APPENDIX E – NOISE STUDY

EAST KENTUCKY POWER COOPERATIVE

SOUND STUDY REPORT

LIBERTY RICE POWER PLANT PROJECT NO. 168547

REVISION 1 NOVEMBER 2024

CONTENTS

EXE	CUTIVE SUMMARY	I						
1.0	Acoustical Terminology1-1							
2.0	Applicable Regulations & Criteria2-1							
3.0	Sound Level Measurements3-1							
4.0	Modeled Sound Levels	1						
	4.1 Sound Modeling Methodology and Input Parameters	1						
	4.2 Sound Modeling Results	2						
5.0	Conclusions	1						
APPENDIX A – FIGURES								
APPE	APPENDIX B – MODELED SOUND POWER LEVELS							

TABLES

Table 1-1:	Typical Sound Pressure Levels Associated with Common Sound Sources	. 1-2
Table 3-1:	Estimated Ambient Sound Levels (from Campbellsville Measurements)	. 3-1
Table 4-1:	Sound Modeling Parameters	. 4-2
Table 4-2:	Project Expected Acoustical Design	. 4-2
Table 4-3:	Modeled Sound Level Results	. 4-3

List of Abbreviations

Abbreviation	Term/Phrase/Name					
ВОР	Balance of Plant					
CadnaA	Computer Aided Noise Abatement					
dB	decibel					
dBA	A-weighted decibel					
EKPC	East Kentucky Power Cooperative					
Hz	Hertz					
ISO	International Organization for Standardization					
L _{dn}	day-night average sound level					
L _{eq}	equivalent-continuous sound level					
L ₁₀	10-percentile exceedance sound level					
L ₅₀	50-percentile exceedance sound level					
L ₉₀	90-percentile exceedance sound level					
MP	measurement point					
mph	miles per hour					
Project	Liberty RICE Power Plant					
PWL	sound power level					
RICE	Reciprocating Internal Combustion Engine					
SPL	sound pressure level					

Executive Summary

Burns & McDonnell conducted a sound study for the East Kentucky Power Cooperative (EKPC) Liberty Power Plant (Project), located in Casey County, Kentucky. The Project is a reciprocating internal combustion engine (RICE) power generation facility which is expected to include 12 Wartsila W18V50DF RICE units housed inside a building and associated balance-of-plant (BOP) equipment.

The objectives of this study were to identify the applicable noise regulations, model operational sound levels of the Project, and compare Project-generated sound levels to the applicable noise regulations. As of this version of the report, the existing ambient sound level measurements have not been completed. However, measurements were conducted at a nearby location which were used to estimate the ambient sound levels for this area.

The State of Kentucky does not have applicable noise statutes which limit noise from the Project nor does Casey County. Project operational sound levels, inclusive of all designed noise mitigation, have been predicted and compared to the expected existing ambient sound levels in the surrounding area.

1.0 Acoustical Terminology

The term "sound level" is often used to describe two different sound characteristics: sound power and sound pressure. Every source that produces sound has a sound power level (PWL). The PWL is the acoustical energy emitted by a sound source and is an absolute number that is not affected by the surrounding environment. The acoustical energy produced by a source propagates through media as pressure fluctuations. These pressure fluctuations, also called sound pressure levels (SPL), are what human ears hear and microphones measure.

Sound is physically characterized by amplitude and frequency. The amplitude of sound is measured in decibels (dB) as the logarithmic ratio of a sound pressure to a reference sound pressure (20 micropascals). The reference sound pressure corresponds to the typical threshold of human hearing. To the average listener, a 3-dB change in a continuous broadband sound is generally considered "just barely perceptible"; a 5-dB change is generally considered "clearly noticeable"; and a 10-dB change is generally considered a doubling (or halving, if the sound is decreasing) of the apparent loudness.

Sound waves can occur at many different wavelengths, also known as the frequency. Frequency is measured in hertz (Hz) and is the number of wave cycles per second that occur. The typical human ear can hear frequencies ranging from approximately 20 to 20,000 Hz. Normally, the human ear is most sensitive to sounds in the middle frequencies (1,000 to 8,000 Hz) and is less sensitive to sounds in the lower and higher frequencies. As such, the A-weighting scale was developed to simulate the frequency response of the human ear to sounds at typical environmental levels. The A-weighting scale emphasizes sounds in the middle frequencies and de-emphasizes sounds in the low and high frequencies. Any sound level to which the A-weighting scale has been applied is expressed in A-weighted decibels, or dBA. For reference, the A-weighted sound pressure level and subjective loudness associated with some common sound sources are listed in Table 1-1.

Sound in the environment is constantly fluctuating, as when a car drives by, a dog barks, or a plane passes overhead. Therefore, sound metrics have been developed to quantify fluctuating environmental sound levels. These metrics include the exceedance sound level. The exceedance sound level is the sound level exceeded during "x" percent of the sampling period and is also referred to as a statistical sound level. Common exceedance sound level values are the 10-, 50-,90-percentile exceedance sound levels, denoted by L_{10} , L_{50} , and L_{90} . The equivalent-continuous sound level (L_{eq}) is the arithmetic average of the varying sound over a given time period and is the most common metric used to describe sound. The USEPA uses a noise metric called the day-night average sound level (L_{dn}) which is a 24-hour average sound level, with a 10-dBA penalty applied to sound measured during nighttime hours (10:00 PM to 7:00 AM).

Table 1-1:Typical Sound Pressure Levels Associated with Common Sound
Sources

Sound Pressure Level (dBA)	Subjective Evaluation	Environment						
140	Deafening	Jet aircraft at 75 feet						
130	Threshold of pain	Jet aircraft during takeoff at a distance of 300 feet						
120	Threshold of feeling	Elevated train						
110	Mamalaval	Jet flyover at 1,000 feet						
100	Very loud	Motorcycle at 25 feet						
90	M 1	Propeller plane flyover at 1,000 feet						
80	Moderately loud	Diesel truck (40 mph) at 50 feet						
70	Loud	B-757 cabin during flight						
60	Moderate	Air-conditioner condenser at 15 feet						
50	Quint	Private Office						
40	Quiet	Farm field with light breeze, birdcalls						
30	Quiet residential neighborhood							
20	Very quiet	Rustling leaves						
10	Just audible							
0	Threshold of hearing							

Sources:

(1) Adapted from Architectural Acoustics, M. David Egan, 1988

(2) Architectural Graphic Standards, Ramsey and Sleeper, 1994

Applicable Regulations & Criteria 2.0

State and local noise regulations were reviewed to determine Project noise limits. The State of Kentucky, nor Casey County, have applicable noise statutes which limit noise from the Project.

Sound Level Measurements 3.0

Ambient sound level measurements have not been conducted at the Liberty site. However, sound level measurements were conducted at the previous alternative Campbellsville site which is approximately 22 miles northwest of the Liberty site. Since both sites are rural areas in a similar region, relatively close to each other, and both similar distances away from rural highways and major interstates, the ambient measurements at Campbellsville have been used to approximate the existing ambient sound levels at Liberty. The following Table 3-1 shows the estimated ambient sound levels at the nearby residents to the Project, based on previous measurements conducted at the Campbellsville site.

Table 3-1: Estimated Ambient Sound Levels (from Campbellsville Measurements)

Location	Average Ambient Sound Level (dBA)							
Location	Daytime L _{eq}	Daytime L ₉₀	Nighttime L _{eq}	Nighttime L ₉₀				
Nearby Residents	43	33	38	32				

*Daytime hours are 7:00 AM to 10:00 PM

4.0 Modeled Sound Levels

Operational sound levels for the proposed Project were performed using the Computer Aided Noise Abatement (CadnaA) modeling software. Equipment sound levels used for modeling were based on a combination of supplier provided data and in-house data based on experience with similar make and sized equipment. This model was used for determining expected sound levels due to the Project and the associated impacts to the existing ambient sound levels at the nearest noise sensitive receptors.

4.1 Sound Modeling Methodology and Input Parameters

Predictive noise modeling was performed using the industry-accepted sound modeling software CadnaA, version 2024. The software is a scaled, three-dimensional program, which considers air absorption, terrain, ground absorption, and reflections and shielding for each piece of noise-emitting equipment, and then predicts sound pressure levels at discrete locations and over a gridded area based on input source sound levels. The model calculates sound propagation based on International Organization for Standardization (ISO) 9613-2:1996, General Method of Calculation. ISO 9613-2 assesses the sound level propagation based on the octave band center-frequency range from 31.5 to 8,000 Hz.

The ISO standard considers sound propagation and directivity. The sound-modeling software calculates omnidirectional, downwind sound propagation using worst-case directivity factors, in tandem with user-specified directivities and propagation properties. Empirical studies accepted within the industry have demonstrated that modeling may over-predict sound levels in certain directions, and as a result, modeling results generally are considered a conservative measure of the Project's actual sound level.

The modeled atmospheric conditions were assumed to be calm, and the temperature and relative humidity were left at the program's default values. Reflections and shielding were considered for sound waves encountering physical structures. Sound levels around the site can be influenced by the sound reflections from physical structures onsite. The area surrounding the Project has mild elevation changes, which scatter and absorb the sound waves. Thus, terrain was included to account for surface effects such as ground absorption. Average ground absorption for the Project site and surrounding area was set to a value of 0.5 to account for the mix of hard pavement and soft vegetative ground. The modeling assumptions are outlined in Table 4-1. This model is exclusive of noise sources not associated with the Project (e.g., traffic noise and local fauna). Only Project sound levels have been evaluated.

The Project general is included as Figure A-1 of Appendix A. The modeled equipment octave-band sound levels for each piece of equipment are included in Appendix B. A summary of the Project's expected acoustical design is shown in Table 4-2.

Model Input	Parameter Value					
Ground Absorption	0.5					
Number of Reflections	2					
Receptor Height	5 feet above grade					
Terrain	USGS topographic land data					
Temperature	50 °F					
Humidity	70%					

Table 4-1: Sound Modeling Parameters

Table 4-2:Project Expected Acoustical Design

Equipment	QTY	Base Sound Level ^{a,b}	Notes				
Wartsila Equipment							
RICE Engine	12	L _w = 128 dBA	Inside RICE Hall, Roof - STC 50 Min, Walls - STC 55 Min + Absorptive Layer				
RICE Exhaust Exit	2	L _w = 99 dBA	Includes SCR + Resonator + 45 dBA Silencer				
RICE Exhaust Duct	12	L _{w"} = 93 dBA/m	Insulated Duct				
Charge Air Intake	24 (2 ea.)	L _w = 96 dBA	Intake 45 dB Silencer				
Radiator	12 (1 ea.)	L _w = 96 dBA	Noise Level 4				
Roof Ridge Vent	Roof Ridge Vent 1 L _w = 108		From RICE Hall Interior Calc'd SPL w/ Ridge Vent Silencer				
MAU/Relief	MAU/Relief 24 L _w = 99 dBA		From RICE Hall Interior Calc'd SPL				
BOP Equipment							
GSU Transformer	3	L _p = 85 dBA at 3 feet	Estimated				
Small Transformers	4	L _p = 70 dBA at 3 feet	Estimated				
HVAC Units	2	L _w = 95 dBA	Estimated				
Aisc. Pumps, Heaters, etc.		L _p = 85 dBA at 3 feet	Estimated				

(a) L_p – Sound pressure level at specified distance

(b) L_w – Sound power level, $L_{w''}$ – Sound power level per unit area

4.2 Sound Modeling Results

The Project will operate at fairly constant sound levels when operational. Therefore, steady-state sound level predictions were completed. A worst-case, full-load scenario with all 12 engines operating at 100% load was used for the modeling scenario. The predicted overall steady-state operational A-weighted sound levels, which do not include contributions from ambient sound sources, are shown with 5-dB contours in Figure A-2 of Appendix A.

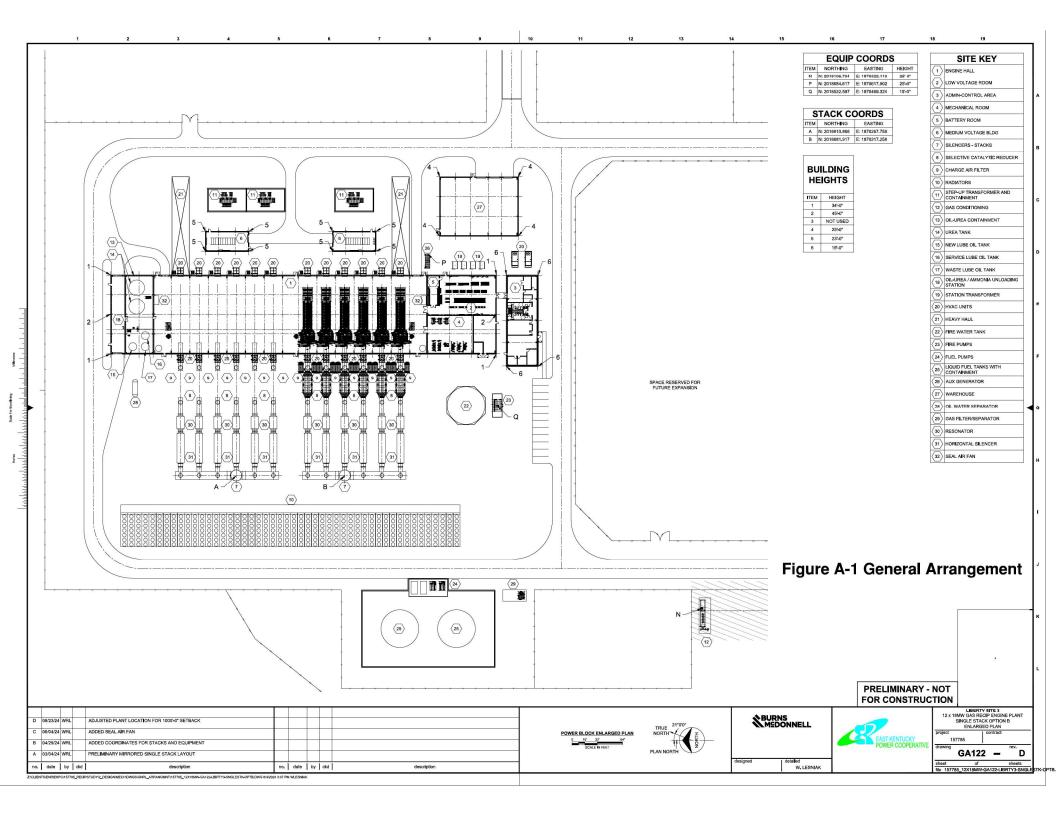
The Project-generated sound levels were calculated at the nearest residential properties. Table 4-3 includes the predicted Project sound levels at the nearest residential receptors.

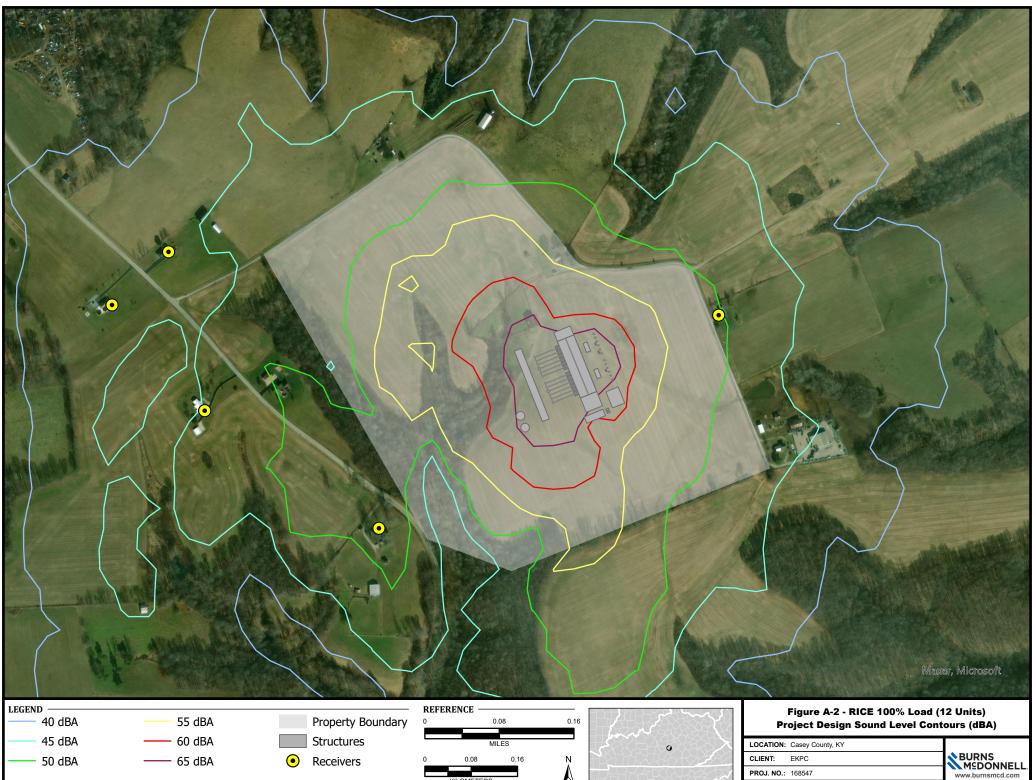
Receptor Location	Assumed Ambient Sound Levelª (dBA)	Model Predicted Sound Level ^b (dBA)			
R1	32	50			
R2	32	43			
R3	32	42			
R4	32	45			
R5	32	52			

Table 4-3: Modeled Sound Level Results

(a) Lowest of the daytime/nighttime average measured L_{90} sound levels from Campbellsville measurements

(b) Model-predicted Project sound level


5.0 Conclusions


Burns & McDonnell conducted a preliminary sound study for the proposed Liberty Project. This preliminary study consists of predictive sound modeling of the Project to analyze potential offsite sound impacts from operation of the Project. Ambient sound levels for this site have been estimated based on previous ambient monitoring of a nearby site with a similar environment near rural highways.

There were no identified regulatory noise limits for the Project. The Project as currently designed is expected to contribute a maximum sound level of approximately 52 dBA at the nearest identified residential receptor, R5, located west of the Project site.

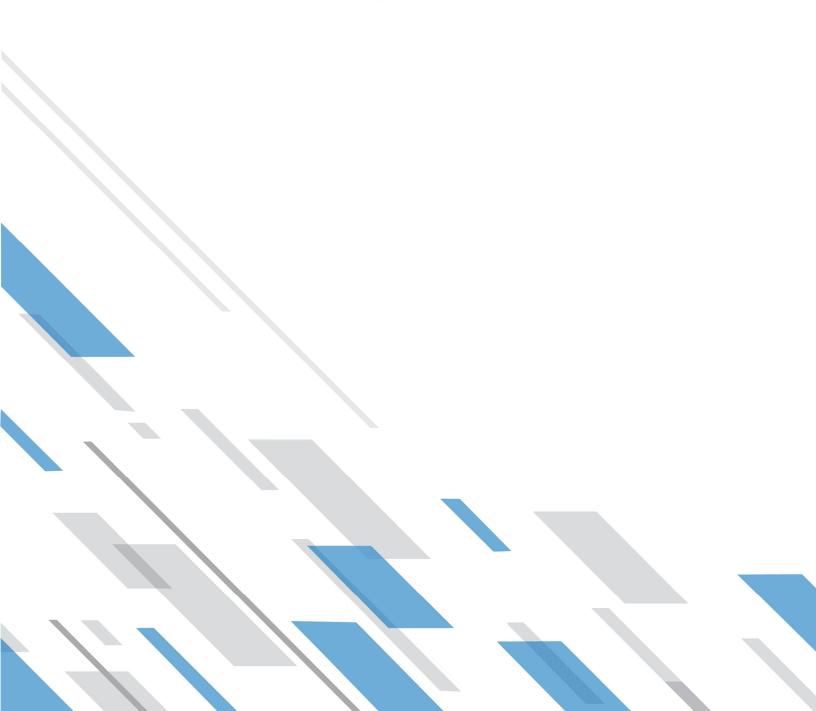
APPENDIX A – FIGURES

KILOMETERS

CREATED: 11/13/2024

APPENDIX B – MODELED SOUND POWER LEVELS

Appendix B - Base Design Modeled Sound Power Levels


EKPC Liberty RICE - 12 Engine Layout

	Number of	Sound Power Level (dB) ¹ Octave Band Frequency (Hz)						Overall				
Name	Sources	31.5	63.0	125	250	500	1000	2000	4000	8000	(dBA)	Notes
Fuel Pump	2	79	91	87	90	91	94	89	77	58	97	Estimated
Gas Heater	2	104	101	99	94	91	87	80	76	72	93	Estimated
MAU Intake	12	107	98	98	96	95	93	93	88	83	99	Calculated from interior equipment
MAU Relief	12	107	98	98	96	95	93	93	88	83	99	Calculated from interior equipment
Small Transformer	4	90	87	88	85	88	85	80	78	68	90	Estimated
Stack Exit	2	114	112	109	103	96	78	64	67	69	99	Wartsila Stack + Res Silencer + SCR + 45 dB Silencer
Combined Exhaust Ducts (dB/m)	4	71	70	54	46	48	42	29	33	22	63	Calculated from combined duct sound levels
RICE Exhaust Duct - Resonator Section (dB/m)	12	78	83	77	73	76	79	66	66	55	91	Wartsila Duct + Res Silencer + SCR
RICE Exhaust Duct - SCR Section (dB/m)	12	99	91	77	73	76	79	66	66	55	91	Wartsila Duct + SCR
RICE Exhaust Duct - Silencer Section (dB/m)	12	63	62	46	39	40	34	21	25	14	52	Wartsila Duct + Res Silencer + SCR + 45 dB Sil.
RICE Exhaust Duct - Pre SCR (dB/m)	12	102	97	86	85	88	91	78	78	67	103	Wartsila Insulated Exhaust Duct
Ridge Vent	1	108	96	91	80	77	76	83	82	79	108	Calculated from RICE Hall Interior Sources + Silencer
	1	118	100	93	89	93	72	66	60	55		Calc from RICE Hall Interior (includes TL losses from roof
Engine Hall Roof	1	118	100	93	89	93	12	00	60	22	91	assembly)
HVAC Unit	2	73	78	83	93	93	90	88	83	73	95	Estimated
Radiator (Total)	1	125	112	112	107	104	102	97	92	84	107	In-house sound levels
Step Up Transformer	3	103	100	101	98	101	98	93	91	81	102	Estimated
Engine Hall Walls	1	104	91	88	82	75	67	64	56	45	78	Calc from RICE Hall Interior (includes TL losses from wall
	1	104	91	00	82	/5	67	64	50	45	78	assembly)
Exhaust Stack Wall	2	95	91	87	81	72	53	12	9	5	76	Estimated combined in-duct levels
RICE Hall	1	112	104	104	103	103	101	102	98	93	108	Calculated from interior equipment and wall/roof
	1	112	104	104	103	103	101	102	98	93	108	absorption
RICE Unit	12	132	124	124	124	123	122	123	119	113	128	In-house, housed inside building

Notes:

1. All sound levels are inclusive of mitigation included in the base design only

