead lines are susceptible to outages resulting from lightning, high wind, wind blown debris, equipment failure and vandalism. At the 345kV level, phase spacing is sufficient to eliminate most problems from flying debris such as tree limbs and proper design eliminates problems with conductor slap. This leaves lightning, high winds, equipment failure and vandalism as the predominant causes of outages. In the case of a short circuit the protective relays normally detect the fault and trip the circuit opens within three to five cycles. Since the line is above ground, faulted sections are usually quickly identified by line patrols with direction from fault locating relays and digital fault recorders. Repair time for most components can be completed within a few hours.

Overhead line currents are limited by annealing of the conductor material which reduces the mechanical strength. High currents also increase the sag due to thermal expansion which reduces ground clearance. Transmission lines with ACSR conductors are designed for normal operation at about 75° C but they can be operated up to 100° C for a number of hours during emergency conditions and may be operated up to 125° C for a short duration.

Underground Transmission

Underground line is relatively easy to operate and maintain although it is more difficult to troubleshoot and repair. Maintenance procedures for XLPE systems include various items such as visual and/or operational inspections of the cable terminations, manholes, and temperature monitoring system inspection and testing. With proper maintenance, the design life of an underground line is approximately 40 years. Underground lines are susceptible to outages resulting from dig in's and cable, splice or equipment failure.

Generally, the conductor of an underground transmission line will be twice the size of an equivalent overhead transmission line. This is a result of the limited heat dissipation due to cable insulation and below grade encasement. This extra mass of copper or aluminum combined with the slow thermal transients of the encasement provides a significant advantage when it comes to short-term overloads. A typical underground transmission line may operate at 20-30 percent above nominal rating for up to 3 days without any degradation to the cable.

Operating losses in cable systems include conductor losses, dielectric losses, proximity effect losses, and sheath losses. Generally, underground cable losses are higher than that for an equivalent overhead circuit.

Underground transmission lines may be designed for future upgrade with a relatively small capital cost. Even lines that were not originally planned for upgrade may be converted by any of the following options:

- Reconductoring
- Accepting a higher voltage stress on the cable.
- Changing cable insulation for higher voltage operation by using a reduced wall thickness or changing from laminated paper insulation to LPP insulation.
- Dynamic ampacity ratings associated with continuous monitoring.

VIII. Comparison of Environmental Impacts of Overhead and Underground Transmission Line Construction

The environmental impacts of overhead transmission line construction differs substantially from underground construction. These differences are discussed below:

Right of Way Widths

Underground right of way widths can be limited to the area containing the line and an area on each side of the line set aside to protect the line from unintentional excavation damage and for access. The underground line can be placed adjacent to the existing 161kV overhead line river crossing. Assuming a separation of 25-ft to the north of the overhead lines, a right of way of 235-ft would be sufficient for the 345kV HPFF cable system installation. For the 345kV XLPE installation, approximately 360-ft would be required.

Ground Disturbance

Ground disturbance for overhead construction is limited to structure locations. Underground construction involves extensive ground disturbance including trenching along the entire line length, bore pit excavation at each end of a directional boring, and installation of splicing and pull-through vaults as necessary.

Long underground cable systems may also require intermediate stations to install reactors. Each of these stations will require installation of equipment inside a fenced area with a footprint of about 40,000 square feet.

Sensitive features such as streams and rivers, etc. exist in the line route. While overhead construction has the flexibility to span features such as rivers, streams and wetlands, underground construction does not have as much flexibility and requires construction through these sensitive features if they are crossed by the line route. Directional drilling or boring may be required for underground construction in order to avoid impacts to streams, rivers and wetlands. However, where directional drilling is not feasible, trenching through sensitive areas would be required for underground construction.

Underground construction requires extensive coordination with other underground utilities to avoid damage during construction. This level of coordination usually exceeds that required for overhead construction. The potential to disrupt or damage underground utilities is usually greater with underground construction.

Replacement or repair activities may have additional ground disturbance for underground lines. Overhead repair work usually involves light impact at the structure locations. Secondary off-site ground disturbing impacts may be required for underground lines if selective fill is required for heat dissipation. Materials source sites must be excavated to obtain this select fill material.

Land Use and Aesthetics

Overhead construction can be visually intrusive in sensitive visual environments. Urban underground construction, if properly rehabilitated, typically has lower visual impacts than overhead construction. In rural areas, underground rights of way may be highly visual due to the clearing required for the right of way.

Overhead construction may not be suitable for congested urban areas and may impact urban land uses more than underground construction. In rural settings, underground construction may be much more disruptive to agricultural or rural land uses than overhead construction. Farming can usually be conducted under overhead lines (with the exception of structure locations) while it would be prohibited over underground lines to avoid damaging the line.

Electric fields, magnetic fields and Noise

Underground construction in pipes or shielded cable eliminates electrical fields at the right of way boundary. Magnetic fields are generally higher directly over an underground installation compared to an overhead installation. Magnetic fields tend to decrease more rapidly with distance for underground installations compared to overhead.

Overhead lines emit a hiss or low hum (corona) during rainstorms or humid periods. Underground lines are silent for the most part with the exception of the immediate area near termination points.

Right of Way Clearing and Vegetation Control

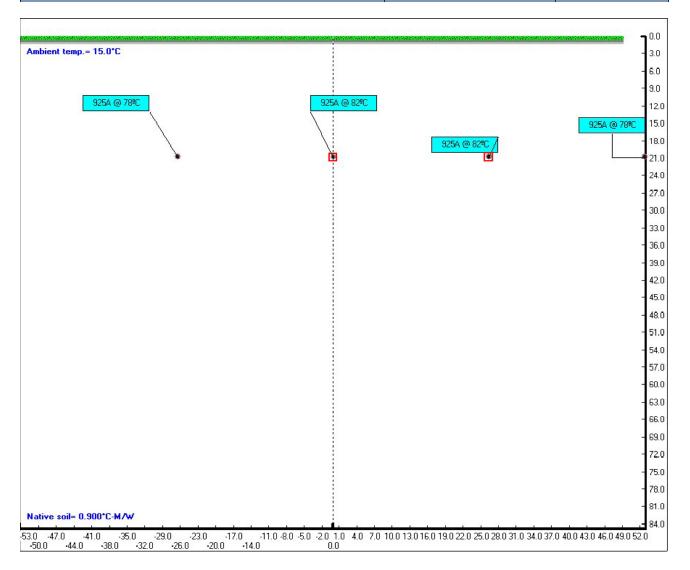
In undeveloped areas, underground construction requires the right of way to be totally cleared to allow for construction and establishment of the right of way. This includes trees, brush, and ground cover. While low growing vegetation can be reestablished over an underground installation, trees or plants with woody roots cannot be allowed to grow over the line.

Overhead construction requires complete clearing only in the area of the structures and removal of trees along the line route to provide for electrical clearance and maintenance. Lower vegetation such as brush, shrubs, and ground covers can usually be left as long as it will not interfere with maintenance and access to the line. Both underground and overhead construction techniques may require long term vegetation control in the right of way.

Erosion Control in Unstable Areas

Extensive erosion control measures are required for underground lines because a trench is dug the entire line length and the right of way is totally cleared. In areas with hilly terrain and erosive soils, significant erosion and sedimentation impacts can arise from underground construction. Due to less ground disturbing activity, overhead lines usually result in lesser erosion impacts.

Careful placement of structure locations or engineered foundation arrangements can avoid or mitigate unstable geology or soils in overhead construction. Underground construction does not have the flexibility to avoid unstable areas encountered by the line route; thus the potential for impacts to unstable areas may be greater with underground construction.


Study: Xcel Energy 345kV HPFF River Crossing

Execution: 02 345kV 2500kcmil Cu 600milPPP rho=90 15°C, d=25',925A@82°C

Date: 4/23/2008 **Frequency:** 60 Hz

Conductor Resistances: IEC-228

Installation Type: Buried Pipes						
Parameter	Unit	Value				
Ambient Soil Temperature at Installation Depth	°C	15				
Thermal Resistivity of Native Soil	°C.m/W	0.9				
Non-Isothermal Earth surface modeling	Enabled/Disabled	Disabled				

Summary Results									
Solution converged									
Cable\Cable		Location		ntion	Load Factor	Temperature	Ampacity		
type no	Circuit	Phase	X[ft]	Y[ft]	[p.u.]	[°C]	[A]		
1 \ 1	1	ABC	0	20.833	0.75	82.4	925		
2 \ 1	2	ABC	26.416	20.833	0.75	82.4	925		
3 \ 1	3	ABC	-26.416	20.833	0.75	78	925		
4 \ 1	4	ABC	52.833	20.833	0.75	78	925		

Cables input data

Study: Xcel Energy 345kV HPFF River Crossing

Execution: 02 345kV 2500kcmil Cu 600milPPP rho=90 15°C, d=25',925A@82°C

Date: 4/23/2008

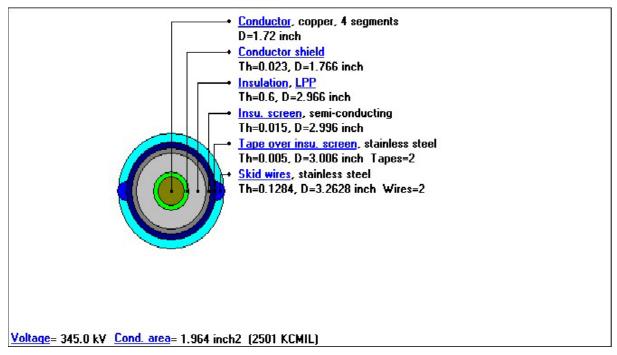
Temperature coefficient

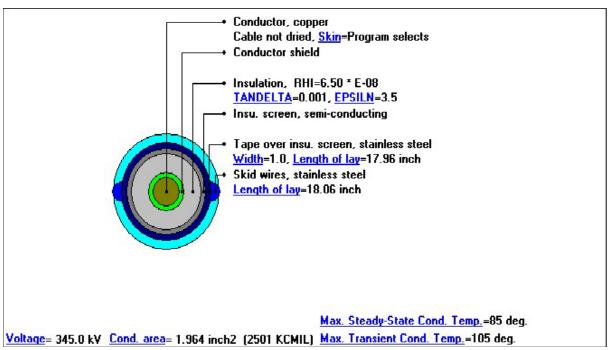
Date	4, 23, 2000		
No	Description	Unit	1
Gene	ral cable information		
1	Cable type no		1
2	Number of cores		3
3	Voltage	kV	345
4	Conductor area	inch ²	1.964
5	Maximum Steady-State Conductor Temperature	°C	85
6	Maximum Emergency Conductor Temperature	°C	105
Cons	truction		
Con	ductor		
7	Material		copper
8	Resistivity @20°C	uΩ.cm	1.7241
9	Temperature coefficient	1/K	0.00393
10	Construction		4 segments
11	Is cable dried?		No
12	ks (Skin effect coefficient)		0.44
13	kp (Proximity effect coefficient)		0.37
14	Diameter	inch	1.72
Con	ductor shield		
15	Is layer present?		Yes
16	Thickness	inch	0.023
17	Diameter	inch	1.766
Inst	ılation		
18	Is layer present?		Yes
19	Material		LPP
20	Thermal resistivity	K.m/w	6.5
21	Dielectric loss factor - (tan δ)		0.001
22	Relative permeability (ε)		3.5
23	Thickness	inch	0.6
24	Diameter	inch	2.966
Inst	llation screen		
25	Is layer present?		Yes
26	Material		semi-conducting
27	Thickness	inch	0.015
28	Diameter	inch	2.996
She	ath reinforcing tape/Tape over insulation screen	-	<u> </u>
29	Is layer present?		Yes
30	Material		stainless steel
31	Resistivity @20°C	uΩ.cm	70
	<u> </u>		

1/K

33	Tape width	inch	1				
34	Length of lay	inch	17.96				
35	Number of tapes		2				
36	Thickness	inch	0.005				
37	Diameter	inch	3.006				
Concentric neutral/Skid wires							
38	Is layer present?		Yes				
39	Is around each core? (Only for Three core cable)		No				
40	Material		stainless steel				
41	Resistivity @20°C	uΩ.cm	70				
42	Temperature coefficient	1/K					
43	Length of lay	inch	18.06				
44	Number of wires		2				
45	Wire gauge		Unknown				
46	Thickness	inch	0.1284				
47	Diameter	inch	3,2628				

No	Description/Value	Unit	1						
SPEC	SPECIFIC INSTALLATION DATA								
Loss	Loss factor constant								
1	Loss factor constant		0.3						
Duc	construction								
2	High pressure oil filled pipe type		Yes						
3	Resistivity (RH)		0						
Cabi	es touching								
4	Single conductor cables touching		Yes						
Pipe	coating								
5	Polyethylene		Yes						
6	Resistivity (RH)		6						
Pipe	material								
7	Steel pipe		Yes						
8	Pipe material factor		1.7						
Duc	:/Pipe dimensions								
9	Inside diameter of Duct/Pipe	inch	10.0200003						
10	Outside diameter of Duct/Pipe	inch	10.7500003						
11	Pipe coating diameter	inch	10.8500003						

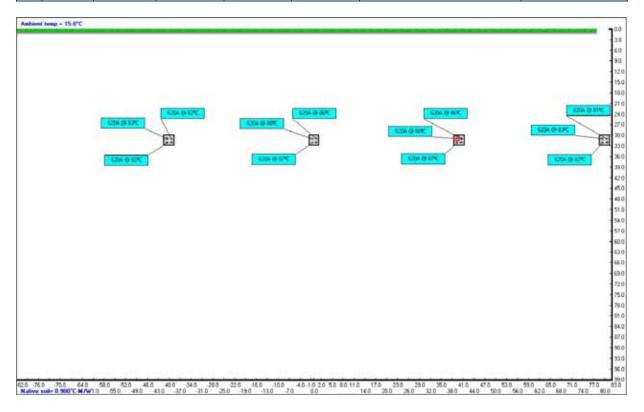

No	Symbol	Description	Unit	1	2	3	4
Temp	erature ca	alculations					
1		Cable type no		1	1	1	1
2		Circuit no		1	2	3	4
3		Phase		ABC	ABC	ABC	ABC
4	$\theta_{\rm c}$	Conductor temperature	°C	82.4	82.4	78	78
5	$\theta_{\rm i}$	Sheath/Shield temperature	°C	70.4	70.4	66.2	66.2
6	$\theta_{\rm j}$	Armour/Pipe or Jacket temperature	°C	65.7	65.7	61.2	61.2
7	$\theta_{\rm s}$	Exterior duct temperature	°C	65.3	65.3	60.8	60.8
8	θ_{a}	Ambient temperature	°C	15	15	15	15


Cable type no: 1

Cable type: PIPE TYPE (TRIANGULAR)

Cable ID: 345CU2.50H

Cable title: 345kV 2500kcmil Cu 600 mils LPP HPFF


Study: Xcel Energy 345kV River Crossing

Execution: 05 345kV 5000kcmil CU 1023mil XLPE, d=30', 620A, 87°C

Date: 5/9/2008 **Frequency:** 60 Hz

Conductor Resistances: IEC-228

Parameter					Unit	Value	
Ambie	nt Soil Temp	perature at Install	lation Depth			°C	15
Therm	al Resistivity	of Native Soil				°C.m/W	0.9
L	ayers		Dimens	ions [ft]		Toma	Thermal
No.	Name	X Center	Y Center	Width	Height	Туре	Resistivity [°C.m/W]
1	DB 2X2	-40	31.469	2.938	2.938	Standard ductbank	0.6
2	DB 2X2	0	31.469	2.938	2.938	Standard ductbank	0.6
3	DB 2X2	40	31.469	2.938	2.938	Standard ductbank	0.6
4	DB 2X2	80	31.469	2.938	2.938	Standard ductbank	0.6

Solution converged									
Cable\Cable	Circuit	Phase	Loca	ation	Load Factor	Temperature	Ampacity		
type no	Circuit	Filase	X[ft]	Y[ft]	[p.u.]	[°C]	[A]		
1 \ 1	1	A	-40.609	30.977	0.75	82.8	620		
2 \ 1	1	В	-39.391	30.977	0.75	81.6	620		
3 \ 1	1	С	-40.609	32.195	0.75	82.2	620		
4 \ 1	2	A	-0.609	30.977	0.75	87.5	620		
5 \ 1	2	В	0.609	30.977	0.75	86	620		
6 \ 1	2	С	-0.609	32.195	0.75	87.1	620		
7 \ 1	3	A	39.391	30.977	0.75	87.6	620		
8 \ 1	3	В	40.609	30.977	0.75	86	620		
9 \ 1	3	С	39.391	32.195	0.75	87.1	620		
10 \ 1	4	A	79.391	30.977	0.75	82.9	620		
11\1	4	В	80.609	30.977	0.75	81.2	620		
12 \ 1	4	С	79.391	32.195	0.75	82.3	620		

Cables input data

Study: Xcel Energy 345kV River Crossing

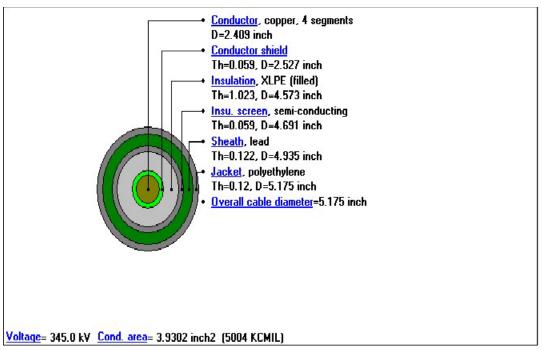
05 345kV 5000kcmil CU 1023mil XLPE, d=30', 620A, 87°C **Execution:**

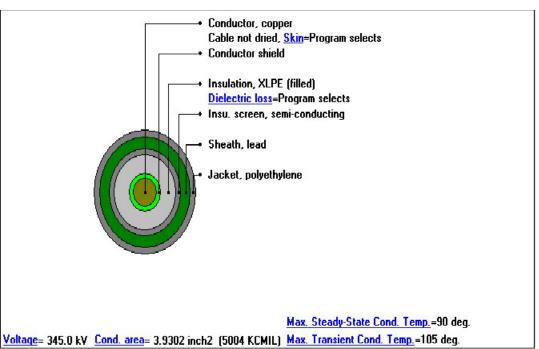
Date: 5/9/2008

Date	: 5/9/2008		
No	Description	Unit	1
Gene	eral cable information		
1	Cable type no		1
2	Number of cores		1
3	Voltage	kV	345
4	Conductor area	inch ²	3.9302
5	Maximum Steady-State Conductor Temperature	°C	90
6	Maximum Emergency Conductor Temperature	°C	105
Cons	truction		
Con	ductor		
7	Material		copper
8	Resistivity @20°C	uΩ.cm	1.7241
9	Temperature coefficient	1/K	0.00393
10	Construction		4 segments
11	Is cable dried?		No
12	ks (Skin effect coefficient)		0.44
13	kp (Proximity effect coefficient)		0.37
14	Diameter	inch	2.409
Con	ductor shield	•	
15	Is layer present?		Yes
16	Thickness	inch	0.059
17	Diameter	inch	2.527
Insu	ulation		
18	Is layer present?		Yes
19	Material		XLPE (filled)
20	Thermal resistivity	K.m/w	3.5
21	Dielectric loss factor - (tan δ)		0.005
22	Relative permeability (ε)		3
23	Thickness	inch	1.023
24	Diameter	inch	4.573
Inst	ulation screen		
25	Is layer present?		Yes
26	Material		semi-conducting
27	Thickness	inch	0.059
28	Diameter	inch	4.691

She	Sheath							
29	Is layer present?		Yes					
30	Is around each core? (Only for Three core cable)		No					
31	Material		lead					
32	Resistivity @20°C	uΩ.cm	21.4					
33	Temperature coefficient	1/K	0.004					
34	Corrugated construction		Non-corrugated					
35	Thickness	inch	0.122					
36	Diameter	inch	4.935					
Jack	ret							
37	Is layer present?		Yes					
38	Material		polyethylene					
39	Thermal resistivity	K.m/w	3.5					
40	Thickness	inch	0.12					
41	Diameter	inch	5.175					
Ove	rall cable diameter							
42	Diameter	inch	5.175					

No	Description/Value	Description/Value Unit							
SPEC	SPECIFIC INSTALLATION DATA								
Bon	Bonding								
1	1-CON, sheaths single point bonded, triang. configuration		Yes						
Loss	factor constant								
2	Loss factor constant	0.3							
Duc	t construction								
3	PVC duct in concrete or buried		Yes						
4	Resistivity (RH)		6						
Cab	Cables touching								
5	Single conductor cables NOT touching		Yes						


No	Symbol	Description	Unit	1	2	3	4	5		
Temp	Temperature calculations									
1		Cable type no		1	1	1	1	1		
2		Circuit no		1	1	1	2	2		
3		Phase		A	В	С	A	В		
4	$\theta_{\rm c}$	Conductor temperature	°C	82.8	81.6	82.2	87.5	86		
5	$\theta_{\rm i}$	Sheath/Shield temperature	°C	77.3	76.1	76.7	82.1	80.6		
6	$\theta_{\rm j}$	Armour/Pipe or Jacket temperature	°C	76.6	75.5	76	81.4	79.9		
7	$\theta_{\rm s}$	Exterior duct temperature	°C	69.7	68.5	69.1	74.6	73.1		
8	θ_{a}	Ambient temperature	°C	15	15	15	15	15		


6	7	8	9	10	11	12
1	1	1	1	1	1	1
2	3	3	3	4	4	4
С	A	В	С	A	В	С
87.1	87.6	86	87.1	82.9	81.2	82.3
81.6	82.1	80.5	81.6	77.4	75.7	76.9
80.9	81.5	79.8	81	76.8	75.1	76.2
74.1	74.7	73	74.2	69.9	68.1	69.3
15	15	15	15	15	15	15

Cable type no: 1

Cable type: EXTRUDED **Cable ID:** 345CU5.00X

Cable title: 345kV 5000 kcmil Cu 1023 mils XLPE 122 mils Pb Sheath

Xcel Energy, CapX Hampton – Rochester – La Crosse 345kV Project Alma Mississippi River Underground Crossing 345kV HPFF Transmission Line

Prepared by: JWH Checked by: kcmil Cu Cables/phase Amps feet - Total Length Number of Operational Circuits Number of Spare Pipes (Pipe only, no Cable) Number of communication ducts 2500

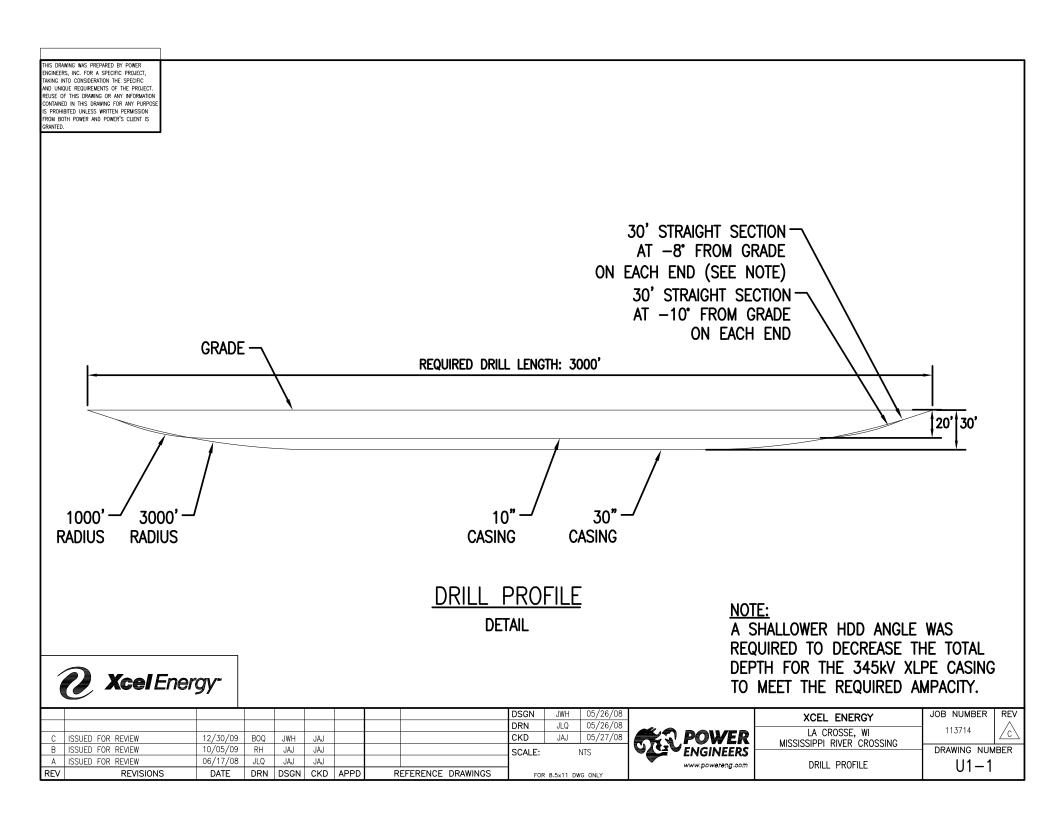
4 3700 6900 1

Description	Quantity	Material Price	Total Material	Labor Price	Total Labor	Total Price
Pipe and Accessories Section:	,		Price		Price	
Cable pipe, 10" nominal, Pritec, per foot	14500	\$40.00	\$580,000	\$65.00	\$942,500	\$1,522,500
Cable pipe, 10" nominal, Fritec, per loct Cable pipe, 10" nominal, Fusion Bonded, per foo		\$45.00	\$594,000	\$65.00	\$858,000	\$1,452,000
Cable pipe field flares, each	13200	\$85.00	\$935	\$226.00	\$2,486	\$3,421
Cable pipe chill rings, each	382	\$34.50	\$13,179	\$224.00	\$85,568	\$98.747
Cable pipe joint and pipe-coating repair sleeves,	400	\$22.00	\$8,800	\$125.00	\$50.000	\$58,800
Trifurcator, each	8	\$9,500.00	\$76,000	\$5,000.00	\$40,000	\$116,000
Riser pipe stainless steel 5-inch, per foot	960	\$50.00	\$48,000	\$29.00	\$27.840	\$75.840
Cathodic Protection:		,,,,,,,	4 ,		+ =-,	7. 5,5
Anodes/grounding, each	5	\$200.00	\$1,000	\$100.00	\$500	\$1,500
Rectifiers, each	1	\$4,000.00	\$4,000	\$4,800.00	\$4,800	\$8,800
Isolator Protectors, each	4	\$8,200.00	\$32,800	\$4,800.00	\$19,200	\$52,000
Cathodic Protection Test Stations, each	8	\$1,500.00	\$12,000	\$1,100.00	\$8,800	\$20,800
Anode Junction boxes, each	1	\$1,500.00	\$1,500	\$1,100.00	\$1,100	\$2,600
Pressurization Plant, each	1	\$500,000.00	\$500,000	\$50,000.00	\$50,000	\$550,000
Polybutene dielectric fluid (HPFF) (gal.)	89200	\$11.00	\$981,200	\$6.00	\$535,200	\$1,516,400
Other (provide a description)						
Cable and Accessories Section:						
Cable, feet	86800	\$113.00	\$9,808,400	\$15.00	\$1,302,000	\$11,110,400
Terminators, each	24	\$81,000.00	\$1,944,000	\$15,000.00	\$360,000	\$2,304,000
Arresters, each	24	\$10,000.00	\$240,000	\$2,500.00	\$60,000	\$300,000
Splices, each	24	\$28,500.00	\$684,000	\$66,000.00	\$1,584,000	\$2,268,000
Spare Terminations	2	\$81,000.00	\$162,000	\$0.00	\$0	\$162,000
Earthwork:						
	22100	\$15.00	\$331,500	\$30.00	\$663,000	\$994,500
Excavation, no rock, per cubic yard, including ha Soil Backfill, including hauling, per cubic yard	20484	\$25.00	\$512,100	\$25.00	\$512,100	\$1.024.200
Concrete Encasement, per cubic yard	1616	\$130.00	\$210.080	\$20.00	\$32,320	\$242,400
Vault, each	8	\$40,000.00	\$320,000	\$25,000.00	\$200,000	\$520,000
Horizontal direction drill, per foot	13200	\$300.00	\$3,960,000	\$500.00	\$6,600,000	\$10,560,000
Dewatering, per trench foot	14400	\$8.00	\$115,200	\$15.00	\$216,000	\$331,200
Sheeting and shoring, per trench foot	1500	\$20.00	\$30,000	\$25.00	\$37,500	\$67,500
Landscape restoration, lot	144000	\$2.50	\$360,000	\$2.50	\$360,000	\$720,000
Loam and seed, per square foot	360000	\$0.25	\$90,000	\$0.25	\$90,000	\$180,000
т			, ,	•	, , , , , , , , , , , , , , , , , , , ,	,,
Termination Work						
Substation Termination Structures	8	\$20,000.00	\$160,000	\$16,000.00	\$128,000	\$288,000
Substation Foundations	8		\$64,000	\$12,000.00	\$96,000	\$160,000
Transition Structures, includes relay equipment	0	\$40,000.00	\$0	\$15,000.00	\$0	\$0
Transition Structure Foundations	0	\$20,000.00	\$0	\$10,000.00	\$0	\$0
Other (provide a description)		* 005 000 00	#005 000	* 050,000,00	* 050,000	CO4E 000
Substation	1	\$265,000.00	\$265,000	\$650,000.00	\$650,000	\$915,000
			\$0		\$0	\$0
			φυ		Φ U	φυ
Subtotal			\$22,109,694		\$15.516.914	\$37.626.608
Contingency	15%		\$3,316,454		\$2,327,537	\$5,643,991
Subtotal	13 /0		\$25,426,148		\$17,844,451	\$43,270,599
Unallocated Costs:			Ψ20, 120, 140		Ψ17,011, τ01	ψ 10,£10,000
2% Engineering, lot	1	\$0.00	\$0	\$865,411.98	\$865,412	\$865,412
2% Construction Management, lot	1	\$0.00	\$0	\$865,411.98	\$865,412	\$865,412
Mobilization, each	1	\$0.00	\$0	\$50,000.00	\$50,000	\$50,000
Demobilization, each	1	\$0.00	\$0	\$50,000.00	\$50,000	\$50,000
0% Real Estate/Permitting	0	\$0.00	\$0	\$0.00	\$0	\$0
	Ť	71.00	Ψ	71.00	70	40
Total Price (should add up to Lump Sum			\$25,426,148		\$19,675,275	\$45,101,423

HLY 019-166 (DES-02) XCEL (12/30/09)JH 113714 REV. D

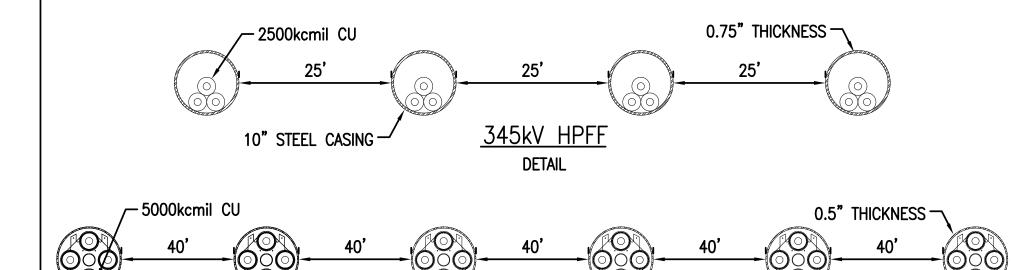
Summary of Costs	Quantity	Material Price	Labor Price	Unit Cost	Total Price
Earthwork, ft	14400	\$1.648.880	\$1,910,920	\$248	\$3,559,800
Trenchless Installations, ft	13200	\$3,960,000	\$6,600,000	\$800	\$10,560,000
Manholes,ea	8	\$320,000	\$200,000	\$65,000	\$520,000
Cable,ft	86800	\$9,808,400	\$1,302,000	\$128	\$11,110,400
Splices, ea	24	\$684,000	\$1,584,000	\$94,500	\$2,268,000
Terminations, ea	26	\$2,106,000	\$360,000	\$94,847	\$2,466,000
Arresters, ea	24	\$240,000	\$60,000	\$12,500	\$300,000
Pipe, ft	27700	\$1,174,000	\$1,800,500	\$108	\$2,974,500
Pipe Accessories, ft	801	\$1,628,114	\$791,094	\$3,021	\$2,419,208
Cathodic Protection System, ea	1	\$51,300	\$34,400	\$85,700	\$85,700
Termination Structures, ea	8	\$489,000	\$874,000	\$170,375	\$1,363,000
Subtotal	I 0	\$22,109,694	\$15,516,914		\$37,626,608
15% Contingency		\$3,316,454	\$2,327,537		\$5,643,991
MOB & DEMOB	1	\$0	\$100,000		\$100,000
4% Engineering & Construction Man.	1	\$0	\$1,730,824		\$1,730,824
0% Real Estate/Permitting	1	\$0	\$0		\$0
Total	j	\$25,426,148	\$19,675,275		\$45,101,423
0% Escalation Factor		\$0	\$0		\$0
Grand Total	I	\$25,426,148	\$19,675,275		\$45,101,423

HLY 019-166 (DES-02) XCEL (12/30.09)JH 113714 2 REV. D


Xcel Energy, CapX Hampton – Rochester – La Crosse 345kV Project Alma Mississippi River Underground Crossing 345 kV XLPE Transmission Line

Prepared by: JWH Checked by: kcmil CU
Cables
Amps
feet
Number of Duct Banks
Number of Cable Ducts
Number of Comm Ducts

5000 18 1600 6900 1 24 0


Description	Quantity	Material Price	Total Material	Labor Price	Total Labor	Total Price
Cable and Accessories Section:	,		Price		Price	
XLPE cable, per foot	132100	\$225.00	\$29,722,500	\$15.00	\$1,981,500	\$31,704,000
Terminators, each	36	\$81,000.00	\$2,916,000	\$15,000.00	\$540,000	\$3,456,000
Arresters, each	36	\$10,000.00	\$360,000	\$2,500.00	\$90,000	\$450,000
Splices, each	36	\$30,000.00	\$1,080,000	\$70,000.00	\$2,520,000	\$3,600,000
Grounding system for vaults, each	24	\$2,500.00	\$60,000	\$3,500.00	\$84,000	\$144,000
Link boxes, single phases	24		\$120,000	\$500.00	\$12,000	\$132,000
Cable clamps, each	600		\$120,000	\$100.00	\$60,000	\$180,000
Continuity conductor, per foot	15000		\$60,000	\$2.00	\$30,000	\$90,000
Continuity conduit	41900		\$62.850	\$8.00	\$335,200	\$398,050
Jacket Integrity Test, cable segment	18		\$0	\$2,500.00	\$45,000	\$45,000
Other (provide a description)	10	ψ0.00	Ψΰ	Ψ2,000.00	ψ10,000	ψ 10,000
Duct Bank and Earthwork:						
Conduit, per foot	167300		\$1,171,100	\$15.00	\$2,509,500	\$3,680,60
Spacers, each	34560		\$276,480	\$15.00	\$518,400	\$794,88
Bore Spacers, each	3960		\$693,000	\$15.00	\$59,400	\$752,400
Excavation, no rock, per cubic yard, including	9200		\$138,000	\$30.00	\$276,000	\$414,000
Soil Backfill, including hauling, per cubic yard	6000	\$25.00	\$150,000	\$25.00	\$150,000	\$300,000
Duct encasement concrete, per cubic yard	3200		\$416,000	\$20.00	\$64,000	\$480,000
Vault, each	24	\$40,000.00	\$960,000	\$25,000.00	\$600,000	\$1,560,000
Horizontal direction drill, per foot	19800	\$300.00	\$5,940,000	\$500.00	\$9,900,000	\$15,840,000
30" Bore Casing, per foot	19800	\$500.00	\$9,900,000	\$200.00	\$3,960,000	\$13,860,000
Casing Fill, cubic yards	2898	\$150.00	\$434,700	\$75.00	\$217,350	\$652,050
Dewatering, per trench foot	21600	\$8.00	\$172,800	\$15.00	\$324,000	\$496,800
Sheeting and shoring, per trench foot	2200		\$44,000	\$25.00	\$55,000	\$99,000
Landscape restoration, lot	216000		\$540,000	\$2.50	\$540,000	\$1,080,000
Loam and seed, per square foot	540000	\$0.25	\$135,000	\$0.25	\$135,000	\$270,000
Other (provide a description)					,	
Termination Work						
Substation Termination Structures	12		\$240,000		\$120,000	\$360,000
Substation Foundations	12	\$3,000.00	\$36,000	\$2,000.00	\$24,000	\$60,000
Other (provide a description)						
Substation	1	\$398,000.00	\$398,000	\$225,000.00	\$225,000	\$623,000
Subtotal			\$56,201,430		\$25,430,350	\$81,631,780
15% Contingency			\$8,430,215		\$3,814,553	\$12,244,768
Subtotal			\$64,631,645		\$29,244,903	\$93,876,548
Unallocated Costs:			ψ04,001,040		Ψ20,244,300	
Engineering, lot (2%)	1	\$0.00	\$0	\$1,877,530.96	\$1,877,531	\$1,877,53
Construction Management, lot (2%)	1	\$0.00	\$0		\$1,877,531	\$1,877,53
Mobilization, lot	1	\$0.00	\$0		\$50,000	\$50,000
Demobilization, lot	1	\$0.00	\$0	\$50,000.00	\$50,000	\$50,000
Real Estate/Permitting	0	\$0.00	\$0	\$0.00	\$0	\$(
Other (provide a description)						
Total Price (should add up to Lump Sum		\$	\$64.631.645	¢ .	\$33.099.965	\$97,731,610

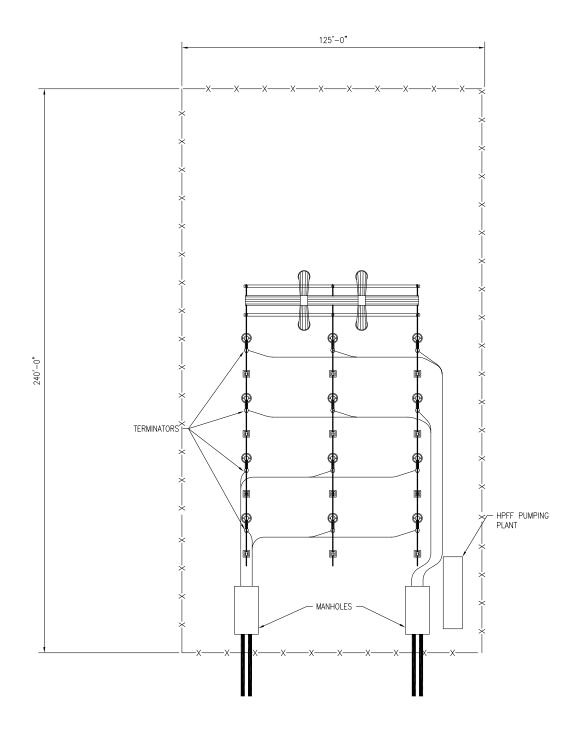
Summary of Costs	Quantity	Material Price	Labor Price	Unit Cost	Total Price
Duct Bank, ft	20700	\$14,126,080	\$8,863,650	\$1,111	\$22,989,730
Trenchless Installations, ft	19800	\$5,940,000	\$9,900,000	\$800	\$15,840,000
Manholes,ea	24	\$960,000	\$600,000	\$65,000	\$1,560,000
Cable,ft	132100	\$29,722,500	\$1,981,500	\$240	\$31,704,000
Splices, ea	36	\$1,080,000	\$2,520,000	\$100,000	\$3,600,000
Terminations, ea	36	\$2,916,000	\$540,000	\$96,000	\$3,456,000
Arresters, ea	36	\$360,000	\$90,000	\$12,500	\$450,000
Additional Cable Accessories, ft	20700	\$422,850	\$566,200	\$48	\$989,050
Termination Structures, ea	12	\$674,000	\$369,000	\$86,917	\$1,043,000
15% Contingency		\$8,430,215	\$3,814,553		\$12,244,768
MOB & DEMOB	1	\$0	\$100,000		\$100,000
Engineering Construction Management Services	1	\$0	\$3,755,062		\$3,755,062
Total	-	\$64,631,645	\$33,099,965	_	\$97,731,610

THIS DRAWING WAS PREPARED BY POWER ENGINEERS, INC. FOR A SPECIFIC PROJECT, TAKING INTO CONSIDERATION THE SPECIFIC AND UNQUE REQUIREMENTS OF THE PROJECT. REUSE OF THIS DRAWING OR ANY INFORMATION CONTAINED IN THIS DRAWING FOR ANY PURPOSI IS PROHIBITED UNLESS WRITTEN PERMISSION FROM BOTH POWER AND POWER'S CLIENT IS GRANATED.

345kV XLPE

DETAIL

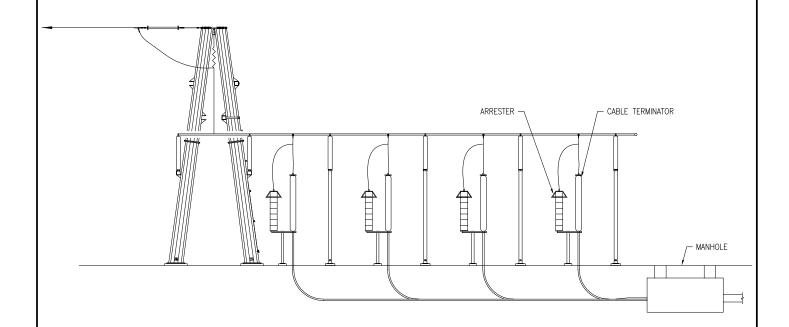
									DSGN	JWH	05/26/08
									DRN	BOQ	05/26/08
С	ISSUED FOR REVIEW	12/30/09	BOQ	JWH	JAJ				CKD	JAJ	05/26/08
В	ISSUED FOR REVIEW	10/05/09	RH	JAJ	JAJ				SCALE:		NTS
Α	ISSUED FOR REVIEW	00/00/00	RH	JAJ	JAJ]		
REV	REVISIONS	DATE	DRN	DSGN	CKD	APPD	R	EFERENCE DRAWINGS	FOF	8.5×11 DW	/G ONLY


30" STEEL CASING

XCEL ENERGY	JOB NUMBER	REV
LA CROSSE, WI MISSISSIPPI RIVER CROSSING	113714	<u></u>
MISSISSIFFI MIVEN CINOSSING	DRAWING NUM	IBER
CASING DETAILS	U1-2	

THIS DRAWING WAS PREPARED BY POWER ENGINEERS, INC. FOR A SPECIFIC PROJECT, TAKING INTO CONSIDERATION THE SPECIFIC AND UNIQUE REQUIREMENTS OF THE PROJECT. REUSE OF THIS DRAWING OR ANY INFORMATION FOR ANY PURPAYONE IS PROHIBITED UNILESS WRITTEN PERMISSION FROM BOTH POWER AND POWER'S CLIENT IS CRANTED.

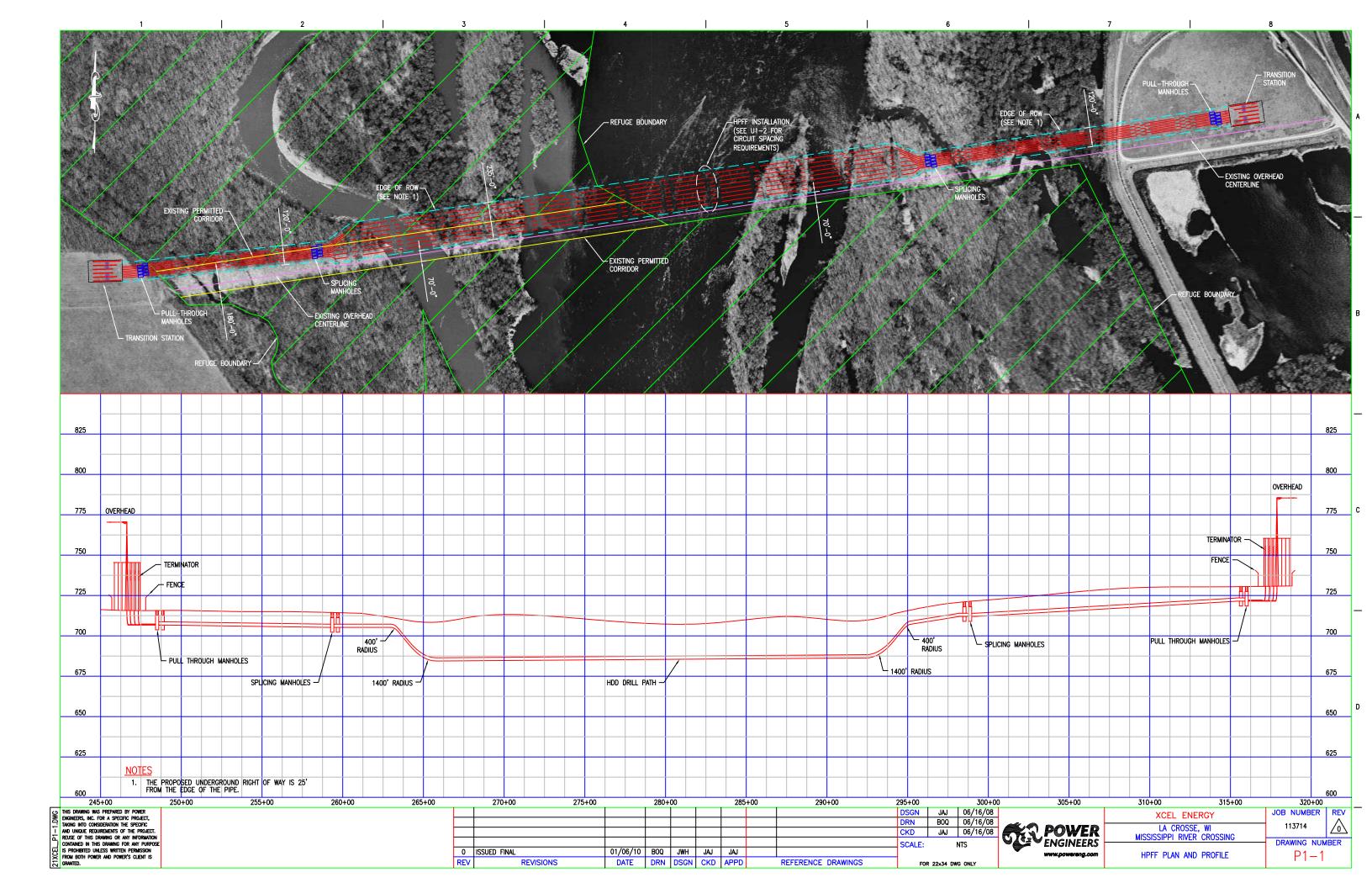
REV	REVISIONS	DATE	DRN	DSGN	CKD	APPD
Α	ISSUED FOR REVIEW	06/17/08	JLQ	JAJ	JAJ	
В	ISSUED FOR REVIEW	10/05/09	RH	JAJ	JAJ	
С	ISSUED FOR REVIEW	12/30/09	BOQ	JAJ	JAJ	


		DSGN	JAJ	06/16/08
		DRN	JLQ	06/16/08
إبنا		CKD	JAJ	06/16/08
≡		SCALE:		NTS
	REFERENCE DRAWINGS	FOR	8.5×11 DW	G ONLY
	 REFERENCE DRAWINGS	FOR	8.5x11 DW	/G ONLY

XCEL ENERGY	JOB NOWBER	KEV
LA CROSSE, WI MISSISSIPPI RIVER CROSSING	113714	
MISSISSII I I NIVEN CNOSSIING	DRAWING NUM	IBER
HPFF TERMINATION STATION DETAILS	S1-1	

THIS DRAWING WAS PREPARED BY POWER ENGINEERS, INC. FOR A SPECIFIC PROJECT, TAKING INTO CONSIDERATION THE SPECIFIC AND UNIQUE REQUIREMENTS OF THE PROJECT. AND UNIQUE REQUIREMENTS OF THE PROJECT OF A WINDOW FROM THE PRANKS FOR ANY PURPOSE SEED FROMHER OF UNLESS WHITTON PERMISSION FROM BOTH POWER AND POWER'S CLIENT IS GRANTED.

RFV	REVISIONS	DATE	DRN	DSCN	ראח	APPD
Α	ISSUED FOR REVIEW	06/17/08	JLQ	JAJ	JAJ	
В	ISSUED FOR REVIEW	10/05/09	RH	JAJ	JAJ	
С	ISSUED FOR REVIEW	12/30/09	BOQ	JAJ	JAJ	



O Xcel Energy

9				
2.DWG		DSGN	JAJ	06/16/08
1.1		DRN	JLQ	06/16/08
S1		CKD	JAJ	06/16/08
21XCEL		SCALE:		NTS
<u>2</u>				
	REFERENCE DRAWINGS	FOR	8.5x11 DW	G ONLY

3		L
3	POWER	
	ENGINEERS	L
	www.powereng.com	

XCEL ENERGY	JOB NUMBER	REV
LA CROSSE, WI MISSISSIPPI RIVER CROSSING	113714	<u></u>
MISSISSII I I IIIVEII CINOSSIINO	DRAWING NUMBER S1-2	
HPFF TERMINATION STATION DETAILS		

