Environmental Assessment

Ripley Energy Center Payne County, Oklahoma

U.S Department of Agriculture Rural Utilities Service

Prepared by:

Burns and McDonnell 9400 Ward Parkway Kansas City, MO 64114

Prepared for:

Associated Electric Cooperative, Inc. 2814 S. Golden Springfield, MO 6580

CONTENTS

1.0	Intr	oduct	ion1-1		
	1.1	Proje	ject Description		
	1.2	Purpo	ose and Need1-6		
2.0	Alte	ernativ	/es		
	2.1	Introd	duction		
	2.2	Alter	natives Considered		
		2.2.1	Technology Selection2-8		
		2.2.2	Alternative Project Locations2-8		
	2.3	Propo	osed Action Alternative		
	2.4	No A	ction Alternative		
3.0	Affe	ected	Environment/Environmental Consequences		
	3.1		Use, Formally Classified Lands, Geology, Soils, and		
			land		
		3.1.1	Affected Environment		
		3.1.2	Environmental Consequences		
			3.1.2.1 Proposed Action Alternative		
		717	3.1.2.2 No Action Alternative		
	7.0	3.1.3	Mitigation		
	3.2		dplains		
		3.2.1	Affected Environment		
		3.2.2	Environmental Consequences		
			3.2.2.1 Proposed Action Alternatives		
			3.2.2.2 No Action Alternative		
		3.2.3	Mitigation		
	3.3		ands and Water Bodies		
		3.3.1	Affected Environment		
		3.3.2	Environmental Consequences		
			3.3.2.1 Proposed Action Alternatives		
			3.3.2.2 No Action Alternative		
		3.3.3	Mitigation		
	3.4	Wate	r Resources		
		3.4.1	Affected Environment		
•					
			3.4.2.1 Proposed Action Alternatives		

		3.4.2.2 No Action Alternative	
	3.4.3	Mitigation	
3.5	Coast	al Resources	
	3.5.1	Affected Environment	
	3.5.2	Environmental Consequences	3-9
3.6	Biolog	gical Resources	
	3.6.1	Affected Environment	3-9
		3.6.1.1 Vegetation	3-9
		3.6.1.2 Wildlife	3-9
	3.6.2	Environmental Consequences	3-13
		3.6.2.1 Proposed Action Alternative	3-13
		3.6.2.2 No Action Alternative	3-14
	3.6.3	Mitigation	3-14
		3.6.3.1 Vegetation	3-14
		3.6.3.2 Wildlife	3-14
3.7	Histor	ric and Cultural Resources	3-14
	3.7.1	Affected Environment	3-14
	3.7.2	Environmental Consequences	3-16
		3.7.2.1 Proposed Action Alternative	3-16
		3.7.2.2 No Action Alternative	3-16
	3.7.3	Mitigation	3-16
3.8	Aesth	etics	3-17
	3.8.1	Affected Environment	3-17
	3.8.2	Environmental Consequences	3-17
		3.8.2.1 Proposed Action Alternative	3-17
		3.8.2.2 No Action Alternative	3-17
	3.8.3	Mitigation	3-17
3.9	Air Qu	uality	3-17
	3.9.1	Affected Environment	3-17
	3.9.2	Environmental Consequences	3-19
		3.9.2.1 Proposed Action Alternative	3-19
		3.9.2.2 No Action Alternative	3-22
	3.9.3	Mitigation	3-22
3.10	Clima	te Change and GHG	3-22
	3.10.1	Affected Environment	3-23
		3.10.1.1 Carbon Dioxide (CO ₂)	3-23
		3.10.1.2 Methane (CH ₄)	3-24
		3.10.1.3 Nitrous Oxide (N ₂ 0)	3-24

		3.10.1.4 Fluorinated Gases 3-24
		3.10.1.5 Global Warming Potentials
		3.10.1.6 Potential Effects of Greenhouse Gases
		3.10.2 Environmental Consequences
		3.10.2.1 Proposed Action Alternative
		3.10.2.2 No Action Alternative
		3.10.3 Mitigation
	3.11	Socio-Economic Impact Assessment/Environmental Justice 3-30
		3.11.1 Affected Environment
		3.11.2 Environmental Consequences
		3.11.2.1 Proposed Action Alternative
		3.11.2.2 No Action Alternative
		3.11.3 Mitigation
	3.12	Noise
		3.12.1 Affected Environment 3-36
		3.12.2 Environmental Consequences
		3.12.2.1 Proposed Action Alternative
		3.12.2.2 No Action Alternative
		3.12.3 Mitigation
	3.13	Transportation
		3.13.1 Affected Environment
		3.13.2 Environmental Consequences
		3.13.2.1 Proposed Action Alternative
		3.13.2.2 No Action Alternative
		3.13.3 Mitigation
	3.14	Human Health and Safety
		3.14.1 Affected Environment
		3.14.2 Environmental Consequences
		3.14.2.1 Proposed Action Alternative
		3.14.2.2 No Action Alternative
		3.14.3 Mitigation
	3.15	Summary of Impacts
4.0	Cum	ulative Impacts
	4.1	Region of Influence
	4.2	Past, Present, and Reasonably Foreseeable Future Actions
		4.2.1 Wetlands and Water Bodies
		4.2.2 Aesthetics

		4.2.3 Air Quality4-3
		4.2.4 Noise
5.0	Sun	nmary of Mitigation5-1
6.0	Coc	ordination, Consultation, and Correspondence6-1
	6.1	Public Involvement
	6.2	Agency Consultation6-1
		6.2.1 Federal Permitting
		6.2.2 State Agency Coordination
		6.2.2.1 Oklahoma Department of Energy
		6.2.2.2 Oklahoma Archaeological Society
		6.2.2.3 Oklahoma Department of Environmental Quality 6-3
		6.2.3 Oklahoma State Historic Preservation Office
		6.2.4 State Permitting
	6.3	Tribal Coordination
	6.4	Local Coordination
	6.5	Locations for Public Review of EA6-5
7.0	Ref	erences
8.0	List	of Preparers
APP	ENDI	IX A - NEPASSIST

APPENDIX	R -	WFTI	ANDS	REPORT

- APPENDIX C THREATENED AND ENDANGERED SPECIES REPORT
- APPENDIX D PROJECT CORRESPONDENCE
- APPENDIX E GHG CALCULATIONS
- APPENDIX F EJSCREEN
- APPENDIX G NOISE STUDY
- APPENDIX H PERMIT MATRIX

FIGURES

Figure 1-1:	AECI Service Territory	. 1-1
Figure 1-2:	Proposed Layout of New Equipment	1-4
Figure 1-3:	Ripley Energy Center Location	1-5
Figure 1-4:	Winter Generating Capacity, Load, and Reserve Requirements .	1-6
Figure 2-1: P	Preferred and Alternate Site Area Rankings	2-9

TABLES

Table 3-1: Land Cover Identified within the Project Boundary					
Table 3-2: S	Table 3-2: Soil Map Units within the Project Boundary				
Table 3-3: D	elineated Wetlands within the Survey Area by Type				
Table 3-4: S	treams Identified within the Survey Area				
Table 3-5:	Payne County Federally Threatened and Endangered Wildlife Species				
Table 3-6:	NAAQS and SIL Thresholds				
Table 3-7: T	otal Project Emission Summary3-21				
Table 3-8:	Global Warming Potentials and Atmospheric Lifetimes3-25				
Table 3-9:	Project Emissions of Greenhouse Gases				
Table 3-10:	Present Value (in Base Year 2026) of Estimated SC-GHG for GHG emissions (2020\$)3-28				
Table 3-11:	Population Trends				
Table 3-12:	2020 Racial Characteristics				
Table 3-13:	2020 Employment Data				
Table 3-14:	2020 Income and Poverty				
Table 3-15:	2020 Minority and Low-Income Populations near the Project3-35				
Table 3-16:	Range of Typical Construction Equipment Noise Levels in A weighted decibel (dBA)3-38				
Table 3-17:	Project Background and Operational Sound Levels				
Table 3-18:	Summary of Potential Impacts 3-43				
Table 5-1:	Summary of Mitigation5-2				
Table 6-1: R	Table 6-1: RUS Scoping Letter Distribution 6-1				
Table 6-2: Landowner Communication 6-4					

List of Abbreviations

Abbreviation	Term/Phrase/Name
51 East Corp	51 East Corp Public Water Service
ACHP	Advisory Council on Historic Preservation
AECI	Associated Electric Cooperative, Inc.
APE	area of potential effect
amsl	above mean sea level
BACT	Best Available Control Technology
BGEPA	Bald and Golden Eagle Protection Act
BMP	best management practice
САА	Clean Air Act
CEMS	continuous emission monitoring system
CEQ	Council on Environmental Quality
CFR	Code of Federal Regulations
CH ₄	methane
CIA	Critical Issues Analysis
СО	carbon monoxide
CO ₂	carbon dioxide
CO ₂ e	carbon dioxide equivalent
dBA	A weighted decibel
EA	environmental assessment
EIS	environmental impact statement
ELFS	Electric Load Forecast Study
EMF	electromagnetic field
EO	Executive Order
EOIT	Enable Oklahoma Intrastate Transmission, LLC
EPA	U.S. Environmental Protection Agency
ER	environmental report
ESA	Endangered Species Act
°F	degree Fahrenheit
FAA	Federal Aviation Administration
FEMA	Federal Emergency Management Agency
FIRM	Flood Insurance Rate Maps

FRFrederal RegisterGHGgreenhouse gasgpmgallons per minuteGSUgenerator step-upG&Tgeneration and transmissionGWPglobal warming potentialHAPhazardous air pollutantHDPEhigh-density polyethyleneHFChydrofluorocarbonHHVhigher heating valueIECInternational Electrotechnical CommissionIPACInformation for Planning and ConsultationIRPInteragency Working GroupKAMO PowerKAMO Electric Cooperative, Inc.kVkilovoltLHVlower heating valuemmeterµg/m³microgram per cubic meterMACTMaximum Achievable Control TechnologyMBtumillion British thermal units per hourMMBtu/hrmillion British thermal units per hourMACQNational Environmental Policy ActNAQSNational Environmental Policy ActNAQSNational Environmental Policy ActNGAnitrougen xideNHDNational Prischarder for Hazardous Air PollutantsNHDNational Prischarder for Hazardous Air PollutantsNPDESNational Policy ActNPDESNational Prischarge Elimination SystemNPVnet persent valueNWINational Policy ActNPDSNational Policy ActNPDNational Policy ActNPDNational Policy ActNESNational Policy ActNPDNational Policy ActNPDNationa	FONSI	Finding of No Significant Impact
GHGgreenhouse gasgpmgallons per minuteGSUgenerator step-upG&Tgeneration and transmissionGWPglobal warming potentialHAPhazardous air pollutantHDPEhigh-density polyethyleneHFChydrofluorocarbonHHVhigh-density polyethyleneIEClinternational Electrotechnical CommissionIPAClinternational Electrotechnical CommissionIRPintergency Working GroupKAMO PowerKAMO Electric Cooperative, Inc.kVkilovoltLHVlower heating valuemmeterµg/m ⁵ microgram per cubic meterMAELCMulti-Resolution Land CharacteristicsMWmelgawattN>Onitrous oxideNAAQSNational Environmental Policy ActNEFAmillion British thermal units per hourMRLCMulti-Resolution Land CharacteristicsMWmegawattN>Onitrous oxideNAAQSNational Emission Standards for Hazardous Air PollutantsNHDNational Emission Standards for Hazardous Air PollutantsNPDESNational Pollutant Discharge Elimination SystemNPVnet present valueNVINational Vetlands Inventory		
gamgallons per minuteGSUgenerator step-upG&Tgeneration and transmissionGWPglobal warming potentialHAPhazardous air pollutantHDPEhigh-density polyethyleneHFChydrofluorocarbonHHVhigher heating valueIECInternational Electrotechnical CommissionIPACInformation for Planning and ConsultationIRPIntegrated Resource PlanIWGInteragency Working GroupKAMO PowerKAMO Electric Cooperative, Inc.kVkilovoltLHVlower heating valuemmeterµg/m3microgram per cubic meterMACTMaximum Achievable Control TechnologyMMBtumillion British thermal unitsMMBtu/hrmillion British thermal unitsMMBtu/hrmillion British thermal Units per hourMKCMulti-Resolution Land CharacteristicsNAQSNational Ambient Air Quality StandardsNEPANational Ambient Air Quality StandardsNHDNational Ambient Air Quality StandardsNG0nitrogen oxideNO2nitrogen oxideNO2nitrogen oxideNPDESNational Pollutant Discharge Elimination SystemNPVnet present valueNVINational Wetlands Inventory		
GSUgenerator step-upG&Tgeneration and transmissionGWPglobal warming potentialHAPhazardous air pollutantHDPEhigh-density polyethyleneHFChydrofluorocarbonHHVhigher heating valueIECInternational Electrotechnical CommissionIPACInformation for Planning and ConsultationIRPIntergated Resource PlanIWGInteragency Working GroupKAMO PowerKAMO Electric Cooperative, Inc.kVkilovoltLHVIower heating valuemmeterµg/m³microgram per cubic meterMACTMaximum Achievable Control TechnologyMBtumillion British thermal unitsMMBtu/hrmillion British thermal units per hourMRLCMulti-Resolution Land CharacteristicsN>Onitrous oxideNAAQSNational Emission Standards for Hazardous Air PollutantsNHDNational Emission Standards for Hazardous Air PollutantsNHDNational Policy ActNPDESNational Pollutant Discharge Elimination SystemNPVnet present valueNVINational Wetlands Inventory	GHG	greenhouse gas
G&Tgeneration and transmissionG&Tgeneration and transmissionGWPglobal warming potentialHAPhazardous air pollutantHDPEhigh-density polyethyleneHFChydrofluorocarbonHHVhigher heating valueIECInternational Electrotechnical CommissionIPACInformation for Planning and ConsultationIRPIntergrated Resource PlanIWGInteragency Working GroupKAMO PowerKAMO Electric Cooperative, Inc.kVkilovoltLHVIower heating valuemmeterµg/m³microgram per cubic meterMACTMaximum Achievable Control TechnologyMBtumillion British thermal unitsMMBtu/hrmillion British thermal unitsMWmegawattN₂Onitrous oxideNAAQSNational Ambient Air Quality StandardsNEPANational Environmental Policy ActNEPANational Environmental Policy ActNPDESNational Pollutant Discharge Elimination SystemNPDnitrogen oxideNVInet present valueNVINational Wetlands Inventory	gpm	gallons per minute
GWPglobal warming potentialHAPhazardous air pollutantHDPEhigh-density polyethyleneHFChydrofluorocarbonHHVhigher heating valueIECInternational Electrotechnical CommissionIPACInformation for Planning and ConsultationIRPIntegrated Resource PlanIWGInteragency Working GroupKAMO PowerKAMO Electric Cooperative, Inc.kVkilovoltLHVIower heating valuemmeterµg/m³microgram per cubic meterMACTMaximum Achievable Control TechnologyMBtuu/hrmillion British thermal units per hourMRLCMulti-Resolution Land CharacteristicsMWmegawattN>Onitrous oxideNAAQSNational Environmental Policy ActNEPANational Environmental Policy ActNFPANational Hydrography DatasetNQ2nitrogen oxideNAPDESNational Pollutant Discharge Elimination SystemNPVnet present valueNVINational Wetlands Inventory	GSU	generator step-up
HAPhazardous air polutantHDPEhigh-density polyethyleneHFChydrofluorocarbonHHVhigher heating valueIECInternational Electrotechnical CommissionIPACInformation for Planning and ConsultationIRPIntergated Resource PlanIWGInteragency Working GroupKAMO PowerKAMO Electric Cooperative, Inc.kVkilovoltLHVIower heating valuemmeterµg/m3microgram per cubic meterMACTMaximum Achievable Control TechnologyMMBtumillion British thermal unitsMMBtu/hrmillion British thermal units per hourMRLCMulti-Resolution Land CharacteristicsMWmegawattN₂Onitrous oxideNAAQSNational Environmental Policy ActNEPANational Environmental Policy ActNESHAPNational Hydrography DatasetNOxnitrogen oxideNPUnet present valueNVINational Pollutant Discharge Elimination SystemNPUnet present value	G&T	generation and transmission
HDPEhigh-density polyethyleneHFChydrofluorocarbonHHVhigher heating valueIECInternational Electrotechnical CommissionIPACInformation for Planning and ConsultationIRPIntegrated Resource PlanIWGInteragency Working GroupKAMO PowerKAMO Electric Cooperative, Inc.kVkliovoltLHVIower heating valuemmeterµg/m³microgram per cubic meterMACTMaximum Achievable Control TechnologyMBtumillion British thermal unitsMMBtu/hrmillion British thermal units per hourMRLCMulti-Resolution Land CharacteristicsMWmegawattNzOnitrous oxideNAAQSNational Environmental Policy ActNEPANational Emission Standards for Hazardous Air PollutantsNHDNational Hydrography DatasetNOxnitrogen oxideNPDESNational Pollutant Discharge Elimination SystemNPVnet present valueNVINational Wetlands Inventory	GWP	global warming potential
HFChydrofluorocarbonHHVhigher heating valueIECInternational Electrotechnical CommissionIPACInformation for Planning and ConsultationIRPIntegrated Resource PlanIWGInteragency Working GroupKAMO PowerKAMO Electric Cooperative, Inc.kVkilovoltLHVIower heating valuemmeterµg/m³microgram per cubic meterMACTMaximum Achievable Control TechnologyMMBtumillion British thermal units per hourMRLCMulti-Resolution Land CharacteristicsMWmegawattN_2Onitrous oxideNAAQSNational Ambient Air Quality StandardsNEPANational Environmental Policy ActNEJNational Environmental Policy ActNPDNational Hydrography DatasetNO2nitrogen oxideNANational Pollutant Discharge Elimination SystemNPDESNational ValueNVInet present value	НАР	hazardous air pollutant
HHVhigher heating valueIECInternational Electrotechnical CommissionIPACInformation for Planning and ConsultationIRPIntegrated Resource PlanIWGInteragency Working GroupKAMO PowerKAMO Electric Cooperative, Inc.kVkilovoltLHVIower heating valuemmeterµg/m³microgram per cubic meterMACTMaximum Achievable Control TechnologyMMBtumillion British thermal unitsMMBtu/hrmillion British thermal units per hourMRLCMUIti-Resolution Land CharacteristicsMWmegawattN ₂ Onitrous oxideNAAQSNational Ambient Air Quality StandardsNEPANational Environmental Policy ActNPDNational Hydrography DatasetNO2nitrogen dixideNPDESNational Pollutant Discharge Elimination SystemNPVnet present valueNVINational Wetlands Inventory	HDPE	high-density polyethylene
IECInternational Electrotechnical CommissionIPACInformation for Planning and ConsultationIRPIntegrated Resource PlanIWGInteragency Working GroupKAMO PowerKAMO Electric Cooperative, Inc.kVkilovoltLHVIower heating valuemmeterµg/m³microgram per cubic meterMACTMaximum Achievable Control TechnologyMBtumillion British thermal units per hourMRLCMulti-Resolution Land CharacteristicsMWmegawattN2Onitrous oxideNAAQSNational Environmental Policy ActNEPANational Environmental Policy ActNPDnitrogen oxideNOxnitrogen oxideNPDESNational Pollutant Discharge Elimination SystemNPVnet present valueNWINational Wetlands Inventory	HFC	hydrofluorocarbon
IPACInformation for Planning and ConsultationIRPIntegrated Resource PlanIWGInteragency Working GroupKAMO PowerKAMO Electric Cooperative, Inc.kVkilovoltLHVIower heating valuemmeterµg/m³microgram per cubic meterMACTMaximum Achievable Control TechnologyMMBtumillion British thermal unitsMMBtu/hrmillion British thermal units per hourMRLCMulti-Resolution Land CharacteristicsMWmegawattNAQSNational Ambient Air Quality StandardsNEPANational Environmental Policy ActNEDNational Hydrography DatasetNO2nitrogen oxideNAQSNational Hydrography DatasetNO2National Pollutant Discharge Elimination SystemNPDESNational Wetlands InventoryNWINational Wetlands Inventory	ННV	higher heating value
IRPIntegrated Resource PlanIRGInteragency Working GroupKAMO PowerKAMO Electric Cooperative, Inc.kVkilovoltLHVIower heating valuemmeterµg/m³microgram per cubic meterMACTMaximum Achievable Control TechnologyMMBtumillion British thermal unitsMMBtu/hrmillion British thermal units per hourMRLCMulti-Resolution Land CharacteristicsMWmegawattN2Onitrous oxideNAAQSNational Ambient Air Quality StandardsNEPANational Emvironmental Policy ActNEDNational Hydrography DatasetNO2nitrogen oxideNOxnitrogen oxideNPDNational Pollutant Discharge Elimination SystemNPVnet present valueNWINational Wetlands Inventory	IEC	International Electrotechnical Commission
IWGInteragency Working GroupKAMO PowerKAMO Electric Cooperative, Inc.kVkilovoltLHVIower heating valuemmeterµg/m³microgram per cubic meterMACTMaximum Achievable Control TechnologyMMBtumillion British thermal unitsMMBtu/hrmillion British thermal units per hourMRLCMulti-Resolution Land CharacteristicsMWmegawattNzOnitrous oxideNAAQSNational Ambient Air Quality StandardsNEPANational Environmental Policy ActNHDNational Hydrography DatasetNO2nitrogen oxideNOxnitrogen oxideNPDESNational Pollutant Discharge Elimination SystemNPVnet present valueNWINational Wetlands Inventory	IPAC	Information for Planning and Consultation
KAMO PowerKAMO Electric Cooperative, Inc.kVkilovoltLHVlower heating valuemmeterµg/m³microgram per cubic meterMACTMaximum Achievable Control TechnologyMMBtumillion British thermal unitsMMBtu/hrmillion British thermal units per hourMRLCMulti-Resolution Land CharacteristicsMWmegawattN₂Onitrous oxideNAAQSNational Environmental Policy ActNEPANational Emission Standards for Hazardous Air PollutantsNHDNational Hydrography DatasetNO₂nitrogen oxideNPDESNational Pollutant Discharge Elimination SystemNPVnet present valueNWINational Wetlands Inventory	IRP	Integrated Resource Plan
kVkilovoltLHVlower heating valuemmeterµg/m³microgram per cubic meterMACTMaximum Achievable Control TechnologyMMBtumillion British thermal unitsMMBtu/hrmillion British thermal units per hourMRLCMulti-Resolution Land CharacteristicsMWmegawattN2Onitrous oxideNAAQSNational Ambient Air Quality StandardsNEPANational Environmental Policy ActNESHAPNational Hydrography DatasetNO2nitrogen oxideNOxnitrogen oxideNPDESNational Pollutant Discharge Elimination SystemNPVnet present valueNWINational Wetlands Inventory	IWG	Interagency Working Group
LHVIower heating valuemmeterµg/m³microgram per cubic meterMACTMaximum Achievable Control TechnologyMMBtumillion British thermal unitsMMBtu/hrmillion British thermal units per hourMRLCMulti-Resolution Land CharacteristicsMWmegawattN2Onitrous oxideNAAQSNational Ambient Air Quality StandardsNEPANational Environmental Policy ActNESHAPNational Hydrography DatasetNO2nitrogen oxideNOxnitrogen oxideNPDESNational Pollutant Discharge Elimination SystemNPVnet present valueNWINational Wetlands Inventory	KAMO Power	KAMO Electric Cooperative, Inc.
mmeterµg/m³microgram per cubic meterMACTMaximum Achievable Control TechnologyMMBtumillion British thermal unitsMMBtu/hrmillion British thermal units per hourMRLCMulti-Resolution Land CharacteristicsMWmegawattN2Onitrous oxideNAAQSNational Ambient Air Quality StandardsNEPANational Environmental Policy ActNESHAPNational Emission Standards for Hazardous Air PollutantsNHDNational Hydrography DatasetNO2nitrogen oxideNPDESNational Pollutant Discharge Elimination SystemNPVnet present valueNWINational Wetlands Inventory	kV	kilovolt
ImageInterogram per cubic meterMACTMaximum Achievable Control TechnologyMMBtumillion British thermal unitsMMBtu/hrmillion British thermal units per hourMRLCMulti-Resolution Land CharacteristicsMWmegawattNzOnitrous oxideNAAQSNational Ambient Air Quality StandardsNEPANational Environmental Policy ActNEDNational Emission Standards for Hazardous Air PollutantsNHDNational Hydrography DatasetNO2nitrogen oxideNPDESNational Pollutant Discharge Elimination SystemNPVnet present valueNWINational Wetlands Inventory	LHV	lower heating value
MACTMaximum Achievable Control TechnologyMMBtumillion British thermal unitsMMBtu/hrmillion British thermal units per hourMRLCMulti-Resolution Land CharacteristicsMWmegawattN2Onitrous oxideNAAQSNational Ambient Air Quality StandardsNEPANational Environmental Policy ActNESHAPNational Hydrography DatasetNO2nitrogen oxideNO2nitrogen oxideNPDNational Hydrography DatasetNO2nitrogen oxideNPDESNational Pollutant Discharge Elimination SystemNPVnet present valueNWINational Wetlands Inventory	m	meter
MMBtumillion British thermal unitsMMBtu/hrmillion British thermal units per hourMRLCMulti-Resolution Land CharacteristicsMWmegawattN2Onitrous oxideNAAQSNational Ambient Air Quality StandardsNEPANational Environmental Policy ActNESHAPNational Emission Standards for Hazardous Air PollutantsND2nitrogen dioxideNO2nitrogen oxideNPDESNational Pollutant Discharge Elimination SystemNPVnet present valueNWINational Wetlands Inventory	µg/m³	microgram per cubic meter
MMBtu/hrmillion British thermal units per hourMRLCMulti-Resolution Land CharacteristicsMWmegawattN2Onitrous oxideNAAQSNational Ambient Air Quality StandardsNEPANational Environmental Policy ActNESHAPNational Emission Standards for Hazardous Air PollutantsNHDNational Hydrography DatasetNO2nitrogen oxideNPDESNational Pollutant Discharge Elimination SystemNPVnet present valueNWINational Wetlands Inventory	МАСТ	Maximum Achievable Control Technology
MRLCMulti-Resolution Land CharacteristicsMWmegawattN2Onitrous oxideNAAQSNational Ambient Air Quality StandardsNEPANational Environmental Policy ActNESHAPNational Emission Standards for Hazardous Air PollutantsNHDNational Hydrography DatasetNO2nitrogen dioxideNPDESNational Pollutant Discharge Elimination SystemNPVnet present valueNWINational Wetlands Inventory	MMBtu	million British thermal units
MWmegawattN2Onitrous oxideNAAQSNational Ambient Air Quality StandardsNEPANational Environmental Policy ActNESHAPNational Emission Standards for Hazardous Air PollutantsNHDNational Hydrography DatasetNO2nitrogen dioxideNOxnitrogen oxideNPDESNational Pollutant Discharge Elimination SystemNPVnet present valueNWINational Wetlands Inventory	MMBtu/hr	million British thermal units per hour
N2Onitrous oxideNAAQSNational Ambient Air Quality StandardsNEPANational Environmental Policy ActNESHAPNational Emission Standards for Hazardous Air PollutantsNHDNational Hydrography DatasetNO2nitrogen dioxideNOxnitrogen oxideNPDESNational Pollutant Discharge Elimination SystemNPVnet present valueNWINational Wetlands Inventory	MRLC	Multi-Resolution Land Characteristics
NAAQSNational Ambient Air Quality StandardsNEPANational Environmental Policy ActNESHAPNational Emission Standards for Hazardous Air PollutantsNHDNational Hydrography DatasetNO2nitrogen dioxideNOxnitrogen oxideNPDESNational Pollutant Discharge Elimination SystemNPVnet present valueNWINational Wetlands Inventory	MW	megawatt
NEPA National Environmental Policy Act NESHAP National Emission Standards for Hazardous Air Pollutants NHD National Hydrography Dataset NO2 nitrogen dioxide NOx nitrogen oxide NPDES National Pollutant Discharge Elimination System NPV net present value NWI National Wetlands Inventory	N ₂ O	nitrous oxide
NESHAPNational Emission Standards for Hazardous Air PollutantsNHDNational Hydrography DatasetNO2nitrogen dioxideNOxnitrogen oxideNPDESNational Pollutant Discharge Elimination SystemNPVnet present valueNWINational Wetlands Inventory	NAAQS	National Ambient Air Quality Standards
NHD National Hydrography Dataset NO2 nitrogen dioxide NOx nitrogen oxide NPDES National Pollutant Discharge Elimination System NPV net present value NWI National Wetlands Inventory	NEPA	National Environmental Policy Act
NO2 nitrogen dioxide NOx nitrogen oxide NPDES National Pollutant Discharge Elimination System NPV net present value NWI National Wetlands Inventory	NESHAP	National Emission Standards for Hazardous Air Pollutants
NOx nitrogen oxide NPDES National Pollutant Discharge Elimination System NPV net present value NWI National Wetlands Inventory	NHD	National Hydrography Dataset
NPDES National Pollutant Discharge Elimination System NPV net present value NWI National Wetlands Inventory	NO ₂	nitrogen dioxide
NPV net present value NWI National Wetlands Inventory	NOx	nitrogen oxide
NWI National Wetlands Inventory	NPDES	National Pollutant Discharge Elimination System
	NPV	net present value
NRCS National Resources Conservation Service	NWI	National Wetlands Inventory
	NRCS	National Resources Conservation Service

NSPS	New Source Performance Standards	
O.A.C.	Oklahoma Administrative Code	
OAS	Oklahoma Archaeological Survey	
ODEQ	Oklahoma Department of Environmental Quality	
ODWC	Oklahoma Department of Wildlife Conservation	
OHNI	Oklahoma National Heritage Inventory	
OWRB	Oklahoma Water Resources Board	
PAB	palustrine aquatic bed	
PAP	Priority Action Plan	
Pb	lead	
PEM	palustrine emergent	
PFC	perfluorocarbon	
PM	particulate matter	
PM10	particulate matter 10 microns or less in diameter	
PM _{2.5}	particulate matter 2.5 microns or less in diameter	
PPA	power purchase agreement	
PSD	Prevention of Significant Deterioration	
PSS	palustrine scrub-shrub	
PUB	palustrine unconsolidated bottom	
RFP	Request for Proposal	
ROW	right-of-way	
RTO	regional transmission organization	
RUS	Rural Utilities Service	
SC-CH ₄	social cost of methane	
SC-CO ₂	social cost of carbon dioxide	
SC-GHG	social cost of greenhouse gas	
SC-N ₂ O	social cost of nitrous oxide	
SCGT	simple-cycle gas turbine	
SCR	selective catalytic reduction	
SER	Significant Emission Rate	
SF ₆	sulfur hexafluoride	
SHPO	State Historic Preservation Office	
SIL	Significant Impact Level	
SO ₂	sulfur dioxide	
SSURGO	Soil Survey Geographic	_

ТНРО	Tribal Historic Preservation Officer
tpy	tons per year
USACE	U.S. Army Corps of Engineers
USC	U.S. Code
USDA	U.S. Department of Agriculture
USFWS	U.S. Fish and Wildlife Service
USGS	U.S. Geological Survey

1.0 Introduction

Associated Electric Cooperative, Inc. (AECI) is a member-owned, member-led wholesale power generation and transmission cooperative created in 1961 by rural electric cooperatives to provide electricity reliably and affordably for rural areas of the Midwest. Today, AECI and its member cooperatives deliver electricity to 935,000 meters (member-consumers) representing 2.1 million people across rural Missouri, northeast Oklahoma, and southeast Iowa (Figure 1-1). AECI's member-consumers are primarily older, lower income electricity users who live in rural parts of the three-state system. More populous urban and suburban areas of these regions are generally served by municipal or investor-owned electric utilities.

Figure 1-1: AECI Service Territory

AECI is a system comprised of three distinct tiers, each specializing in one critical area of the electric utility process and accountable for its performance through democratic control at every tier.

• <u>Generation</u>: In the first tier, AECI generates power for six regional transmission cooperatives who are member-owners of AECI.

935K

51

MEMBER-

Distribution

cooperatives

cooperatives

Associated

Electric Cooperative

CONSUMERS

- <u>Transmission</u>: In the second tier, the six regional transmission co-ops use an extensive network of substations and high-voltage power lines to deliver the power to 51 distribution co-ops who are their member-owners. AECI and its six transmission co-op owners own and operate 10,288 miles of transmission lines.
- <u>Distribution</u>: The third tier is made up of the 51 local power coops that deliver electricity to member-consumers at homes, farms and businesses in rural areas. 935,000 memberconsumers (meters) served by this distribution tier own and are democratically represented at their local co-ops.

1.1.1 Proposed Action

AECI is requesting a loan from the U.S. Department of Agriculture (USDA), Rural Utilities Service (RUS) to procure and construct a 421-megawatt (MW) simple-cycle gas turbine (SCGT), located approximately 6.5 miles north of Ripley, in Payne County, Oklahoma (the "Project Site"). AECI owns 160 acres of agricultural land at the Project Site. Approximately 50 acres would be disturbed with approximately 40 acres ultimately being fenced. The general location of the Project Site including the transmission line is shown in Figure 1-2 and the proposed site layout is shown in Figure 1-3. AECI is a member-owned, member-led wholesale power generation and transmission cooperative created in 1961 by rural electric cooperatives to provide electricity reliably and affordably for rural areas of the Midwest.

To support operation of the new combustion turbine, a new natural gas lateral would be constructed to supply fuel to the Project Site. The new 10-inch lateral would extend approximately 120 feet directly east from the Project Site boundary to a tap point on the existing Enable Oklahoma Intrastate Transmission, LLC (EOIT) pipeline, and then traverse the Project Site approximately 3,000 feet to supply the SCGT (see Figure 1-2). The lateral pipeline will not be owned or operated by AECI and is considered a connected action.

KAMO Electric Cooperative, Inc. (KAMO) will enable AECI's interconnection via an onsite switchyard constructed as part of the Proposed Action (KAMO is a member cooperative of AECI). From there, a new 0.5-mile-long KAMO transmission line, consisting of a single-circuit 138 kilovolt (kV) line, would be constructed to access the existing transmission line right-ofway near the Project Site. From that location, 5.5 miles of existing KAMO-owned transmission line structures would be rebuilt to carry a double circuit in the existing right-of-way (ROW) to the existing Stillwater Substation. The Stillwater Substation would require minimal upgrades to receive the line. The existing distribution line adjacent to the site will be upgraded to provide service power back to the Ripley Energy Center.

A new 1-mile water pipeline would be constructed of eight (8)-inch high-density polyethylene (HDPE) pipe that would tap into an existing ten (10)-inch water transmission main owned by 51 East Water, located approximately 1-mile north of the Project Site boundary. The new water pipeline would replace an existing, smaller water pipeline within the existing ROW.

The Project would be constructed over a 24-month period. The footprint for construction of this Project is approximately 50 acres, located primarily in an open agricultural area within the Project Site boundary (Figure 1-2). Construction activities would also include equipment laydown, temporary offices, and parking.

The proposed action will require the following major new components:

- Advanced-class SCGT and auxiliary equipment
- Air cooled generator and auxiliary equipment
- Selective catalytic reduction and Oxidation Catalyst Systems
- Generator step-up (GSU) and auxiliary transformers
- Fuel oil tanks, offload, and forwarding equipment
- Water tanks
- Electrical equipment for the station including KAMO's 138-kV switchyard
- Substation upgrades to accommodate interconnection to the grid
- Adding a double circuit to the KAMO transmission line
- Upgrading the electrical distribution line
- Fire protection
- Natural gas metering, filtering and pressure regulating equipment
- Permanent offices and warehousing
- Permanent plant roads, lighting, fencing, and cameras

1.1.2 Agency and Program Objectives

RUS's action is the decision to provide financing assistance for the Proposed Action through the Electric Infrastructure Loan & Loan Guarantee Program. Under the Rural Electrification Act of 1936, as amended, the Secretary of Agriculture is authorized and empowered to make loans to nonprofit cooperatives and others for rural electrification for the purpose of financing the construction and operation of generating plants, electric transmission and distribution lines, or systems for the furnishing and improving of electric service to persons in rural areas (7 U.S. Code [USC] § 904). A primary function or mission of RUS is to carry out the electric loan program (7 USC § 6942).

USDA, Rural Development is a mission area that includes three federal agencies – Rural Business-Cooperative Service, Rural Housing Service, and Rural Utilities Service. The agencies have in excess of 50 programs that provide financial assistance and a variety of technical and educational assistance to eligible rural and tribal populations, eligible communities, individuals, cooperatives, and other entities with a goal of improving the quality of life, sustainability, infrastructure, economic opportunity, development, and security in rural America. Financial assistance can include direct loans, guaranteed loans, and grants in order to accomplish program objectives.

This Environmental Assessment (EA) was prepared in accordance with Title 7 of the Code of Federal Regulations (CFR) Part 3100 (7 CFR 3100), which prescribes the policies and procedures of the USDA for implementing the National Environmental Policy Act (NEPA) of 1969, as amended, Title 7 CFR 1970 which provides environmental policies and procedures for the Rural Utilities Service (RUS), the regulations of the Council on Environmental Quality, 40 CFR parts 1500 through 1508, and the USDA Rural Development guidance document 1970-C which serves as a guide for preparing EAs under NEPA.

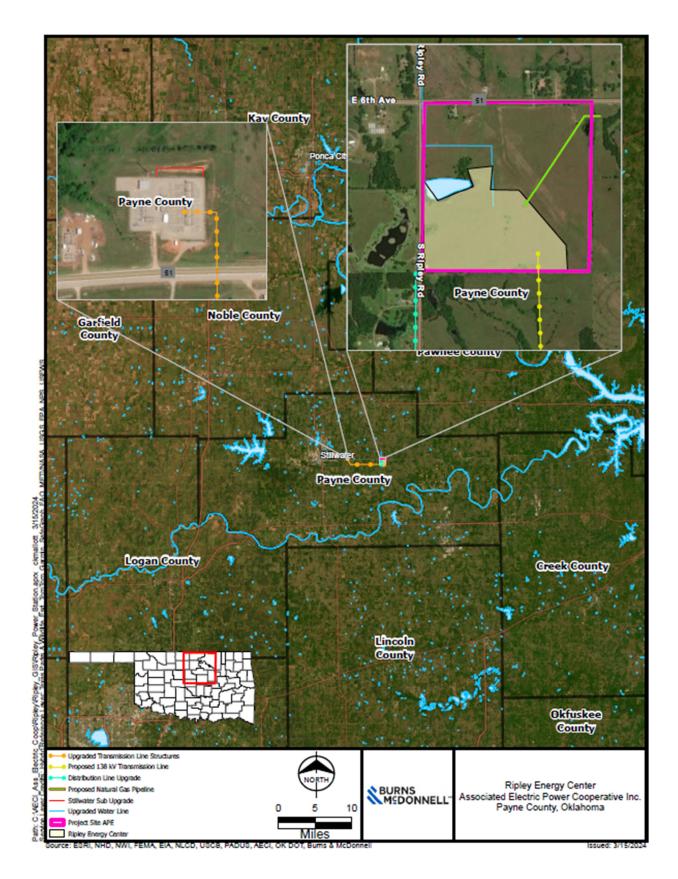
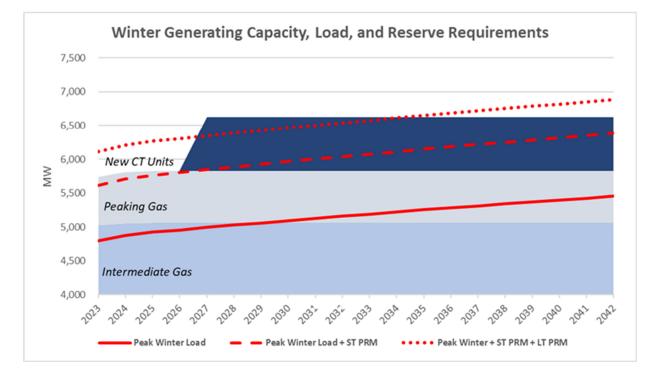


Figure 1-3: Ripley Energy Center Location



1.2 Purpose and Need

AECI is obligated to provide generating capacity needed to meet its member load requirements through 2075 per all-requirements of the Generation and Transmission (G&T) coordination agreements. AECI consults with Clearspring Energy Advisors to perform an Electric Load Forecast Study (ELFS) every other year (on even years). The ELFS study process takes into account AECI's energy efficiency rebate program and projects additional energy efficiency impacts driven by regulatory appliance standards. The 2022 ELFS was refreshed with 2022 load data, economic outlook, and demographic factors, and serves as the basis for these forecasts.

The load forecast study was used to prepare AECI's 2022 Integrated Resource Plan (IRP). The load forecast studies indicate that AECI will be in a capacity deficit position, without the addition of new resources, by winter season, 2027. As shown in Figure 1-4, the demand forecasts show a deficit between current assets and future demand, thus supporting the need for additional capacity. The detailed analysis identified a need of 844 MW of capacity, in total, and potential operational constraints of AECI's overall system by 2027. These operational constraints fall in three main areas:

- 1. the need to diversify fuel usage;
- 2. a necessary bridge to a larger renewables' portfolio in the future; and
- 3. a firm dispatchable generation asset.

Figure 1-4: Winter Generating Capacity, Load, and Reserve Requirements

2.0 Alternatives

To determine if RUS can fund the Proposed Action, Alternatives that meet the purpose and need should be considered. Several options were evaluated to meet the identified future capacity needs. The options that were evaluated but eliminated from consideration, the preferred alternative, and the no action alternative are discussed in more detail below.

2.1 Introduction

AECI conducted detailed analysis and held internal discussions through strategic planning sessions in the production of its preferred power supply plan to meet the identified need of up to 900 MW of capacity between both the Missouri and Oklahoma service areas, with at least 421 MW at a single site. AECI conducted a study of self-build options in tandem with an request for proposal (RFP) for capacity and energy on a long-term basis in AECI's service territories from potential energy providers. Outside bids were solicited to determine if the open market could provide the capacity needed at a more competitive rate than AECI's self-build options. The RFP yielded alternatives including capacity from a fossil resource (natural gas), standalone batteries, and batteries paired with solar. As there is a need for dispatchable, fast-start capacity to backup renewables, only the fossil fuel option meets the purpose. The most competitive RFP response held a net present value (NPV) cost from 2027-2042 of almost \$200 million higher than self-build alternatives. Therefore, AECI is pursuing RUS funding for a self-build alternative.

2.2 Alternatives Considered

The following is a bulleted list of alternatives evaluated but eliminated from consideration. The reason for elimination is briefly described for each.

- Load Management Load management is voluntary on the power user side. Because of this, load management does not provide reliable reductions sufficient to offset the need for additional capacity.
- Distributed Generation Distributed generation are systems of generating power, often renewable energy sources, near the point of use instead of centralized generation sources from power plants (e.g., solar panels on a house). These types of systems neither provide sufficient capacity, nor are they dispatchable in response to intermittent power generation from renewables.
- Renewable Energy Resources Renewable energy resources such as wind, solar, hydro, or energy storage can provide varying amounts of renewable capacity. AECI contracts with eight wind farms totaling 1,240 MW of nameplate capacity. Because of wind generation's intermittent nature, wind energy is not included as capacity for planning purposes. AECI also receives nearly 500 MW of hydropower from the Southwestern Power Administration.
- Hydrogen Combustion while there are turbines capable of burning hydrogen to create sufficient capacity, there are no viable supplies of hydrogen to an AECI electrical point of interconnection.
- Buying open market power purchase agreements (PPA). The option for new PPAs is very expensive and limited because the region is expected to see a shortfall in

capacity for fossil-fueled sources when several coal facilities are proposed for retirement.

Remaining alternatives to consider include various fossil fuel generation sources. Alternatives for the technology to meet the identified need are described in the next section.

2.2.1 Technology Selection

A technology assessment was completed to determine the self-build generation technology that best met the identified need. SCGTs and combined-cycle gas turbines are capable of generating the amount of capacity need identified and were selected for further analysis.

A SCGT will generate power by combusting natural gas and propelling the exhaust through a turbine. The spinning turbine is connected to a generator. An advanced-class SCGT has the lowest total cost when looking at 20 years of operation, less reliance on the energy market, and greater flexibility. An advanced-class SCGT benefits from faster ramp rates, greater efficiency, and economies of scale due to larger unit capacity.

Combined-cycle units are a combination of gas and steam turbines. The result is that the generation of electricity is increased almost by 50%. The waste heat from the gas turbine is routed to the nearby steam turbine, which generates extra power. However, combined-cycle units require significant amounts of water for process use and cooling. Higher temperatures within the units require additional maintenance. Additionally, the units aren't designed for fast response.

Based on the abilities of these technologies and the financial analyses discussed above, the alternative of a natural gas-fired, simple-cycle combustion turbine (i.e., the Proposed Action) was selected. The Proposed Action will balance AECI's traditional and more intermittent renewable generation assets on the system.

2.2.2 Alternative Project Locations

For the identified technology, AECI will need a site that can accommodate new generation. Both existing and greenfield sites were considered.

Existing power plant sites were considered in identifying a site that could accommodate the identified technology. AECI's existing power plant sites in the interconnection region cannot provide sufficient load-following gas supply, and there is no gas available in most locations. Additionally, most sites have existing point sources of air emissions nearby which could potentially lead to cumulative air quality issues. Other reasons an existing AECI site could not be used include transmission constraints (i.e., no reasonable interconnection opportunity) and/or national wildlife refuges nearby (i.e., potential federal land air quality impacts). Therefore, AECI's existing sites were considered, but are not carried forward as viable alternative locations. As such, greenfield sites that accommodate the technology identified and minimize environmental impacts were considered.

A siting study of greenfield locations was then conducted to determine suitable sites for the Project's development within AECI's service territory in Oklahoma. The proposed site needed to be capable of accommodating up to 421 MW of natural gas fueled simple-cycle generation and possess the necessary infrastructure critical to plant development. An initial 55 sites across both Oklahoma and Missouri, designated as Preliminary Site Areas, were identified that

FINAL

met the infrastructure requirements. Preliminary Site Areas were subjected to review for multiple criteria organized by five categories: electrical transmission, fuel supply delivery, site development, environmental, and permitting. Preliminary Site Areas were ranked according to the composite evaluation score of the five categories.

After scoring was complete, an analysis of availability of the sites for purchase was conducted. From this analysis, three sites were selected as Candidate Site Areas. The "Stillwater 12 (Ripley)" site (i.e., the Ripley Energy Center) – scored highest of the Candidate Site Areas. The scoring for each alternative site is shown in (Figure 2-1).

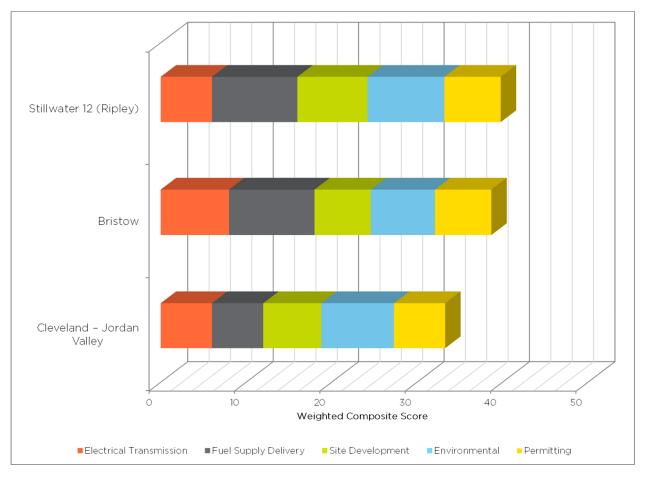


Figure 2-1: Preferred and Alternate Site Area Rankings

A Critical Issues Analysis (CIA) was performed for each of these sites to identify potential fatal flaws and a desktop analysis was completed for the preliminary anticipated impacts for a generic power plant at each site.

All sites appear to have the infrastructure necessary to support the Project, with Bristow and Cleveland - Jordan Valley having a bigger challenge to procure enough water for operations (i.e., they would require significant wells and infrastructure). Based on the identified criteria, the Stillwater 12 (Ripley) site located in Payne County, Oklahoma was selected.

2.3 Proposed Action Alternative

Based on a review of available and feasible alternatives, the construction of a new 421-MW, natural gas-fired simple cycle combustion turbine located at the Ripley Energy Center is the Proposed Action Alternative to effectively address all purpose and need criteria described in Subsection 1.2. Under the Proposed Action Alternative, RUS would approve AECI's financing request and AECI would construct and operate the new generating facility and associated facilities.

The Proposed Action is a natural gas fired SCGT capable of generating approximately 421 MW. It is anticipated that the air permitting process will limit operation of the unit to the standards of 40 CFR Part 60 Subpart TTTT. The project would burn natural gas, with the capability to use fuel oil as a backup, would employ selective catalytic reduction (SCR) technology to control nitrogen oxide (NO_x) emissions, and employ Oxidation Catalyst technology to reduce/control Carbon Monoxide (CO) emissions.

Potential impacts associated with the construction, rebuild, and operation of the distribution line, transmission line and water pipeline, are analyzed as connected actions in this EA. Potential impacts associated with the development of the natural gas pipeline for the Ripley Energy Center are included in the evaluation of cumulative impacts in Chapter 4 of the EA.

As mentioned, the Project would be constructed over a 24-month period with the footprint for construction being approximately 50 acres (Figure 1-2).

2.4 No Action Alternative

Under the No Action Alternative, RUS would not provide financial assistance to AECI for the construction of the Ripley Energy Center. As a result, AECI would be required to secure alternative financing for the proposed Project or secure power to address the projected capacity shortfall from other third-party resources. The No Action Alternative would result in increased Project financing costs, which would have an adverse impact on the financial viability of the Project or require AECI to get power from another source, increasing power output from existing generating resources in the AECI service territory (e.g., existing coal-fired power plants, etc.), or experience rolling blackouts of varying intensity, especially during winter polar vortex events and extreme summer heat.

3.0 Affected Environment/Environmental Consequences

Chapter 3 provides descriptions of the existing environmental conditions of the Project areas and the impacts that may be expected from constructing and/or operating the Project. This chapter provides an understanding of the affected environment and potential environmental consequences for the following resources: air quality; biological resources including vegetation, wildlife, and special status species; cultural resources; geology and soils; infrastructure, transportation, public health and safety; land use; noise; socioeconomics and environmental justice; visual resources; and water resources. Federal, state, and local regulations that apply to managing these resources are also discussed in context of the existing environment. AECI's proposed Project will be located on a greenfield site in central Oklahoma (Table 3-1). The Site is located in Payne County approximately 6.5 miles north of the Town of Ripley.

This chapter assesses the potential impacts of the Proposed Action Alternative and the No Action Alternative. The No Action Alternative provides a basis for comparison in which none of the Project components would be constructed. The EPA's NEPAssist tool was used as a starting point to identify potential concerns for the various resources to be analyzed (Appendix A).

3.1 Land Use, Formally Classified Lands, Geology, Soils, and Farmland

3.1.1 Affected Environment

Land Use

Multi-Resolution Land Characteristics (MRLC) Consortium's National Land Cover Database was utilized to determine land cover within the 152-acre area project boundary. Land cover within the Project Boundary contains large portions of grassland/herbaceous areas. The vegetation type in the Project Boundary is common for this region. Locations surrounding the Project Boundary are similar in composition and are primarily composed of pasture/hay lands and grassland/herbaceous areas. A full breakdown of land use types identified within the Project Boundary is shown in Table 3-1.

Land Use Type	Acres
Open Water	2.2
Developed, Open Space	0.6
Developed, Low Intensity	1.8
Developed, Medium Intensity	0.3
Deciduous Forest	1.5
Grassland/Herbaceous	146

Table 3-1: Land Cover Identified within the Project Boundary

Source: MRLC National Land Cover Database (MRLC, 2019)

Formally Classified Lands

There are no formally classified lands within the Project.

<u>Geology</u>

An Oklahoma geologic map data from the U.S. Geological Survey (USGS) was used to determine the geology of the site (USGS, 2019). According to the map, alluvium, terrace deposits, and the Oscar group make up the area. This soil consists primarily of mudstone with fine-grained, micaceous channel sandstones and conglomerates that are common at the base of sandstone.

<u>Soils</u>

The general soils maps of Payne County, published by the USDA Natural Resources Conservation Service (NRCS) (USDA, 2019), were referenced for the following descriptions of the general soil map units within the Project Boundary. The NRCS Soil Survey Geographic (SSURGO) database was used to identify the specific soil map units associated with the Project Boundary as mapped by the USDA-NRCS. The SSURGO database is generally the most detailed level of soil geographic data available and utilizes information contained in published NRCS soil surveys. The Project Boundary consists of 11 USDA-NRCS soil map units, as summarized in Table 3-2. There are no hydric soils within the Project Boundary.

Soils present in the proposed Project Site area are classified as low to moderate risk of corrosion to concrete. The rate of corrosion of concrete is based mainly on the sulfate and sodium content, texture, moisture content, and acidity of the soil. Three soils (GAMD, 46, and 47) present on the Site were classified as higher risk to corrosion of uncoated steel. The rate of corrosion of uncoated steel is related to such factors as soil moisture, particle-size distribution, acidity, and electrical conductivity of the soil.

Map Soil Unit			
Symbol	Symbol Description		
CoLC	Coyle-Lucien complex, 1 to 5 percent slopes*		
СоуВ	Coyle loam, 1 to 3 percent slopes*	3.0	
3	Coyle loam, 3 to 5 percent slopes*		
4	Coyle loam, 3 to 5 percent slopes, eroded	3.9	
GAMD	Grainola-Ashport frequently flooded-Mulhall complex, 0 to 8	9.0	
GAMD	percent slopes		
47	47 Renfrow loam, 3 to 5 percent slopes, eroded		
46	Renfrow silt loam, 3 to 5 percent slopes*	29.4	
W	Water	4.0	
ZaHC	ZaHC Zaneis-Huska complex, 1 to 5 percent slopes*		
ZanB	ZanB Zaneis loam, 1 to 3 percent slopes*		
70	70 Zaneis Ioam, 3 to 5 percent slopes*		

Table 3-2: Soil Map Units within the Project Boundary

Source: USDA, 2019

Gray shading indicates soil map unit is considered hydric.

* - Indicates soil map unit is considered prime farmland.

<u>Farmland</u>

The Site and surrounding areas consist of disturbed soils from urbanization and construction related to the existing facilities. The USDA's Web Soil Survey lists the present soils as prime farmland that could yield high crop production if flooded, however this is assumed only with a high level of management regarding irrigation and tillage kept to a minimum. Of the 11 soil units in the Project, seven (7) are considered prime farmland (Table 3-2). There is approximately 123.2 acres of prime farmland crossed by the Project. There are no agricultural areas using center pivot irrigation near the Project.

3.1.2 Environmental Consequences

The following sections summarize potential environmental consequences of the proposed Action Alternatives and No Action Alternative related to land use, formally classified lands, geology, soils, and farmland.

3.1.2.1 Proposed Action Alternative

Construction and operation of the Project would impact the existing grassland land use. While the Project contains prime farmland, there is no agricultural activity occurring on site. The NRCS was consulted, and the AD-1006 form was filled out by RUS/AECI and NRCS. The total screening score for the site was below their threshold of 160, indicating no significant impacts to prime farmland are anticipated and an alternative site does not need to be considered. The site is currently used as a hay field, and the remainder of the site is anticipated to continue producing hay after the Project is built. Construction and operation of the proposed Project will therefore not have a significant impact on prime farmland.

3.1.2.2 No Action Alternative

The No Action Alternative would have no short- or long-term impacts to land use, formally classified lands, geology, soils, or farmland at or near the Project because no construction or operation would occur.

3.1.3 Mitigation

Construction and operation of the proposed Project will alter the current land use and remove prime farmlands from use for production. However, the prime farmland is not and has not been used for production for quite some time. Therefore, no mitigation measures are anticipated.

During construction, portions of the Project site will be cleared, grubbed, graded, excavated, and revegetated. In areas not impacted by these activities, such as areas that do not require clearing, existing vegetation will be preserved where practicable. The amount of soil exposed during construction will be minimized.

Temporary seeding will be applied to areas of exposed soil that have not been brought to final grade yet, where the establishment of vegetation is desired. Additionally, temporary seeding will occur in disturbed areas where further land-disturbing activities will not be performed for a period greater than 30 days, and vegetative cover is required for less than 1 year. Areas needing protection during periods when permanent seeding is not applied, must be seeded with annual species.

Final stabilization is achieved when all soil-disturbing activities at the site have been completed and a uniform (i.e., evenly distributed, without large bare areas) perennial vegetation cover with a density of 70 percent of the native background vegetative cover has been established on all unpaved areas or areas not covered by permanent structures or with alternative surfacing, such as riprap or crushed rock.

AECI will coordinate the proper construction signage near access points on the roads used by construction vehicles for the Project to make drivers aware of the increased hazards associated with the construction vehicle(s) presence.

3.2 Floodplains

3.2.1 Affected Environment

The U.S. Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRM) indicates that there are no 100- or 500-year floodplains within the Project Boundary (FEMA, 2016).

3.2.2 Environmental Consequences

The following sections summarize potential environmental consequences of the proposed Action Alternatives and No Action Alternative related to floodplains.

3.2.2.1 Proposed Action Alternatives

All construction that will take place will not result in any impacts to floodplains. No future impacts to floodplains are anticipated during operation of the Project. The Project will not result in any additional runoff or impedance of flood flows.

3.2.2.2 No Action Alternative

The No Action Alternative would have no short- or long-term impacts to floodplains as no construction or operation would occur.

3.2.3 Mitigation

As construction and operation of the proposed Project will have no impacts on floodplains, no mitigation measures are required.

3.3 Wetlands and Water Bodies

3.3.1 Affected Environment

Burns & McDonnell completed a desktop assessment using the U.S. Fish and Wildlife Service (USFWS) National Wetland Inventory (NWI) Maps and USGS National Hydrography Dataset (NHD). The NWI data indicates the potential presence of palustrine unconsolidated bottom (PUB) wetlands and riverine wetlands within the proposed Project Boundary. A total of 3.3 acres of NWI wetlands are mapped within the Project Boundary. The NHD data shows there is one stream present in the Project Boundary. Based on the assessment it was determined a field visit would be necessary to identify any wetlands or other aquatic resources that may be present within the Project Boundary.

Burns and McDonnell conducted onsite wetland delineations on June 21-22 and July 25-26, 2023. The delineation was completed following the 1987 Corps of Engineers Wetlands Delineation Manual (1987 Manual) and the 2010 Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Great Plains - Version 2.0 (Regional Supplement).

Twenty-one wetlands and eight streams were identified during the wetland delineations study. A total of 11.53 acres of wetlands were delineated representing approximately 5% of the total 233-acre area evaluated within the Project Boundary and the surrounding affected areas (the "Survey Area"). Each delineated wetland was assigned a type based on the Cowardin Classification System (Cowardin et al., 1979). Wetland types identified include palustrine emergent (PEM), palustrine scrub-shrub (PSS), PUB, and palustrine aquatic bed (PAB). A total of 2,060 feet (0.39 miles) of ephemeral, intermittent, and perennial stream crossings were delineated within the Survey Area. Table 3-3 and Table 3-4summarize the identified wetlands and streams, respectively, within the Survey Area. The wetlands report is attached as Appendix B, containing maps with callouts of surveyed wetlands and streams.

w.u	Delineated Area	Description ^{2,3}	
Wetland Type1 PEM	(Acres) 1.42	Characterized by a 30 percent or greater areal cover of emergent, herbaceous vegetation. Additionally, the combined areal cover of shrubs, saplings, and trees in these wetlands was less than 30 percent. Dominant vegetation included flat-stem spike rush (<i>Eleocharis</i> <i>compressa</i>), blunt spike-rush (<i>Eleocharis obtusa</i>), false daisy (<i>Eclipta</i> <i>prostrata</i>), little bluestem (<i>Schizachyrium scoparium</i>), bog rush (<i>Juncus</i> <i>marginatus</i>), golden crown grass (<i>Paspalum dilatatum</i>), narrow-leaf cattail (<i>Typha angustifolia</i>), hard-stem club-rush (<i>Schoenoplectus</i> <i>acutus</i>), globe flat sedge (<i>Cyperus echinatus</i>), axil-flower (<i>Mercardonia</i> <i>acuminata</i>), common persimmon (<i>Diospyros virginiana</i>), and eastern cottonwood (<i>Populus deltoides</i>). Wetland hydrology was indicated by surface water, high water table, saturation, crayfish burrows, oxidized rhizospheres along living roots, drainage patterns, geomorphic position, and a positive FAC-neutral test.	
PSS	0.43	Characterized by a 30 percent or greater areal cover in the shrub/sapling stratum and an aerial cover of less than 30 percent in the tree stratum. Dominant vegetation included_blunt spike-rush, American germander (<i>Teucrium canadense</i>), and green ash (<i>Fraxinus pennsylvanica</i>). Wetland hydrology was indicated by drift deposits, drainage patterns, geomorphic position, and a positive FAC-neutral test.	
PUB	7.29	Characterized by a combined areal cover of less than 30 percent of vegetation. Common vegetation included_sawtooth blackberry (<i>Rubus argutus</i>), narrow-leaf cattail black willow (<i>Salix nigra</i>), eastern red cedar (<i>Juniperus virginiana</i>), and common persimmon. <i>Wetland h</i> ydrology was indicated by surface water, inundation visible on aerial photography, and geomorphic position.	
PAB	2.39	Characterized by a combined areal cover of 30 percent or greater of vegetation. Common vegetation included_Johnson grass (Sorghum halepense), annual ragweed (Ambrosia artemisiifolia), and American lotus (Nelumbo lutea). Wetland hydrology was indicated by surface water, inundation visible on aerial photography, and geomorphic position.	

Table 3-3: Delineated Wetlands within the Survey Area by Type

¹Symbols for wetland type: PEM = palustrine emergent, PSS= palustrine scrub-shrub, PUB = palustrine unconsolidated bottom, PAB = palustrine aquatic bed.

²Source: Cowardin et al 1979

³Source: Descriptions as observed by Burns & McDonnell onsite wetland delineations completed June 21-22 and July 25-26, 2023.

Table 3-4: Streams Identified within the Survey Area

Stream Type	Delineated Length (Feet)	Characterization ¹	
Ephemeral	941	A defined bed and bank but had limited or no flow during the site visit, indicating that the stream largely carries water only during and after precipitation events. Common riparian vegetation included cheatgrass (<i>Bromus tectorum</i>), big bluestem (<i>Andropogon gerardi</i>), tall goldenrod (<i>Solidago altissima</i>), Johnson grass, and eastern red cedar.	
Intermittent	1014	The presence of a limited volume of flow at the time of the site visit, indicating that the stream is partially fed by groundwater but that the streams may not flow during dry periods. Common riparian vegetation included Johnson grass and common greenbrier (<i>Smilax rotundifolia</i>).	
Perennial	• 105	• The presence of a substantial volume of flow at the time of the site visit, indicating that water likely flows year-round. Common riparian vegetation included Johnson grass.	

• ¹Source: Characterizations as observed by Burns & McDonnell onsite wetland delineations completed June 21-22 and July 25-26, 2023.

No other wetlands, water bodies, or other aquatic resources have been identified within the Survey Area except for as noted above. Coordination with U.S. Army Corps of Engineers (USACE) resulted in concurrence with this determination (Appendix D).

3.3.2 Environmental Consequences

The following sections summarize potential environmental consequences of the proposed Action Alternatives and No Action Alternative related to wetlands and water bodies.

3.3.2.1 Proposed Action Alternatives

AECI has selected suitable locations for laydown staging that will be necessary for construction of this Project to avoid any wetlands impacts. The Project Site has been selected to avoid and minimize wetland impacts as much as practical. Two existing surface waters (ponds) on the project site may receive civil engineering design and work to restore integrity and designed receiving flow. It is likely there will be removal of overgrown vegetative trees, consisting of Eastern Red Cedar, Black Willow, Sycamore, Hackberry, Greenbriar. These ponds have been determined to be non-jurisdictional through consultation with USACE (Appendix D). This action is anticipated to be beneficial to the long-term functioning of the ponds. Any wetlands or streams occurring near transmission line upgrades or construction will be spanned and no fill will enter the waterbody. Thus, construction and operation of the proposed Project will have no effects on jurisdictional wetlands, and there are no permits anticipated to be required for the Project.

3.3.2.2 No Action Alternative

The No Action Alternative would have no short- or long-term impacts to wetlands and water bodies at or in the vicinity of the Project because no construction or operation would occur.

3.3.3 Mitigation

As construction and operation of the proposed Project will restore the function of the nonjurisdictional ponds using best management practices, it is anticipated there will be no significant impacts on wetlands and no mitigation measures are required.

3.4 Water Resources

3.4.1 Affected Environment

Surface Waters, Water Supply, and Discharge

As discussed in Section 3.3: Wetland and Water Bodies there are surface waters present within the Project Boundary. However, these are not sources that are viable for water supply and sitting has been selected to avoid permanently impacting these sources.

A rural district supply of water is the most viable option for the Ripley Energy Center. The Oklahoma Water Resources Board (OWRB) Rural Water Systems website was accessed to determine an appropriate nearby public water source (OWRB, 2022). A water pipeline crosses the Project Boundary, and the site is generally located within an existing rural water district, 51 East Corp. Therefore, upgrading and tapping the existing water pipeline of 51 East Rural Water District appears to be the most viable option for the site.

The City of Stillwater's Utilities Department was contacted on December 1, 2022, by Burns & McDonnell to verify water supply availability for the Project. According to the Water Department Supervisor of Stillwater, Kelly Hitch, the city is open to supplying the Project 300 gallons per minute (gpm); however, this would be dependent on the water levels at the time of development.

<u>Groundwater</u>

The Project Boundary does not directly overlie any major or minor alluvial or bedrock aquifers as designated by OWRB, and also doesn't directly overly any sole source aquifers according to NEPAssist (see Appendix A) and therefore groundwater is not readily available.

Water Quality

The Site's water will be supplied by the 51 East Rural Water District. The rural water district sources their water from two locations, 1.) The City of Stillwater and 2.) Lone Chimney Lake. The City's raw water supply comes from Kaw Lake, which is located approximately 10 miles east of Ponca City in Kay County. Raw water from Kaw Lake is transported to the City's treatment facility. Water to be provided to the site is potable. There are no 303d waterbodies (i.e., waterbodies that do not meet water quality standards) within or adjacent to the property. Lone Chimney Lake provides another source of raw water supply to the 51 East Rural Water District. Located approximately five (5) miles east of Glencoe in Payne and Pawnee Counties, the raw water is treated and transported by the water district's treatment facility. This water is also provided to the site as potable water.

3.4.2 Environmental Consequences

The following sections summarize potential environmental consequences of the proposed Action Alternatives and No Action Alternative related to water resources.

3.4.2.1 Proposed Action Alternatives

Construction

There are minimal surface water resources near the Site. The two small surface waters totaling approximately five (5) acres may receive civil design work to restore design and surface flow integrity.

AECI will follow best management practices (BMP) during construction. BMPs may include silt fence, inlet protection, straw wattle barriers, riprap, erosion control blankets, and other erosion and sediment control measures as necessary. Appropriate sediment and erosion control BMP will be installed prior to initiating soil-disturbing activities, such as installation of new foundations and concrete pads. All BMP will be maintained as necessary throughout Project construction.

Construction activities from the Project will not impact the groundwater at the Site. Accordingly, no lowering of the groundwater level will be required during construction.

A new 8-inch high-density polyethylene water pipeline, approximately 1 mile in length, will be constructed to replace an existing smaller pipeline that attaches to the 51 East Rural water District.

Operation

No groundwater would be used for the Project. There would be no impact to groundwater. The Project is expected to use approximately 150 gallons of water per minute, from 51 East Rural Water District, at maximum operation in the rare instance the facility is operating on fuel oil. The majority percentage of water use will be below 150 gallons of water per minute for operations. Water will be used at the site for process water and sanitary purposes. Wastewater streams include process water, sanitary water, and stormwater. Engineering determinations are still being made to decide final wastewater pathways.

Facility waste streams (i.e., toilets, sinks, etc.) are directed to an onsite septic system with lateral fields. The proposed Project process water and stormwater will result in discharged liquids to an onsite settling pond. Drains for areas around equipment that could be contaminated with oil would be gravity drained and directed through oil/water separators prior to discharge to the settling pond. The outfall from the settling pond is expected to be the point of compliance for the facilities water permit and will be directed to a second pond that already exists on site that would decant into a smaller third pond that already exists onsite and will ultimately leave the site via the discharge from this third pond. These ponds are not expected to contribute as water treatment for the facility's National Pollutant Discharge Elimination System (NPDES) Permit.

The proposed Action Alternative will have no effect on the water quality or the impairment status of the surrounding areas.

3.4.2.2 No Action Alternative

The No Action Alternative would have no short- or long-term impacts to water resources at or in the vicinity of the Project because no construction or operation would occur.

3.4.3 Mitigation

Construction and operation of the proposed Project is not anticipated to have any adverse impacts on surface waters or groundwater. AECI will employ good water management practices during construction and operation. No mitigation is required.

3.5 Coastal Resources

3.5.1 Affected Environment

The Facility is proposed to be located in an area where there are no coastal resources.

3.5.2 Environmental Consequences

As there are no coastal resources near the proposed Project, there is no potential for environmental consequences of the proposed Action Alternatives related to biological resources.

3.6 Biological Resources

The biological resources of the area surrounding the Project along with the impacts on biological resources because of the Project are discussed in the following sections.

3.6.1 Affected Environment

The following sections discuss vegetation, wildlife, and special status species within the Study Area.

3.6.1.1 Vegetation

The Project Area is within the Cross Timber Transition level IV ecoregion as mapped by the U.S. Environmental Protection Agency (Wood et al., 2005). The Survey Area is dominated by grassland/herbaceous land. The hay fields are subject to regular disturbance through agricultural practices and haying. Common vegetation in the Survey Area included Johnson grass (Sorghum halepense), cheatgrass (Bromus tectorum), big bluestem (Andropogon gerardii), Carolina joint-tail grass (Coelorachis cylindrica), prairie bundle-flower (Desmanthus illinoensis), coral-berry (Symphoricarpos orbiculatus), rough-leaf dogwood (Cornus drummondii), saw-tooth blackberry (Rubus argutus), common persimmon (Diospyros virginiana), flat-stem spike-rush (Eleocharis compressa), blunt spike-rush (Eleocharis obtusa), eastern cottonwood (Populus deltoides), false daisy (Eclipta prostrata), little bluestem (Schizachyrium scoparium), American germander (Teucrium canadense), and green ash (Fraxinus pennsylvanica). There are no vegetation species listed as federally threatened or endangered in Payne County.

3.6.1.2 Wildlife

A habitat assessment survey was completed to evaluate the potential for special-status species or their critical habitat to occur within or in the vicinity of the Project Area (Appendix C). Special-status species are defined as species designated by the USFWS as Endangered,

Threatened, Proposed for Listing or Candidate for Listing under the Endangered Species Act (ESA) and species protected under the Bald and Golden Eagle Protection Act (BGEPA).

Based on special-status species lists generated from the sources shown below, a habitat assessment was completed to evaluate the potential for special-status species to occur within the Project Area and its vicinity and to determine the presence or absence of designated or proposed critical habitat. The habitat assessments were based on review of the following sources and field observations:

- The natural history and known geographical and elevation range of the special-status • species.
- USFWS Information for Planning and Consultation (IPAC) tool used to determine protected or likely to be protected under the ESA that are known or likely to occur in the Project Vicinity.
- Results of an Oklahoma Department of Wildlife Conservation (ODWC) listed species and known critical habitat and the Oklahoma National Heritage Inventory (OHNI) online review to identify known occurrences of protected species.
- Observations recorded by Burns & McDonnell during field reconnaissance on June 21-22 and July 25-26, 2023, of the habitats present in the Project Area (Appendix C)

In total, eight ESA species and two BGEPA listed species were evaluated for their potential to occur in the Project Area. Table 3-5 shows ESA-listed, proposed, and candidate species and designated or proposed critical habitat considered for potential to occur in the Project Area. Final critical habitat for federally protected species has not been designated by the USFWS in the vicinity of the site.

Common Name (Scientific Name)	Federal Status (USFWS)	Known Suitable Habitat	Effect / Potential to Occur		
	Birds				
Piping Plover (Charadrius melodus)	Federally Threatened	The Piping Plover forages in shallow wetlands, lakes, rivers and nests on sandbars and gravel bars (USFWS, 2023b).	No effect. The Project lacks the appropriate habitat for this species. Lake Carl Blackwell, approximately 20 miles west of the Project, has recent records of Piping Plover activity.		
Red Knot (Calidris canutus rufa)	Federally Threatened	The Red Knot is a small migratory shorebird that uses open salt flats, sandbars, beaches, and shallow wetlands associated with major waterways and reservoirs (USFWS, 2023c).	No effect. Although the species has the potential to migrate through the Project Area, it is not a known nesting species in Oklahoma. Additionally, the Project		

Payne County Federally Threatened and Endangered Wildlife Species Table 3-5:

Common Name	Federal Status		Effect /
(Scientific Name)	(USFWS)	Known Suitable Habitat	Potential to Occur
			will not span the Cimarron River and will not impact sandbars, beaches, or shallow wetlands associated with the river.
Bald Eagle ¹ (<i>Haliaeetus Leucocephalu</i> s)	Bald and Golden Eagle Protection Act (16 U.S.C. 668- 668c)	Breeding is concentrated in coastal areas, along rivers, lakes or reservoirs. Typically breeds in forested areas with edge habitat within 1.3 miles of aquatic habitats suitable for foraging. Prefers areas of shallow water and shorelines for fishing and hunting wide variety of waterfowl, and small aquatic and terrestrial mammals. Fish are preferred prey, but carrion is used extensively whenever encountered. Nests away from human disturbance in large trees and rarely on cliff ledges or on the ground when trees are absent. Winters primarily in coastal areas or along major river systems with adequate prey availability and large trees for perching (Buehler, 2020).	No effect. The Project Area lacks appropriate aquatic habitats within 1.3 miles and there are no bald eagle nests were observed within the vicinity of the Project Area.
Golden Eagle ¹ (<i>Aquila</i> Chrysaetos)	Bald and Golden Eagle Protection Act (16 U.S.C. 668- 668c)	Range-wide, breeds in a wide variety of open habitats, with nests typically on cliffs, and avoids heavily forested areas (Katzner et al., 2020). Constructs large nests on cliff ledges, rock outcrops, tall trees or, rarely, transmission towers (Driscoll, 2005). Golden eagles are known to forage within 4.4 miles of the nest (Tesky, 1994), generally in open habitats where prey is available (Katzner et al. 2020). Primarily feeds on small mammals (greater than 80% of prey items) but also consumes birds, reptiles, and fish (Katzner et al., 2020).	No effect. The Project Area is within the winter range of the Golden Eagle, but they would likely be temporary visitors. The Project Area lacks preferred nesting habitat but may be used infrequently as foraging habitat.
		Fish	
Peppered Chub (Macrhybopsi s tetranema)	Federally Endangered	A relatively small, streamlined minnow that occurs in the main channels of large rivers, preferring clean, sandy substrate. Appears to use headwaters and avoid calm, silted bottom waters. (KDWP, 2023).	No effect. The USFWS has designated critical habitat in Payne County in the Cimarron River. The Project will not cross or impact designated critical habitat.
Arkansas River Shiner (<i>Calidris</i> canutus rufa)	Federally Threatened	A relatively small, streamlined minnow that occurs in the wide and shallow rivers of Arkansas River basin. Prefers to stay near sand bars and sandy ridges; rarely goes into main river channels (ODWC, 2023)	No effect. There are no designated Critical habitats within Payne County.
		Insects	

Common Name	Federal Status		Effect /	
(Scientific Name)	(USFWS)	Known Suitable Habitat	Potential to Occur	
American Burying Beetle (Nicrophorus americanus)	Federally Threatened	Generally found in upland grassland prairies with an abundance of carrion. American Burying Beetles typically occur in loose sandy or clay loam soils that are suitable for excavation and construction of brood chambers (USFWS, 2023d).	No effect. According to USFWS, the Project Area occurs within an area of historic occurrence of the American Burying Beetle. The Project Area contains open grassy areas associated with hayfields; however, is regularly disturbed by agricultural activities. Further, the project does not occur within the boundary of USFWS-defined conservation lands for the American burying beetle,	
Monarch butterfly (<i>Danaus</i> plexippus)	Federal Candidate for Listing	Monarch caterpillars feed exclusively on plants in the subfamily Asclepiadoideae (milkweed) and adults forage for nectar on a wide variety of flowers. This species can be found wherever milkweed occurs. Overwintering populations use the leaves, branches, and trunks of large trees within forested groves. In California, both native tree species and eucalyptus trees are utilized (Jepsen et al., 2015).	May affect but is unlikely to adversely affect. The Project Area has the appropriate milkweed habitat typically associated with breeding, but the identified locations are subject to regular disturbance through agricultural practices and haying. The Project could result in fragmentation of suitable habitat.	
	Mammals			
Tricolor Bat (Perimyotis subflavus)	Federally Proposed for Listing as Endangered	The tricolored bat hibernates in caves or abandoned mines during the winter. During spring, summer, fall, the bats roost among live and dead leaf clusters in trees of hardwood forested habitats including pine trees, easter red cedar trees, and structures such as barns, sheds, under bridges, or in other buildings that have little human disturbance. Foraging habitats include forest edges and riparian corridors. (USFWS, 2023e)	May affect but is unlikely to adversely affect. The Project Area supports leaf clusters and cedar trees suitable for tricolored bat roosts. However, critical habitat has not been designated by ODWC within Payne County. Conducting tree clearing during bats' inactive season is generally recommended as a conservation measure.	
Reptiles				
Alligator Snapping Turtle	Federally Proposed for Listing	The species range occupies the eastern third of Oklahoma. The Alligator Snapping Turtle is known to occur in perennial water bodies such as large	No effect. The Project Area seems to support the appropriate	

 mon Name ntific Name)	Federal Status (USFWS)	Known Suitable Habitat	Effect / Potential to Occur
	as Threatened	rivers, canals, reservoirs, oxbows, and bonds near running water (MDC, 2023).	habitat associated with Alligator Snapping Turtles, but Project Siting as proposed has been routed to reduce direct impacts to wetland habitats.

Source: U.S. Fish and Wildlife Service, IPAC report accessed February 23, 2024, Oklahoma Department of Wildlife Conservation Field Guide accessed February 23, 2024, Oklahoma National Heritage Inventory accessed February 23, 2024.

¹BGEPA Listed Species.

A field-based habitat assessment was completed on June 21-22 and July 25-26, 2023, to evaluate the potential for special-status species or their critical habitat to occur within or in the vicinity of the Project Area (Appendix C).

3.6.2 Environmental Consequences

The following sections summarize potential environmental consequences of the proposed Action Alternatives and No Action Alternative related to biological resources.

3.6.2.1 Proposed Action Alternative

3.6.2.1.1 Vegetation

Since the Project is located on a site that has been continuously hayed and disturbed it is not a suitable habitat for vegetation to grow and flourish. Approximately 30 acres of the site will be fully disturbed once construction of the Project is complete. It is anticipated that the remaining areas of the site will continue to be hayed. Therefore, the amount or type of vegetation onsite is not expected to significantly change due to the Project. It is expected that construction-related disturbances from the Project will not provide an opportunity for the establishment of invasive species as the area will not be conducive to the growth of vegetation.

3.6.2.1.2 Wildlife

In total, eight ESA species and two BGEPA listed species were evaluated for their potential to occur in the Project Area. One candidate and one federally proposed endangered ESA listed species were determined to have potential to occur in the Project Area. No BGEPA species had the potential to occur on the Project Area.

As indicated above in Table 3-5, there is no habitat for federally endangered or threatened species as identified in the IPAC report dated February 23, 2024, at the Project Site. Therefore, the proposed Project will have no effect on protected species or their critical habitats; nor will the proposed Project result in short - or long-term impacts to protected species or critical habitats that may occur in Payne County. While there is suitable habitat for some endangered, threatened, or candidate species in the Project area, no impacts are anticipated to federally listed species that may occur in Payne County if avoidance techniques like tree clearing in the winter is performed.

For the two BGEPA listed species evaluated, bald eagle was determined to have a potential to occur of **Unlikely** as no bald eagle nests were observed within the vicinity of the Project Area during the habitat assessment. Golden eagles were determined to have potential to occur of **None** but may be observed as temporary visitors.

As referenced in Table 3-5, the proposed Project will have no short- or long-term impacts to migratory birds or eagles as there is no suitable habitat on the Project Site, and construction is not anticipated to result in any long-term impacts to wildlife at the Site. Noise and human activity that are associated with construction may result in short-term, temporary displacement impacts to wildlife species foraging in the area. Ongoing operations are not likely to have great impacts to surrounding species.

3.6.2.2 No Action Alternative

The No Action Alternative would have no short- or long-term impacts to biological resources at or in the vicinity of the Project because no construction or operation would occur.

3.6.3 Mitigation

3.6.3.1 Vegetation

As construction and operation of the proposed Project will have minimal impacts to on-site vegetation and will not lead to the introduction of invasive species, no mitigation measures will be necessary.

3.6.3.2 Wildlife

Construction and operation of the proposed Project will have no impacts to listed threatened or endangered species, migratory birds, or eagles. Good conservation practices such as tree clearing during the tricolor bats' inactive season will be implemented as needed. Should instances such as the observation of an active bald eagle nest occur during construction activities, AECI will work with the USFWS to minimize potential impacts. No impacts to listed threatened or endangered species, migratory birds, or eagles are expected to occur within the Project Site; however, bird diverters will be installed on transmission lines near water bodies to minimize accidental collisions.

3.7 Historic and Cultural Resources

3.7.1 Affected Environment

In accordance with Section 106 of the National Historic Preservation Act and 36 CFR Section 800.1, federal agencies are required to consider the effects of their undertakings on historic properties and afford the Advisory Council on Historic Preservation (ACHP) a reasonable opportunity to comment on such undertakings. If there is more than one federal agency, a lead federal agency may be designated to act for all of the federal agencies. The federal agency or lead federal agency is responsible for coordination with consulting parties which may include the State Historic Preservation Office (SHPO), Tribal Historic Preservation Officers (THPO) if tribal land is involved, Indian Tribes, the public, the ACHP, local governments, and applicants.

The following investigations have been completed to assist the federal agency in their compliance with Section 106. The area of potential effect (APE) has been defined as the entirety of the Ripley property, the proposed corridors for transmission line construction and rebuild, the proposed corridor for a new natural gas supply pipeline, and the proposed work area at the substation in Stillwater, OK for connection of the transmission line was subject to a Phase I cultural resources investigation (the "Project Area"). The total area for this investigation is 223.15 acres.

The cultural resources investigation was designed to conform with the Osage Nation Historic Preservation Office Archaeological Survey Standards. The first part of this investigation consists of a background review of previously recorded cultural resources and previously reported cultural resources surveys in a Study Area consisting of the Project Area and a 1-mile buffer around it. The second part of the investigation consists of the field survey of the Project Area to include systematic shovel testing at 30-meter (m) intervals in block parcels and at 100-m intervals in linear corridors less than 30-m wide.

RUS defined the APE for the Project as an area that includes all Project construction and excavation activity required to construct, modify, improve, or maintain any facilities; any right-of-way or easement areas necessary for the construction, operation, and maintenance of the Project; all areas used for excavation of borrow material and habitat creation; and all construction staging areas, access routes, utilities, spoils areas, and stockpiling areas. Impacts that come from the undertaking at the same time and place with no intervening causes, are considered "direct" regardless of its specific type (e.g., whether it is visual, physical, auditory, etc.). "Indirect" effects to historic properties are those caused by the undertaking that are later in time or farther removed in distance but are still reasonably foreseeable.

Based on this definition, the APE consists of the approximately 0.25-acre area of the substation expansion, the 1,500-foot new transmission line and existing transmission line upgrades, the 0.5-mile distribution line upgrades, 150-foot natural gas pipeline, 1-mile water line, and the approximately 160 acres where the site would be located, as shown in the enclosed maps. The APE does not include any tribal lands as defined pursuant to 36 CFR § 800.16(x). This definition was submitted to the SHPO and THPOs in the agency coordination letters sent June 15, 2023, with a follow-up letter sent to the Oklahoma Archaeological Society and the Oklahoma SHPO on November 29, 2023.

The cultural resources inventory fieldwork was conducted in four parts: 1) June 21-22, 2023, to begin shovel testing at the Ripley property, 2) July 10-14, 2023, to complete shovel testing at the Ripley property, 3) July 25-27, 2023, to complete the survey of the transmission line, substation, and natural gas pipeline, and 4) October 24-26, 2023, to complete the survey of the water supply pipeline corridor. The surveys were conducted by archaeologists Michael H. Davis, Bruce Darnell, Thane Reid, Abdisalam Mohamud, Zoe Pruden, and Victoria Shaw. A total of 829 shovel tests were excavated in the APE. No archaeological sites, features, or artifacts were identified.

The survey area is located within the Northern Limestone-Cuesta Plains physiographic province in Oklahoma. The landscape consists of a broad, upland plain dissected by numerous intermittent streams that form a series of shallow valleys. Irregular, level plains that trend north-northwest to south-southeast have been carved by these valleys. Within the APE, there are headwaters to several intermittent streams which have been dammed to create

small reservoirs and pasture ponds. A 4.8-acre pasture pond located along the west edge of the Site represents the largest body of standing water in the APE.

3.7.2 Environmental Consequences

The following sections summarize potential environmental consequences of the proposed Action Alternatives and No Action Alternative related to historic and cultural resources.

3.7.2.1 Proposed Action Alternative

Based on no findings during background research and field surveys, the cultural report was submitted to the SHPO. SHPO stated a finding of no adverse effect was appropriate.

The cultural report and findings of no adverse effect were presented to the following tribes for concurrence:

- Apache Tribe of Oklahoma
- Cherokee Nation
- Cheyenne and Arapaho Tribes
- Muscogee (Creek) Nation
- Osage Nation
- Otoe-Missouria Tribe of Indians, Oklahoma
- Wichita and Affiliated Tribes

The tribes that responded to Section 106 consultation requests concurred with this finding.

Therefore, construction and operation of the proposed Project is expected to have no adverse effects on any historic or cultural properties.

3.7.2.2 No Action Alternative

The No Action Alternative would have no short- or long-term impacts to historic and cultural resources at or in the vicinity of the Project because no construction or operation would occur.

3.7.3 Mitigation

Avoidance of any identified historic or cultural resources is recommended for the proposed Project.

If avoidance is not possible, it is recommended that a testing and data recovery plan be developed and implemented to mitigate impacts to the sites. No further archaeological work is recommended for the site. All ground-disturbing activities have the potential to unearth human remains

As construction and operation of the proposed Project will have no impacts on historic or cultural properties, no mitigation measures are necessary. Should any material of historical significance be discovered during construction activities, appropriate steps will be taken following the reviewed Unanticipated Discovery Plan (UDP)

3.8 Aesthetics

3.8.1 Affected Environment

The Project Site is primarily undeveloped pasture/hay and grassland/herbaceous areas, bordered by two highways. To the south of the Site is an existing transmission line. There is an existing natural gas pipeline that runs through the Site and another that borders the eastern edge of the property. There is gently rolling topography with minimal trees and an older pole barn on the property. The properties surrounding the Site are similar in composition and are primarily composed of pasture/hay lands and grassland/herbaceous areas. There are two ponds onsite with some treed areas around the banks. The 0.5 mile of new transmission line traverses the same topography with intermixed thickets of eastern red cedar.

The transmission line upgrades will all occur in an existing ROW that already contains a transmission line. The water line upgrades will occur directly parallel with existing water line ROW.

3.8.2 Environmental Consequences

The following sections summarize potential environmental consequences of the proposed Action Alternatives and No Action Alternative related to aesthetics.

3.8.2.1 Proposed Action Alternative

The aesthetics of the surrounding area would be altered by the Project. Vegetation would need to be cleared and light emissions at the Project Site would increase compared to current levels of light emissions, as a result of facility lighting. The stack at the facility, other facility equipment, transmission line structures, and switching station would introduce new features to the landscape. The project is not anticipated to significantly impact any visual resources of the surrounding areas.

3.8.2.2 No Action Alternative

The No Action Alternative would have no short- or long-term impacts to aesthetics at or in the vicinity of the Project because no construction would occur.

3.8.3 Mitigation

Construction will have temporary visual impacts. Once the Project is built, there will be longterm aesthetic changes associated with the new facilities. AECI intends to leave the majority of existing tree rows bordering the property in place to work as a visual buffer, no other mitigation measures are proposed.

3.9 Air Quality

The air quality of the area surrounding the Project and the impacts of the Project on air quality are discussed in the following sections.

3.9.1 Affected Environment

According to the Koppen climate classification, the Project Site is in the Northern Hemisphere's Humid Subtropical zone. Features of this zone include generally warm and humid summers with mild winters. Periods of extreme cold are infrequent and typically do not last more than a few days. There are no significant precipitation differences between seasons and dry months in the summer. Winter precipitation is dominated by rainfall that tends to be widespread, continuous, and uniform in intensity and tied almost exclusively to synoptic-scale systems. Summertime precipitation is heavy and intense in nature produced by individual thunderstorms or thunderstorm complexes. Average annual rainfall in Payne County is 37.34 inches (Oklahoma Climatological Survey, 2021).

The federal government established the National Ambient Air Quality Standards (NAAQS) under the Clean Air Act (CAA) to protect public health (including the sensitive populations such as asthmatics and the elderly), safety, and welfare from known or anticipated effects of eight air pollutants: sulfur dioxide (SO₂), particulate matter 10 microns or less in diameter (PM₁₀), particulate matter 2.5 microns or less in diameter (PM_{2.5}), carbon monoxide (CO), nitrogen dioxide (NO₂), ozone, lead (Pb), and greenhouse gases (GHGs). The Significant Impact Level (SIL) and NAAQS thresholds are listed in Table 3-6, below.

		NAAQS ^b	SIL ^{c,d}
Pollutant ^a	Averaging Period	(µg/m³)e	(µg/m³)
	3-hour	1300	25
SO ₂	1-hour	196	7.8 ^f
PM10	24-hour	150	5
DM	Annual	12	0.3
PM _{2.5}	24-hour	35	1.2
	8-hour	10,000	500
СО	1-hour	40,000	2,000
NO	Annual	100	1
NO ₂	1-hour	188	7.52 ^f
Lead	Rolling 3-	0.15	

Table 3-6: NAAQS and SIL Thresholds

(a) SO_2 = sulfur dioxide, PM_{10} = particulate matter 10

microns or less in diameter, $PM_{2.5}$ = particulate matter 2.5 microns or less in diameter, CO = carbon monoxide,

 NO_2 = nitrogen dioxide

(b) NAAQS = National Ambient Air Quality Standards

(c) SIL = Significant Impact Level

(d) SIL values listed are for Class II areas

(e) $\mu g/m^3$ = micrograms per cubic meter

(f) interim SIL value

The entire state of Oklahoma is in attainment, meaning that the area follows federal clean air standards. The closest air quality monitoring site is approximately 47 miles to the southwest of the Site operated by the Oklahoma Department of Environmental Quality (ODEQ) Air Quality Division located at the Oklahoma Christian University in Oklahoma City, OK. This site monitors pollutants CO, NO_x , SO_2 , $PM_{10}/PM_{2.5}$, and ozone.

3.9.2 Environmental Consequences

The following sections summarize potential environmental consequences of the proposed Action Alternatives and No Action Alternative related to air quality.

3.9.2.1 Proposed Action Alternative

Construction and operation of the proposed gas turbine at the Project Site would be subject to applicable state and Federal air quality regulations. These regulations would apply to the Project equipment (one SGT6-9000HL). Regulations applicable to the proposed Project are Oklahoma Administrative Code: Title 252. Department of Environmental Quality Chapter 100. Air Pollution Control, Title V Operating Permits, New Source Performance Standards (NSPS), National Emission Standards for Hazardous Air Pollutants (NESHAP), and Maximum Achievable Control Technology (MACT). The following sections provide potential environmental consequences of construction and operation of the Proposed Action related to air quality.

Construction

Air emissions from the construction of the Project will occur due to 1) vehicular emissions from increased traffic from the construction work force and construction deliveries, 2) internal combustion engine emissions from construction equipment, and 3) fugitive dust (PM₁₀ and PM_{2.5}) emissions from excavating, site preparation, and storage piles. These emissions from construction activities can be difficult to quantify, as they are dependent on the number and type of construction vehicles in operation at any given point during construction, the number of construction workers driving to and from the Site, and the number and type of construction activities occurring. AECI submitted a Construction Permit Application, which received a completeness determination from ODEQ on March 26, 2024.

Generally, air emissions from construction are low and temporary in nature, fall off rapidly with distance from the construction site, and will not result in any long-term impacts.

Operation

AECI proposes installing a single 421-MW Siemens SGT6-9000HL (60 Hz) simple-cycle combustion turbine to be constructed on a greenfield site. A Siemens SGT6-9000HL (60 Hz) simple-cycle combustion turbine with a maximum heat input of 3,674 million British thermal units per hour (MMBtu/hr), higher heating value (HHV) (3,312 MMBtu/hr lower heating value [LHV]) will be installed as part of the Project. The SCGT will be capable of firing both natural gas and fuel oil. Additionally, it is expected that the turbines will have as many as 730 total startup/shutdown events per year. The combustion turbines will install Continuous Emission Monitoring Systems (CEMS) to monitor emissions of NO_x.

Operation will be restricted to complying with the NSPS Subpart TTTT capacity limitations. Subpart TTTT regulates carbon dioxide (CO₂) emissions from electric generating units under the NSPS (Clean Air Act 111b regulations). The standard provides a limit for natural gas-fired combustion turbines. A newly constructed (commenced construction after January 8, 2014) natural gas-fired combustion turbine that combusts more than 90% natural gas on a 12operating month rolling average, is limited to 450 kilograms of CO₂ per megawatt-hour of gross energy output (1,000 pounds of CO₂ per megawatt hour) on a 12-operating month rolling average basis if supplying more than its design efficiency times its potential electric output as net-electric sales (typically). If a combustion turbine cannot meet this limit, then alternative limits apply. Table 2 in Subpart TTTT displays the limit of 120 pounds of CO_2 per million British thermal unit (lb/MMBtu) for natural gas-fired turbines (combusting 90% or more natural gas) that supply its design efficiency times its potential electric output or less as net electric sales. Basically, the combustion turbine is limited to its design efficiency, which, based on information from Siemens, is 43% (ISO, baseload, LHV). Thus, on a 3-year average, the turbine is limited to 43% annual capacity based on heat input. Therefore, the turbine must meet 120 lb/MMBtu CO_2 limit.

The combustion turbines will have an SCR system to control emissions of NO_x and an oxidation catalyst to control emissions of CO. To minimize the emissions of SO_2 and $PM/PM_{10}/PM_{2.5}$, the SCGT emissions will be controlled through the use of pipeline quality natural gas and good combustion practices as specified by the manufacturer. Greenhouse gas emissions will be minimized with the use of natural gas as the only fuel, with fuel oil only being used in emergencies.

The potential emissions from the SCGT were analyzed at 100%, 75% and 30% load on natural gas, and 100% and 70% on fuel oil. The overall emissions were compared to the Prevention of Significant (PSD) Significant Emission Rate Thresholds (SER). If a pollutant exceeds the SER, then that pollutant will trigger the need for PSD review for that pollutant, which includes air dispersion modeling, Best Available Control Technology (BACT) analysis, and other permitting tasks.

The worst-case, future potential-to-emit calculations were performed for each pollutant for the Project and are listed Table 3-7. Because the potential emissions of criteria pollutants are below the PSD permitting threshold, the Project does not trigger the PSD permitting process. Accordingly, no BACT analysis was required. However, as the potential emissions for CO, NO_x, SO₂, and PM/PM₁₀/PM_{2.5} are above the permitting exemption threshold, the Project does not meet the definition of a Permit Exempt Facility as defined by Oklahoma Administrative Code (O.A.C) 252:100-7-1.1. The Project is expected to exceed the 100 tpy threshold for at least two criteria pollutants and therefore will be considered a Part 70 Major source per O.A.C 252:100-8-2. AECI has elected to meet the permitting requirements of O.A.C 252:100-8-4 through 6 by **the submission of a Tier II construction permit application** which received a completeness determination from ODEQ on March 26, 2024. AECI will apply for a Part 70 operating permit at the appropriate time. As required, a state-level BACT and modeling analysis was submitted as part of the permit application package.

Pollutanta	Potential Project Emissions (Tons per Year [TPY]) ^b	PSD Significant Emission Rate Thresholds (TPY)	PSD Review Applicable (Yes, No)	Permitting Exemption ^e Threshold (TPY)	Minor New Source Review Analysis Applicable (Yes, No)
NOx	249 ^f	250	No	40	Yes
СО	228	250	No	40	Yes
SO ₂	46	250	No	40	No
VOC	28	250	No	40	No
PM/PM ₁₀ c/PM _{2.5} c	61	250	No	40	Yes/Yes
CO ₂ e	824,886 ^g	75,000 ^d	No	N/A	N/A

Table 3-7: Total Project Emission Summary

(a) NO_x = nitrogen oxides; CO = carbon monoxide; SO₂ = sulfur dioxide; VOC = volatile organic compounds; PM= total particulate matter; PM₁₀ = particulate matter less than 10 microns in diameter; PM_{2.5} = particulate matter less than 2.5 microns in diameter

(b) Numbers in bold indicate the Significant Emission Rate significance level is exceeded.

(c) Filterable plus condensable

(d) If the Project does not trigger PSD for any other pollutant, the CO₂e PSD threshold does not apply per Utility Air Regulatory Group vs EPA (Case#12-1146, June 23, 2014 before the Supreme Court of the United States Court).

- (e) Oklahoma DEQ Air Quality Division Permit Applicability
- (f) The project will take a limit of 249 tpy NO_x.
- (g) CO₂e based on 40 CFR TTTT restrictions.

NESHAP are contained in 40 CFR Part 63. NESHAP are emissions standards set by the U.S. Environmental Protection Agency (EPA) for specific source categories. The NESHAP require the maximum degree of emission reduction of certain hazardous air pollutant (HAP) emissions that the EPA determines to be achievable, which is known as the MACT standards.

The facility is expected to be a minor source of HAPs (less than 25 tons per year of total HAPs and less than 10 tons per year of any single HAP). Therefore, the facility is not subject to MACT standard Subpart YYYY: National Emission Standards for HAPS for Stationary Combustion Turbines.

The acid rain provisions of the CAA Amendments are specified in 40 CFR Part 72 through 78. The requirements are applicable to utilities and other facilities that combust fossil fuel (mainly coal) and generate electricity for wholesale or retail sale. Often referred to as the Acid Rain Program, the program establishes the reduction of emissions of acid rain forming pollutants, specifically, SO₂ and NO_x emissions. AECI will be subject to the Acid Rain Program for the natural gas-fired combustion turbine located at the facility.

The Project will be subject to the Acid Rain Program because the combustion turbines are considered a utility unit under the program definition and do not meet the exemptions listed in 40 CFR 72.6(b). The Acid Rain Program requires that the Project hold allowances for SO₂ per 40 CFR 72.9(c)(1) and conduct recordkeeping and reporting per 72.9(f). The continuous emission monitoring requirements of 40 CFR Part 75 establish requirements for the monitoring, recordkeeping, and reporting of SO₂, NO_x, and CO₂ per 40 CFR Part 75.1(a).

3.9.2.2 No Action Alternative

The No Action Alternative would have no short- or long-term impacts to air quality at or in the vicinity of the Project because no construction or operation would occur. However, there will still be a need for power capacity that will be obtained elsewhere, likely from existing fossil-fueled sources or new PPAs with fossil-fueled sources.

3.9.3 Mitigation

Construction activities will have air emissions, but are anticipated to be minimal outside of the construction areas, and are temporary in nature. The majority of the construction emissions will be from fugitive sources and construction equipment. Fugitive dust control measures could include, but are not limited to, the following:

- Applications of water;
- Paving or watering of roadways after completion of grading;
- Reduction in speed on unpaved roadways to 15 miles per hour or less; and
- Seeding of areas within 30 days of final grading establishment

For operations, the air emissions calculations have determined that the Project will not be a major PSD source but will require a Part 70 Major Source operating permit. All equipment will meet all applicable NSPS and NESHAP limits. The Project will include an SCR system to control NO_x emissions and an oxidation catalyst to control CO and VOC emissions. Good combustion practices and the use of clean fuels will mitigate emissions of SO₂, PM₁₀ and PM_{2.5}. AECI submitted an air permit application for the Project to the ODEQ in December 2023 and will adhere to the conditions and requirements of the permit during operation of the Project.

3.10 Climate Change and GHG

Executive Order (EO) 14008, *Tackling the Climate Crisis at Home and Abroad*, was signed by President Biden on January 27, 2021. The EO focuses on prioritizing climate in foreign policy and national security and taking a government-wide approach to the climate crisis. The EO also establishes the National Climate Task Force, which "shall facilitate the organization and deployment of a Government-wide approach to combat the climate crisis. This Task Force shall facilitate planning and implementation of key Federal actions to reduce climate pollution; increase resilience to the impacts of environmental justice; and spur well-paying union jobs and economic growth."

EO 13990, *Protecting Public Health and the Environment and Restoring Science to Tackle the Climate Crisis*, was signed by President Biden on January 20, 2021. This EO directed the Council on Environmental Quality (CEQ) to rescind its draft guidance entitled *Draft National Environmental Policy Act Guidance on Consideration of Greenhouse Gas Emissions* (84 Federal Register ["FR"] 30097). This previous draft guidance limited the consideration of long-term GHG emissions to expedite the NEPA process. The CEQ was also directed to review and update its guidance entitled *Final Guidance for Federal Departments and Agencies on Consideration of Greenhouse Gas Emissions and the Effects of Climate Change in National Environmental Policy Act Reviews* (81 FR 51866). The CEQ issued additional guidance on January 9, 2023, titled, *National Environmental Policy Act Guidance on Consideration of Greenhouse Gas Emissions and Climate Change* (88 FR 1196) directing Federal agencies to consider all available tools and resources in assessing GHG emissions and climate change effects of their proposed actions under NEPA. The public comment period was open until April 10, 2023.

This section describes the affected environment and potential environmental consequences related to GHGs and the potential implications of these emissions to influence climate change. Existing conditions and environmental consequences associated with other air emissions are addressed in Section 3.10 Air Quality of this document. Sources of GHGs include, but are not limited to, emissions from the construction of the power plant natural gas delivery infrastructure, upstream emissions from natural gas or fuel oil extraction and delivery pipelines, and additions to the local electrical transmission network.

Human activities such as the combustion of fossil fuels could contribute GHG emissions to the surrounding study area. Increases in GHG emissions have been proposed to change atmospheric chemistry, potentially leading to changes in climate, particularly a trend toward increased average temperatures around the globe. This Project will result in increased GHG emissions as shown in Table 3-8, below. However, when the project emissions are compared to state-wide GHG emissions, the increase in GHG emissions from this Project are minimal.

This section describes the affected environment and potential environmental consequences related to GHGs and the potential implications for these emissions to influence climate change. Existing conditions and environmental consequences associated with other criteria air pollutant emissions are addressed in Section 3.9 of this document.

3.10.1 Affected Environment

The Project would be located on a greenfield site in an area surrounded by a mix of undeveloped lands, residences, and agricultural activities. Air emission sources from the land uses surrounding the Site would include vehicular and agricultural activities. These activities generate a variety of air pollutants, many of which are identified, tracked, and regulated by the EPA under the Clean Air Act. In addition, several components of these emissions are identified as GHGs.

GHGs have been identified as contributing to the earth's temperature. Called the "greenhouse" effect, this is a naturally occurring phenomenon in which various gases in the earth's atmosphere (classified as GHGs) play a role in determining the earth's temperature. Solar radiation enters the earth's atmosphere from space and a portion of the radiation is absorbed by the earth's surface. The earth emits this radiation back toward space, but the properties of the radiation change from high-frequency solar radiation to lower-frequency infrared radiation. GHGs, which are transparent to solar radiation, are effective in absorbing infrared radiation. As a result, this radiation that otherwise would have escaped back into space is now retained, resulting in a warming of the atmosphere. This phenomenon is known as the greenhouse effect. Among the prominent GHGs contributing to the greenhouse effect are CO_2 , methane (CH_4), nitrous oxide (N_2O), and fluorinated gases. Primary GHGs are discussed, as follows:

3.10.1.1 Carbon Dioxide (CO₂)

 CO_2 is a colorless, odorless gas. It is emitted both naturally and through human activities. CO_2 is naturally present in the atmosphere as part of the earth's carbon cycle (the natural circulation of carbon among the atmosphere, oceans, soil, plants, and animals). While CO_2

emissions come from a variety of natural sources, an increase in CO_2 emissions has been recorded in the atmosphere since the industrial revolution. CO_2 is the primary GHG emitted through human activities, largely from the combustion of fossil fuels such as coal, oil, and gas. The transportation and energy sectors are the largest CO_2 emitters in the United States (EPA, 2023a). Energy production and support, agricultural production, and manufacturing are the biggest CO_2 emitters in the Project area (EPA, 2022).

3.10.1.2 Methane (CH₄)

CH₄ is a colorless, odorless gas that is not flammable under most circumstances. CH₄ is the major component of natural gas, about 87 percent by volume. In 2021, CH₄ accounted for about 12 percent of all United States GHGs from human activities (EPA, 2023a). Human activities emitting CH₄ include leaks from natural gas systems and the raising of livestock. CH₄ is also emitted by natural sources such as decomposition of vegetation, particularly in anerobic environments such as wetlands. In addition, natural processes in soil and chemical reactions in the atmosphere help remove CH₄ from the atmosphere. CH₄'s lifetime in the atmosphere is much shorter than CO₂, but CH₄ is more efficient at trapping radiation than CO₂. Pound for pound, the comparative impact of CH₄ is more than 28 times greater than CO₂ over a 100-year period (EPA, 2023a). Methane is the primary GHG emitted during the extraction and production of natural gas and is a significant driver of current warming (Lackner et al., 2021). The largest sources of CH₄ in the project area are the transportation, energy, and agricultural sectors.

In addition to the transportation and use of natural gas, there are several agricultural areas near the Site. Agricultural activities that contribute to CH₄ are the combustion of fossil fuels in automobiles traversing the agricultural fields and in heavier farming machinery.

3.10.1.3 Nitrous Oxide (N₂0)

 N_2O is a clear, colorless gas with a slightly sweet odor. In 2021, N_2O accounted for about 6 percent of all United States GHGs emissions from human activities (EPA, 2023a). Human activities such as agriculture, fuel combustion, wastewater management, and industrial processes are increasing the amount of N_2O in the atmosphere and are the largest sources of N_2O in the Project area. N_2O is also naturally present in the atmosphere as part of the earth's nitrogen cycle and has a variety of natural sources. N_2O molecules stay in the atmosphere for an average of 114 years before being removed by a sink or destroyed through chemical reactions. The impact of 1 pound of N_2O on warming the atmosphere is almost 265 times that of 1 pound of CO_2 (EPA, 2023a).

3.10.1.4 Fluorinated Gases

Unlike many other GHGs, fluorinated gases have no natural sources and only come from human-related activities. They are emitted through their use as substitutes for ozonedepleting substances (e.g., as refrigerants) and through a variety of industrial processes such as aluminum and semiconductor manufacturing. Many fluorinated gases have very high global warming potentials (GWPs) relative to other GHGs, so small atmospheric concentrations can have disproportionately large effects on global temperatures (EPA, 2023a). They can also have long atmospheric lifetimes—in some cases, lasting thousands of years. Like other longlived GHGs, most fluorinated gases are well-mixed in the atmosphere, spreading around the world after they are emitted. Many fluorinated gases are removed from the atmosphere only when they are destroyed by sunlight in the far upper atmosphere. In general, fluorinated gases are the most potent and longest lasting type of GHGs emitted by human activities.

There are four main categories of fluorinated gases—hydrofluorocarbons (HFC), perfluorocarbons (PFC), sulfur hexafluoride (SF₆), and nitrogen trifluoride. The major emissions source of HFC compounds is their use as refrigerants—for example, in air conditioning systems in both vehicles and buildings. These chemicals were developed as a replacement for chlorofluorocarbons because they do not deplete the stratospheric ozone layer. PFCs are produced as a byproduct of aluminum production and are used in the manufacturing of semiconductors. PFCs generally have long atmospheric lifetimes and GWPs near 10,000. SF₆ is used in magnesium processing and semiconductor manufacturing, as well as a tracer gas for leak detection. SF₆ is also used as an insulating gas in electrical transmission equipment, including circuit breakers. The GWP of SF₆ is 22,800, making it the most potent GHG that the Intergovernmental Panel on Climate Change has evaluated (EPA, 2017). There is not currently a practical alternative to SF₆ as an insulating gas.

3.10.1.5 Global Warming Potentials

GHGs vary widely in the power of their climatic effects; therefore, climate scientists have established GWPs . The GWP of a gas is a measure of both potency and lifespan in the atmosphere as compared to CO_2 . The GWP of CO_2 is set to equal 1. CH_4 and N_2O are approximately 25 and 298 times more powerful than CO_2 , respectively, in their ability to trap heat in the atmosphere; thus, they have GWPs of 25 and 298, respectively. CO_2e is a quantity that enables all GHG emissions to be considered as a group despite their varying GWPs. The GWP of each GHG is multiplied by the prevalence of that gas to produce CO_2e . The atmospheric lifetime and GWP of selected GHGs are summarized in Table 3-8.

	Atmospheric Lifetime	Global Warming Potential
Greenhouse Gas	(years) ¹	(100-year time horizon) ²
Carbon dioxide (CO ₂)	50-200	1
Methane (CH ₄)	12	25
Nitrous oxide (N ₂ O)	114	298
Sulfur hexafluoride (SF ₆)	3,200	22,800

Table 3-8: Global Warming Potentials and Atmospheric Lifetimes

Sources:

(1) IPCC, 2007

(2) 40 CFR 98 Subpart A

3.10.1.6 Potential Effects of Greenhouse Gases

An increase in GHGs released to the atmosphere has been linked to warming of the earth on a global scale. Earth's average temperature has risen by 1.5 degrees Fahrenheit (°F) over the past century and is projected to rise another 0.5 to 8.6 °F over the next hundred years. Rising global temperatures have been accompanied by changes in weather and climate. Many places have seen changes in rainfall, resulting in more droughts, floods/intense rain as well as heat waves. Oceans are warming and becoming more acidic (EPA, 2021). Ice caps and glaciers are melting, causing sea levels to rise. Other effects include, but are not limited to, the spread of diseases out of their normal range, habitat loss, negative impacts to agriculture production,

increased air pollution episodes, and impacts to the economy are expected to result from climate change (EPA, 2021).

3.10.2 Environmental Consequences

The following sections provide potential environmental consequences of the proposed Action Alternatives and No Action Alternative related to climate change and GHG.

3.10.2.1 Proposed Action Alternative

Unlike criteria pollutants, there is no standard methodology to determine how a project's relatively small incremental contribution to GHGs will translate into physical effects on the global environment. As a result, this section focuses on the level of GHG from Project emissions.

Construction

During construction of the turbine small amounts of air pollutants, including GHGs, would be temporarily generated. The largest source of GHG emissions during construction is the combustion of fuels such as gasoline or diesel by construction equipment. These construction emissions would be temporary in nature, would fall off rapidly with distance from construction areas, and are not anticipated to result in long-term impacts. Once the construction activities are completed, construction-related emissions would cease.

Operation

A variety of emissions resulting from Project operation are considered GHGs. GHG emissions from the Project equipment are due to CO_2 , CH_4 , SF_6 , and N_2O emissions. These calculated GHG emissions were ratioed with their appropriate GWP shown in Table 3-8.

Table 3-8 and summed to obtain the overall project CO_2e emissions. Consistent with Oklahoma and EPA guidance, air dispersion modeling of CO_2e will not be conducted since there is no modeling threshold for this pollutant.

The simple-cycle unit are limited to generating their design efficiency or 50%, whichever is less, of their potential electric output, under the New Source Performance Standard (NSPS), Subpart TTTT. The vendor has estimated that the design efficiency of the units to be 43%, and the proposed turbine will meet these efficiency limits. Additionally, Subpart TTTT establishes a standard for CO_2 , limiting emissions for these units to 120 lb CO_2 /MMBtu heat input. The maximum CO_2 emissions provided by the vendor are anticipated to meet this value.

The proposed simple-cycle turbine will operate on natural gas with fuel oil backup. Currently, hydrogen fuel is not available at Site. Natural gas is considered a low-carbon fuel; due to this classification, firing natural gas is considered a control technology for turbines.

Each of the new circuit breakers will contain SF_6 . SF_6 is a potent greenhouse gas with a global warming potential of 22,800 times that of CO_2 . The new circuit breakers are state-of-the-art and will be sealed and SF_6 leakage will be minimized. The circuit breakers will each be equipped with a two-stage pressure switch with a low-pressure alarm to indicate a potential leak. Modern circuit breakers and switches are designed as totally enclosed, pressure containing systems with far lower potential for SF_6 emissions than older circuit breakers. The current International Electrotechnical Commission (IEC) standards are that new equipment be

built to low leakage limits (less than 0.5 percent per year). The effectiveness of these leaktight closed systems is further enhanced by equipping them with an alarm that provides a warning when SF_6 has leaked from the breaker. The Project will also include disconnect switches at each substation site; however, the switches are open air type switches and do not contain SF_6 .

Potential GHG emissions from the Project are shown in Table 3-9.

	Air Emissions (tons per year, tpy)					
Source	CO ₂	CH4	N_2O	SF ₆	CO ₂ e	
Combustion turbine ^a	824,056	15.14	1.51		824,886	
Breakers (4 Units)				5.80x10 ⁻⁰⁵	1.32	
Total	824,056	15.14	1.51	5.80x10 ⁻⁰⁵	824,887	

Table 3-9:Project Emissions of Greenhouse Gases

Source: Air Construction Permit Application (December 2023)

(a) Represents worse-case emissions scenario.

(b) Dashes indicate no emissions expected for this source.

Potential GHG emissions are greater than the PSD significance level of 75,000 tons per year; however, since none of the criteria pollutants triggered a PSD analysis, one is not required for CO_2e .

To put the CO₂e emissions into perspective, the GHG emissions for the State of Oklahoma were reviewed, utilizing the Greenhouse Gas Inventory Data Explorer (EPA, 2023b). This interactive tool provides public access to the EPA's annual *Inventory of U.S. Greenhouse Gas Emissions and Sinks* and the new *U.S. Greenhouse Gas Emissions and Sinks by State* reports. The last five years of available greenhouse gas emission data was pulled for the State of Oklahoma; since the most recent year available in the tool is 2021, emissions data from 2017 to 2021 was reviewed. The tool reports data in million metric tons. To directly compare the emissions data to the project emissions, these values were converted into US short tons. US short tons are used for the CO₂e emissions utilized in the air permit application, the air emissions in Section 3.10, and this section. The average state-wide CO₂e emissions for the most recent 5 years of data available (2017-2021) was determined to be 158,255,328 tons per year (EPA, 2023b). The project CO₂e emissions, as shown above, are calculated to be 824,887 tons per year. This equates to 0.5% of the statewide CO₂e emissions.

Social Cost of Carbon

Social Cost of Carbon, Methane, and Nitrous Oxide Interim Estimates under Executive Order 13990 published February 2021 by the United States Interagency Working Group (IWG) on Social Cost of Greenhouse Gases (IWG Report) was used to determine the social cost of carbon (greenhouse gases). This report contains interim estimates of the social cost of greenhouse gases (SC-GHG) split to reflect the cost of carbon, methane, and nitrous oxide emissions individually (SC-CO₂, SC-CH₄, and SC-N₂O). SC-GHG is defined as the monetary value of the net harm to a society from emitting one metric ton of that GHG to the atmosphere each year. These estimates are provided by the IWG to allow analysts to

incorporate – when appropriate – net social benefits or costs of GHG emissions in benefit-cost analyses and in policy decision making processes.

In the 2021 IWG Interim Report, the SC-GHG monetary values were developed using discount rates of 5 percent, 3 percent, 2.5 percent. Discount rates are used to determine how much weight is placed on impacts that occur in the future. High discount rates reflect future effects of an action, in this case the emission of greenhouse gases, as less significant than present effects. Low discount rates reflect that future and present impacts are closer to equally significant. Discount rates are used to convert the damages of future actions into present-day values. A fourth value, the 95th percentile of damages estimated, applying a 3% annual discount rate for future economic effects represents higher-than-expected economic impacts from climate change. This is a low probability, but high damage scenario. For consistency with the methodology presented in the IWG report the results of this SC-GHG analysis are discounted to the present value in base year 2028, the expected operational start year. Results throughout this section are presented in 2020 dollars.

For this analysis, the build scenario represents the operation of the proposed plant (Project). The no-build scenario represents a greenfield site and, therefore, a zero-emission scenario. The operation start date for the proposed plant is targeted for 2026. The IWG projections are limited to 2050. Therefore, this analysis calculates the SC-GHG from 2026-2050 (analysis lifespan). Projected run hours for the SCGT were provided for the years 2026 to 2043. For years where projection data was unavailable, an average from the latest 5-years of available data was utilized. It was assumed that the unit will operate at 3674 MMBtu/hr for all expected natural gas actual operational hours and 500 hours of fuel oil operation. Standard emission factors for natural gas and fuel oil combustion were sourced from Table C-1 to Subpart C of Part 98, Title 40. These calculated annual emission values were used in conjunction with the social cost estimates provided in the IWG Report to calculate the SC-CO₂, SC-CH₄, SC-N₂O for the analysis lifespan.

Presenting greenhouse gas emissions as a monetary value allows for the ability to directly compare social costs to the economic benefits provided by the Project. Annual SC-CO₂, SC-CH₄, SC-N₂O values for were calculated for discount rates of 5 percent, 3 percent, 2.5 percent, and 95th percentile 3 percent for years 2028-2050. These values were then summed to represent a lifespan total cost of greenhouse gases emitted by the site in 2020 dollars. These values are presented in Table 3-10. Results are displayed by discount rate. For discount rates high to low over the analysis lifespan the SC-GHG was calculated to be approximately \$105, \$321, and \$459 million in 2020 dollars if the Project is constructed and operational compared to the no build (no emissions) scenario. The 95th percentile 3 percent discount rate has an SC-GHG scenario estimated value of \$975 million.

Table 3-10: Present Value (in Base Year 2026) of Estimated SC-GHG for GHG emissions (2020\$)

Discount Rates	5%	3%	2.5%	3%
Statistic	Average	Average	Average	95 th Percentile
Build Scenario SC-GHG	\$104,948,220	\$320,732,626	\$459,174,109	\$975,138,570

(a) Analysis lifespan is from 2028 to 2050, based on the limits/duration of the IWG tables utilized in the analysis.

(b) This analysis does not incorporate upstream, downstream, or construction emissions, SC-GHG is the sum SC-CO2, SC-CH4, SC-N2O.

Detailed tables showing calculation results on an annual basis and by GHG (CO₂, CH₄, N_2O) are included in Appendix E to this document.

Upstream GHG Emissions

Upstream GHG emissions from the transportation of natural gas on the EOIT gas pipeline were estimated as a part of the climate change analysis. AECI consulted the EPA Inventory of U.S. GHG Emissions and Sinks (USEPA, 2023c)¹ as well as the EPA's "Available and Emerging Technologies for Reducing Greenhouse Gas Emissions from Combustion Turbine Electric Generating Unit" (USEPA, 2021b), for use to determine an emission factor for upstream natural gas transportation losses. Additionally, Northwest Power and Conservation Council's "Upstream Methane Emissions and Power Planning (NPCC, 2020) and Center for Climate and Energy Solutions "Natural Gas" (C2ES, 2021) were consulted to confirm the loss rates. These losses are not caused by the Project but are associated with natural gas delivery to the site. The facilities transporting this gas are currently in-place, aside from a new tap line and metering and regulation station onsite the plant will use. AECI determined a 1.5 percent methane loss during transportation of natural gas was appropriate based on the available data on methane loss. This 1.5% value was taken from the "Available and Emerging Technologies for Reducing Greenhouse Gas emissions from Combustion turbine Electric Generating Unit" document mentioned above. The other two documents confirmed that a leak rate of approximately 1.5% is appropriate for use in these types of analyses. To calculate annual CO₂e emissions from upstream transportation of natural gas, an annual million British thermal units/year (MMBtu/year) of natural gas usage was utilized based on the maximum possible run hours/load for each turbine. The annual natural gas use by the proposed SCGT was estimated to be 12,373,212 MMBtu/year. A 1.5 percent leakage for this amount of natural gas was calculated to equate to 16.9 lb CO₂e/MMBtu of natural gas. Multiplying this natural gas leakage rate by the total estimated annual natural gas use provided a natural gas leakage emissions estimate of 94,867 metric tons CO₂e per year. Upstream emissions from fuel oil were estimated from emission factors produced by NETL's Upstream Dashboard v3 and the estimated annual fuel oil consumption. Therefore, upstream emissions were calculated to be a total of 1,509,362 tons CO₂e per year.

3.10.2.2 No Action Alternative

The No Action Alternative will result in no new greenhouse gas emissions at the greenfield site. However, there will still be a need for power capacity that will be obtained elsewhere, likely from existing fossil-fueled sources or new PPAs with fossil-fueled sources.

3.10.3 Mitigation

During construction, steps will be taken to prevent excess emissions of GHG resulting from construction activities and vehicular traffic. These steps may include reducing the idling of construction vehicles.

AECI submitted an air permit application for the Project to ODEQ in December 2023 and received a completeness determination from ODEQ on February 6, 2024, with the only deficiency identified was the application fee payment. Payment was submitted via electronic fund transfer on February 13, 2024. AECI will adhere to the conditions and requirements of the permit during operation of the Project. Additionally, AECI will also follow a dust control

¹ https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks

plan that will, in turn, assist with reducing GHG emissions during construction. These proposed work practices are consistent with best practices as identified above and in the air construction permit application.

Socio-Economic Impact Assessment/Environmental Justice 3.11

Affected Environment 3.11.1

To identify general socioeconomic patterns in the Project area, various socioeconomic characteristics have been reviewed, including population growth trends, racial and ethnic characteristics, employment data, and economic indicators.

Population Growth Trends

The Site is in Payne County, Oklahoma, a predominantly rural county that has experienced an increase in population over the last 10 years. Table 3-11 presents the population trends near the Project.

351 77,350
353 81,646
6 5.3%
639 82,794

Table 3-11: Population Trends

Source: U.S. Census Bureau (USCB, 2019 and USCB, 2021)

Racial and Ethnic Characteristics

The U.S. Census Bureau has published demographic, housing, and employment estimates for 2020 for all counties and the state as a whole. These estimates, along with the 2020 Census Block data for the area immediately around the Site, are presented in Table 3-12. The Census Tract and Block Group that the Site is located in are shown in Table 3-12: 2020 Racial Characteristics.

	Oklahoma	Payne County	Census Tract 111.01	Census Block 3104 Group 3
Total Population 2020	3,959,353	81,912	5,507	2
White	2,809,792	62,800	4,374	2
Hispanic or Latino	431,467	3,908	262	0
American Indian and Alaskan Native	303,791	7,084	221	0
Other	119,704	3,839	94	0
Black or African American	287,856	4,127	42	0
Pacific Islander	6,418	154	4	0

Table 3-12:2020 Racial Characteristics

Source: U.S. Census Bureau (USCB, 2020a)

Based on these estimates, the 2020 racial makeup of Payne County is composed of 76.7 percent White, 4.8 percent Hispanic or Latino, 5 percent African American, and 8.6 percent American Indian, 0.8 percent Pacific Islander, and 4.1 percent of Payne County's population considers itself other. For the area around the Site, the 2020 Census population estimates by census tract and block data were reviewed and are listed in Table 3-12 for comparison with Payne County and state population estimates. According to the 2020 Census estimates, the total population of Oklahoma in 2020 was composed of 70.1 percent White, 10.9 percent Hispanic or Latino, 7.3 percent African American, 7.7 percent American Indian, 0.16 percent Pacific Islander, and 3.8 percent as other.

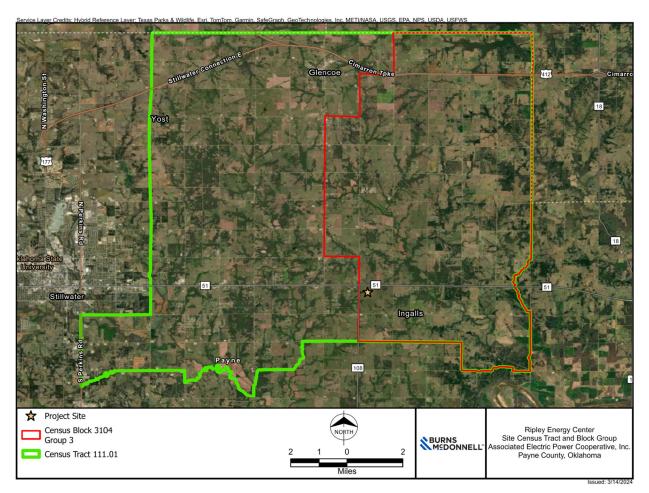
Employment and Income

In 2020, Payne County's resident labor force, defined as the population aged 16 and over, was 67,663 individuals, or 83 percent of the total population (81,646); 37,079 of these workers were employed, resulting in an annual unemployment rate of (for the civilian labor force) of 2.2 percent (U.S. Census Bureau 2020). Major industries in Payne County include educational service, health care, and social services. Table 3-13 provides the employment characteristics for the state, county, and local community.

	Oklahoma	Payne County	Census Tract 111.01	Census Block 3103 Group 3
Population 16 years and over	3,097,358	67,663	3,957	N/A
In labor force	1,893,873	38,770	2,588	N/A
Employed (civilian labor force)	1,779,157	37,079	2,502	N/A
Unemployed (civilian labor force)	95,441	1,488	78	N/A
Armed forces	19,275	135	8	N/A
Not in labor force	1,203,485	28,893	1,369	N/A
Percent unemployed (civilian labor force)	5.1%	2.2%	3.0%	N/A
Top occupation	Management, business, science, and arts occupations	Management, business, science, and arts occupations	Management, business, science, and arts occupations	N/A
Top industry	Educational services, and health care and social services	Educational services, and health care and social services	Educational services, and health care and social services	N/A

Table 3-13:2020 Employment Data

Source: U.S. Census Bureau (USCB, 2020b)


The unemployment rate and poverty rate in Payne County is slightly lower than that of Oklahoma as a whole.

Census Block 3103 Group 3 of Census Tract 111.01 in eastern central Payne County has two residents that live within the Block Group. Census Tract 111.01 has lower unemployment rates and poverty rates than the state; however, it has slightly higher unemployment rates than Payne County. No income or employment data exists for Census Block 3103 Group 3. Table 3-14 shows income and poverty data for the state, county, and local community.

Table 3-14:	2020	Income an	d Poverty
		meenie ui	

	Oklahoma	Payne County	Census Tract 111.01	Census Block 3103 Group 3
Median household income in 2020 dollars	\$53,840	\$43,686	\$60,795	N/A
Families and people whose income in the past 12 months is below the poverty level	11.2%	11.3%	6.8%	N/A

Source: U.S. Census Bureau (USCB, 2020c and USCB, 2020d)

Figure 3-1: Census Tract and Block Groups

<u>Housing</u>

Payne County has 36,599 housings units with 31,329 occupied housing units and 5,270 vacant housing units. Fifty-two percent of the occupied housing units are owner-occupied. The median value of owner-occupied housing in Payne County was \$172,700, versus the state-wide median value of owner-occupied housing of \$142,400.

Area Public Service and Utilities

Educational Facilities

The closest school to the Site is Highland Park Elementary, approximately 6.7 miles west of the Site within Stillwater, Oklahoma. The next closest schools are Skyline Elementary and Stillwater Junior High School, approximately 7.7 miles northwest of the Site.

Medical Facilities

The closest hospital to the Site is Stillwater Medical Center in Stillwater, Oklahoma, about 9.4 miles west of the Site. Stillwater Medical Center has a 24-hour level one trauma emergency room with physicians trained in Advanced Trauma Life Support and Advanced Cardiac Life Support. The medical center also has cardiopulmonary services, a radiology department, and an urgent care clinic.

During construction, the EPC is responsible for the emergency response plan. The plan will have a site map showing areas for assembly, location of emergency stations, and site evacuation route.

The site will have on-site safety professionals during working hours for non-life-threatening injuries and first aid treatment. The local medical treatment facility will be used for medical services beyond that scope.

Fire Protection

The closest fire department to the Site is located approximately 8.4 miles northwest of the Site located in Stillwater, Oklahoma.

Police Protection

Because the Site lies within a rural area, it is served by the Payne County Sheriff's Department, located in Stillwater, Oklahoma, approximately 8.4 miles west of the Site. The City of Stillwater does have a full-time police department.

Potable Water, Sanitary Sewer, Electricity, Gas, and Solid Waste

The Site is in a rural area. It is served by the 51 East Rural water supply. Electricity to the Site will be supplied by the electrical grid. Natural gas will be supplied to the site by Enable Oklahoma Intrastate Transmission LLC. Solid waste will be disposed of through a local service provider and sanitary waste will utilize on on-site septic system with lateral line fields.

Recreation and Open Space

Public recreational land does exist near the Site. Couch Park, which is located approximately 7.6 miles to the west, includes picnic areas, hiking, and wildlife viewing opportunities. There is a historical marker for the Outlaw Battle located approximately 0.5 miles to the east of the site. The sign indicates the battle took place another 1 mile southeast of the marker.

Environmental Justice

Environmental Justice concerns may arise from human health or environmental effects of a Project on minority or low-income populations. The need to identify environmental justice issues is stated in EO 12898, entitled *Federal Actions to Address Environmental Justice in Minority Populations and Low-income Populations*, and expanded on in EO 14008, *Tackling the Climate Crisis at Home and Abroad*. The EOs state that Federal agencies shall make achieving environmental justice part of their missions. By identifying and addressing disproportionately high and adverse human health or environmental effects of its programs, policies, and activities on minority populations and low-income populations." A Presidential Memorandum accompanying the Executive Order directed agencies to incorporate environmental justice concerns into their NEPA processes and practices.

Environmental Justice issues are identified by first determining whether minority or lowincome populations are present. If so, then disproportionate effects on these populations would be considered. The CEQ guidance states that minority populations should be identified when the percentage of minority residents in the affected area exceeds 50 percent or is meaningfully greater than the percentage of minority residents in the general population (CEQ, 1997). If the percentage of minority residents of the population in the area census tract exceeds the county level by more than 10 percent, it is "meaningfully greater" for the purposes of this analysis. The CEQ guidance also states that the low-income populations should be identified based on poverty thresholds as reported by the U.S. Census Bureau. If the poverty rate for the population of the area census tract exceeds the county poverty rate by more than 10 percent, it is considered an area of environmental justice concern for the purposes of this analysis.

Based on this methodology, the proposed Project area – within Census Tract 111.01 – is not considered an area of Environmental Justice concern. As identified in Table 3-15, the percentage of minority residents in Census Tract 2.03, Block Group 1 does not exceed the level of Payne County by 10 percent.

To further analyze the Environmental Justice impacts on the nearby communities, a 2-mile radius was placed around the project area in EPA's EJSCREEN tool. None of the nearby populations exhibit a socioeconomic indicator rate higher than 80% for any of the environmental justice indexes. The EJSCREEN Community Report is attached as Appendix F.

	Oklahoma	Payne County	Census Tract 111.01	Census Block 3103 Group 3
Minority Population	26%	23.3%	11.3%	0%
Low-income Population	11.4%	7.2%	3.1%	NA

 Table 3-15:
 2020 Minority and Low-Income Populations near the Project

Source: U.S. Census Bureau (USCB, 2020a and USCB, 2020e)

Also identified in Table 3-15, the poverty rate for the proposed Project area census block group data is not available.

3.11.2 Environmental Consequences

The following sections summarize potential environmental consequences of the proposed Action Alternatives and No Action Alternative related to the local population.

3.11.2.1 Proposed Action Alternative

The current capital cost estimate for the improvements is approximately \$500 million. Some of this cost could be distributed locally due to construction activities temporarily stimulating the local community. Additional jobs in the construction trades such as pipefitters,

electricians, insulators, construction management personnel, laborers, and carpenters may be available. Peak construction labor force for the Project is expected to be approximately 400 employees. The length of peak employment will range from a few weeks to several months, depending on skill or specialty.

Gas stations, convenience stores, and restaurants in nearby communities and in Stillwater could experience increases in business during the construction period in response to activity from construction workers.

The construction workforce required for the proposed Project may have an impact on the availability of temporary housing. Construction workers may seek temporary housing for varying time periods based on their individual roles in the proposed Project. Payne County has a limited supply of temporary housing units available for use by construction workers relocating to the area on a temporary basis. Short-term housing is likely to experience the largest increase in demand due to the transient nature of construction workers and their limited duration in the proposed Project area. Generally, housing options for construction crews will consist of area hotels or RV camps.

The proposed Project will be located in a rural area with relatively few homes and businesses within close proximity to the proposed Project. Adverse human impacts as a result of the proposed Project will include additional noise and traffic impacts during construction, temporary visual impacts during construction, and changes in long-term visual impacts during operation. However, because the local area is not characterized by a high minority or low-income population, no disproportionate impacts will occur as a result of the proposed Project.

3.11.2.2 No Action Alternative

The No Action Alternative would have no short- or long-term impacts on the local population at or in the vicinity of the Project because no construction or operation would occur.

3.11.3 Mitigation

The Project is not located in an environmental justice area, and impacts are expected to be insignificant. Therefore, no mitigation measures are required for socioeconomic impacts.

3.12 Noise

3.12.1 Affected Environment

The Project is located in Payne County, Oklahoma, just outside of Stillwater and 6.5 miles north of Ripley. Surrounding the immediate Project site is agricultural fields and some residential structures. There are five residences within 0.5 miles of the proposed construction activity and Project equipment. Primary existing noise sources in the area include traffic from Highway 51 and Highway 108

Noise Regulations

The area immediately surrounding the proposed Project is unincorporated residential and agricultural. There are residential properties to the north, west, and east of the Project property and agricultural fields on all sides of the Project.

Applicable Federal, state, county, and municipal noise ordinances were reviewed for the Project and surrounding area. The Project is outside of any municipalities, and the State of Oklahoma and Payne County do not have noise ordinances with applicable numerical sound level limits for the Project.

3.12.2 Environmental Consequences

The following sections summarize potential environmental consequences of the proposed Action Alternatives and No Action Alternative related to noise.

3.12.2.1 Proposed Action Alternative

<u>Construction</u>

Project construction would result in temporary and minor noise impacts to the surrounding area. Construction-related sounds would vary in intensity and duration depending on specific stages and activities of construction but would not be permanent. Nearby residences (nearest residence is approximately 1/4 to 1/3 of a mile away) may temporarily experience increased noise during construction.

Construction of the proposed Project is expected to last approximately 12-18 months and will involve Project site preparation, excavation, placement of concrete and other typical industrial construction practices. Construction schedules are anticipated to be able to construct on a 7-day per week 24-hours per day schedule in order to minimize the length of calendar time that temporary construction impacts affect the area. There are certain operations that, due to their nature or scope, must be accomplished in part outside typical working hours. Such work generally consists of activities that must occur continuously, once begun (such as pouring concrete foundations).

The impacts that various construction-related activities might have will vary considerably based on the proximity to the property line. Generic sound data ranges are available for various types of equipment at certain distances. Table 3-16 lists generic activities and their minimum and maximum instantaneous sound levels at 50 feet.

Generic Construction Equipment	Minimum Noise at 50 feet	Maximum Noise at 50 feet
Backhoes	74	92
Compressors	73	86
Concrete Mixers	76	88
Cranes (movable)	70	94
Dozers	65	95
Front Loaders	77	96
Generators	71	83
Graders	72	91
Jack Hammers and Rock Drills	80	98
Pumps	69	71
Scrapers	76	95
Trucks	83	96

Table 3-16: Range of Typical Construction Equipment Noise Levels in A weighted decibel (dBA)

Source: FHWA Highway Construction Noise.

The types of equipment listed in the table above may be used at various times and for various amounts of time. Construction of the Project may involve driving piles. Equipment noise will be addressed during construction, and sound dampening material may be used if necessary. Most activities will not occur at the same time. There will be periods when concrete needs to dry and no construction occurs. Sound levels are expected to be quieter for areas where activities are occurring at distances greater than 50 feet from the property line.

Noise from construction is expected to be localized and temporary. The actual noise levels generated by construction will vary on a daily and hourly basis, depending on the activity that is occurring, and the types and number of pieces of equipment that are operating. Noise resulting from construction will vary with equipment type and age, type of work being done, distance from receptor, and meteorological conditions. It is expected that most construction will be done during the daytime when receptors are less sensitive to noise and that the noise will be intermittent. Any excessive construction noise should be of short duration and have minimal adverse long-term effects on land uses or activities associated with the Project area.

Operation

A noise study was completed for the Project operational sound levels based on the expected equipment. The noise study is provided in Appendix G and included background sound monitoring and acoustical modeling for the Project.

The Project could operate day or night. Base operational sound levels for the Project indicate that the Project will be audible during periods of low traffic and are expected to cause a significant increase to existing nighttime sound levels of approximately 19 dBA at the worst-case receptor. A summary of the existing ambient sound levels and the predicted Project-

generated sound levels during operation are shown in Table 3-17 below for the nearest noisesensitive receptors.

Receptor Location	Lowest Existing Hourly Daytime Sound Levels (dBA)	Lowest Existing Hourly Nighttime Sound Levels (dBA)	Predicted Project Sound Levels (dBA)
R1	65	55	64
R2	60	48	67
R3	60	48	66
R4	65	55	61
R5	65	55	64

Table 3-17: Project Background and Operational Sound Levels

Even though there are no limits in the area to comply with, these predicted unmitigated impacts are likely to have moderate to high adverse effects on the nearby neighbors.

3.12.2.2 No Action Alternative

The No Action Alternative would have no short- or long-term impacts to noise at or in the vicinity of the Project because no construction or operation would occur.

3.12.3 Mitigation

Sound mitigation measures are not required for the Project since there are no applicable noise limits for the Project. Occupational Safety and Health Administration (OSHA) standards will be met onsite. Details of any optional mitigation measures are to be determined, but it is anticipated that stack silencers will be utilized to reduce impacts to the surrounding properties.

3.13 Transportation

3.13.1 Affected Environment

The Project Site is bordered by State Highway 51 (SH-51) and State Highway 108 (SH-108). SH-51 is a two lane, asphalt paved highway that intersects with SH-108 another two lane, asphalt paved highway at the northwest corner of the project site. Per ODOT.org Interactive Annual Average Daily Traffic (AADT) Map, the 2022 AADT for SH-51 is approximately 7,500 vehicles per day and the AADT for SH-18 is approximately 1,700 vehicles per day near the project site. A traffic study will be completed by the EPC for the Project to verify road adequacy and flow parameters.

3.13.2 Environmental Consequences

The following sections summarize potential environmental consequences of the proposed Action Alternatives and No Action Alternative related to transportation.

3.13.2.1 Proposed Action Alternative

Existing highways and county roads will be used to provide Site access during construction. Within the Site property boundary, an access road will be constructed for use as the primary construction access road. Traffic will include equipment and material deliveries and the construction labor force. The frequency of onsite vehicular traffic will be proportionate to the onsite construction labor projections.

The peak construction labor force for the construction Project is anticipated to be approximately 400 employees. This labor, along with equipment and material deliveries in support of the Project, is expected to increase daily vehicle and truck traffic (above current operation) by approximately 400 round trips per day during peak construction periods. Construction material deliveries may occur during the day during off-peak travel times and will typically not interfere with worker shift changes and commuter traffic.

Although additional vehicular traffic will result from the construction of the proposed Project, the impacts will be temporary. Traffic impacts will be greatest along Highway 51 and vary according to construction delivery and construction labor shift changes. The roadway capacity of any route and level of service to the traveling public will not be substantially impacted in all other areas.

The construction entrance to the site will be on SH-108. It is estimated that 90% of the imported material, concrete etc. will be coming from Stillwater (west) to the project on SH-51. Approximately 70% of the craft/staff traffic will be coming from Stillwater/Oklahoma City (west) and the remaining 30% from the Tulsa area (east). The project will evaluate staggered start times to reduce peak flow on SH-51 as necessary. Operating permits will be issued by the state or county for oversized truck movements, as required. Based on current projections, the roads, bridges, and crossings in the area are sufficient for the Project's delivery and transportation needs. No adverse impacts are anticipated.

3.13.2.2 No Action Alternative

The No Action Alternative would have no short- or long-term impacts to transportation at or in the vicinity of the Project because no construction or operation would occur.

3.13.3 Mitigation

As construction and operation of the proposed Project will have only temporary impacts on transportation, no mitigation measures are planned. Existing roads damaged by construction traffic will be repaired once construction is complete. Plans to control traffic during peak times may be required.

3.14 Human Health and Safety

3.14.1 Affected Environment

Two potential human health and safety concerns associated with the Project are to be considered: electromagnetic fields (EMF) and risk management associated with hazardous materials.

EMF are associated with high-voltage electric transmission lines and substations. All of the offsite high-voltage transmission lines and substations necessary for the proposed Project are

in place. The Project will require a minor transmission line interconnection, a rebuild of the existing transmission line back to the substation, and then substation modifications to accommodate the Project and connect to the AECI's grid. The Facility's access will generally be restricted to AECI employees and contractors, and substations are surrounded by security fencing to limit access to the area.

A core value of AECI is the safety of its employees and contractors. As such, AECI has identified certain hazards associated with power production. There are a number of risks to human health and safety possible in the course of constructing and operating a power plant, including hazards such as fire, slips, trips, falls, electrical hazards, confined space entry, and many others. Additionally, hazardous substances or wastes may be released, generated, or required for construction and operation of the Facility. Examples may include the use and storage of fuels, lubricating oils, chemicals, and other materials that may be considered hazardous.

3.14.2 Environmental Consequences

The following sections summarize potential environmental consequences of the proposed Action Alternatives and No Action Alternative related to transportation.

3.14.2.1 Proposed Action Alternative

EMF will be strongest directly under the transmission line and will decrease with increasing distance from the transmission line ROW. The proposed Project requires modification of the existing transmission lines outside of the Site boundary, with a line passing through several housing areas. The upgrades are not anticipated to increase risks due to EMF along the current transmission ROW.

During construction, the Project will be managed to prevent harm to the general public. The general public will not be allowed to enter any construction areas associated with the proposed Project. The major risk to the general public will be from an increase in traffic volume on the roadways near the proposed Project as a result of commuting construction workers and transportation of equipment and materials.

Construction and operation of the proposed Project will also involve the use and storage of regulated and hazardous materials. During construction, diesel fuel, gasoline, and lubricating oils from heavy equipment and vehicles may accidentally leak or spill. Hydraulic fluid, paints, and solvents will likely be used during the construction phase as well. Additionally, the presence of aboveground fuel storage tanks and oil-filled equipment present the potential to release into the environment.

3.14.2.2 No Action Alternative

The No Action Alternative would have no short- or long-term impacts on human health or safety at or in the vicinity of the Project because no construction or operation would occur.

3.14.3 Mitigation

A comprehensive safety program is in place at AECI. For instance, safety bulletins are distributed weekly, and procedures are frequently reviewed and updated. Also, a safety briefing is required annually for employees and upon entry for contractors. Adequate training for human health and safety concerns will be mandatory for all construction workers on the

Project Site. Personal safety equipment such as hard hats, ear and eye protection, and safety boots will be required for all workers onsite. Accidents and injuries will be reported to the designated safety officer onsite.

During construction and operation, all used oil generated at the proposed Project Site and other potentially hazardous materials (automotive fluids, spray paint cans, etc.) will be collected and properly handled by a licensed/permitted recycler.

Construction-related hazards will be effectively mitigated by complying with all applicable federal and state occupational safety and health standards, applicable National Electrical Safety Code regulations, and utility design and safety standards.

Risk management associated with hazardous materials is an additional human health and safety concern. To reduce the potential for a release of regulated or hazardous materials during the construction phase of the proposed Project, work will be planned and performed in accordance with OSHA standards and protocols addressing the use of potentially hazardous materials and applicable federal and state environmental regulations. If a hazardous release were to occur, emergency response, cleanup, management, and disposal of contaminated soils will be conducted according to EPA and state standards. Conformance to these standards and procedures will reduce the potential for significant impacts resulting from the release of hazardous materials during the construction phase.

3.15 Summary of Impacts

The following table (Table 3-18) provides a summary of potential impacts by Alternative.

Table 3-18: Summary of Potential Impacts

Resource	Impacts from Proposed Action	No Action Alternative
Air Quality	The existing air quality in the Payne County area is designated as attainment or unclassifiable in regard to the NAAQS for all criteria pollutants. Construction of the Project will generate air emissions that are low and temporary in nature and will not lead to long-term impacts. It is anticipated that the Project would not affect the attainment status for Payne County. The Owners would comply with the issued ODEQ construction air permit that would include emission limitations, monitoring requirements, and other terms and conditions.	The PPAs required to meet load requirements could lead to increased power production from coal-fired facilities, which would lead to worsened air quality.
Biological Resources	The Project will not result in short- or long-term impacts to protected species or their critical habitats for federally endangered or threatened species. Construction and operation of the Project would not result in a significant change to the amount or type of vegetation onsite as it has been continuously hayed and disturbed.	No unique impacts anticipated for this alternative
Cultural Resources	Based on the distance from NRHP properties and the concurrence from SHPO that no historic properties would be affected, it is anticipated that the Project would not have adverse impacts on cultural resources.	No unique impacts anticipated for this alternative.
Geology and Soils	 The Project site would need to be graded and grading design would change the topography to facilitate storm water drainage patterns. Storm water runoff on the Site would be collected and directed to an onsite storm water detention pond. The Site will require excavation for underground utilities and deep structures such as pump pits. For the transmission line, foundation construction would occur after vegetation clearing is complete. Excavated soils from foundation drilling would be used for foundation backfill if appropriate. Surplus soils would be spread within upland areas of the right of way and stabilized. After all line construction is complete, the ROW is restored. Soils at the Project site would be converted to plant site development with much of the area occupied by the facilities and covered by concrete and gravel areas. The transmission line corridor would be cleared but only soil areas at the structure locations would be permanently excavated. Other areas of hydric and statewide important soils would remain largely unaffected by construction and following any necessary stabilization would be available for agriculture and other activities. 	No unique impacts anticipated for this alternative.
Infrastructure, Transportation, Public Health and Safety, and	<u>Utilities:</u> Outages would be required to update the transmission line and to allow for interconnection of the new transmission line. The Project would require minor construction of a water pipeline to connect with the municipal system.	No unique impacts anticipated for this alternative

Resource	Impacts from Proposed Action	No Action Alternative
Hazardous Materials	<u>Transportation</u> : The daily automobile traffic to the site would increase from approximately 25 to 50 vehicles per day in the initial stages of construction to approximately 400 vehicles per day during peak. The traffic would begin to decrease until it reaches approximately 25 vehicles per day near construction completion.	
	No permanent changes to existing roads are anticipated as part of this Project. No permanent damage to roads is anticipated with the implementation of mitigation measures.	
	<u>Public health and safety:</u> Access roads would be blocked from public access. Existing healthcare facilities are anticipated to be sufficient for the Project during construction and operation, and no necessary improvements are anticipated. The Project would have fire suppression measures of its own, as well as facilities for the storage of hazardous materials. No City fire department improvements are anticipated. Police protection would be provided by the Payne County Sherriff's Department during both construction and operations, and no improvements are anticipated.	
	<u>Waste management</u> : Local waste disposal and sanitation facilities are not anticipated to be adversely affected by the additional waste streams generated during construction and operation of the Project. No additional solid wastes would be generated by the Project as byproducts from the production of electricity.	
Land Use, Recreation, Farmland, and	<u>Land use:</u> Construction and operation of the Project would impact the existing grassland land use, however, it will not have a significant impact on prime farmland.	No unique impacts anticipated for this alternative
Coastal Facilities	<u>Recreation:</u> No direct impacts to parks are anticipated. While the Sites may be visible from these parks, several streets with homes, combined with nearby commercial and industrial areas provide visual and sound buffers between the Sites and the existing parks. The transmission line routes primarily extend existing ROW. Construction traffic and any road closures would be temporary in nature and cease after construction is complete.	
	<i>Farmland</i> : No farming activities currently occur at either Site. No farming has occurred in the recent past. No known agricultural buildings and animal dairy confinement operations are located near the Project. In addition, the Project's electrical clearances and ROW width are designed to limit neutral-to-earth and induced voltages that can create concern with livestock operations.	
	<u><i>Coastal:</i></u> No coastal facilities are located within the Project Study Area or macro- corridors. No impacts to coastal facilities are anticipated due to the Project	
Noise	Project construction would result in temporary and minor noise impacts in the	No unique impacts anticipated for

Resource	Impacts from Proposed Action	No Action Alternative
	surrounding area. Construction-related sounds would vary in intensity and duration depending on specific stages and activities of construction but would not be permanent. Nearby residences may temporarily experience increased noise during construction. Minor temporary disturbances to wildlife could occur.	this alternative
	A preliminary noise study was conducted. The results of this study showed noise levels are likely to have moderate to high adverse effects on nearby neighbors. AECI plans to install stack silencers to reduce impacts to the surrounding properties that would be in excess of EPA noise guideline levels.	
Socioeconomics and Environmental Justice	During construction, the Project would create up to 400 jobs during peak activity. The number of workers onsite would begin at nominal levels at the beginning of construction and steadily increase over time, declining as major construction activities are completed. Local businesses near the Facility, such as gas stations, convenience stores, and restaurants, may experience increases in business during construction due to construction workers onsite. This increased demand would cease after construction is complete and would not add considerably to the demand on existing business, services, or community facilities. The Project would create up to 25 full-time permanent jobs. These new permanent employees may be from the local workforce or may relocate to the area for the position. Considering the population of the City of Stillwater and Payne County, the addition of 25 jobs is not anticipated to considerably increase demand for housing, schools, or other	No unique impacts anticipated for this alternative
	The Project would not directly impact any residences, public facilities, farming structures, cemeteries, religious facilities, or other structures. Temporary disruptions to normal traffic may occur during construction as equipment and employees commute to and from the Project. The frequency of the daily workforce automobile traffic would follow the Project workforce numbers onsite at a given time. The daily automobile traffic to the site would increase from approximately 25 to 50 vehicles in the initial stages of construction to approximately 400 vehicles for peak months. The traffic would decrease until it reaches approximately 25 vehicles near construction completion and during operation.	
Visual Resources	The aesthetics of the surrounding area would be altered by the Project. Vegetation would need to be cleared permanently for the Project Site. The Project site would require lighting for safety and security. Light emissions at the Project Site would increase compared to current levels of light emissions as a result of facility lighting. The dominant visual features of the Project would be a stack and other facility equipment at the Project Site.	No unique impacts anticipated for this alternative

Resource	Impacts from Proposed Action	No Action Alternative
	The transmission line upgrades will occur either in or parallel to existing ROW.	
Water Resources	<u>Surface Water</u> : The Site has been chosen to avoid permanently impacting surface water sources.	No unique impacts anticipated for this alternative.
	<i>Groundwater</i> : No groundwater is located on the Site and no groundwater will be used for the Project. Therefore, there would be no impacts to groundwater.	
	<i><u>Floodplain</u></i> : The Site is not within 100- or 500-year floodplains.	
	<u>Wetlands/Riparian</u> : The Project Site has been selected to avoid and minimize wetland impacts as much as practical. All laydown and staging areas necessary for construction have been selected to avoid any wetland impacts. Transmission lines will span all wetlands with no fill discharged to the wetlands.	
	<u><i>Wastewater</i></u> : Facility waste streams from the Project will be directed to an onsite septic system. Process water from the Project and stormwater will be discharged to an onsite settling pond.	

4.0 Cumulative Impacts

The CEQ defines cumulative impacts (40 CFR 1508.7) as the impact on the environment which results from the incremental impact of the action when added to other past, present, and reasonably foreseeable future actions.

The following resources were determined to have no direct effects, therefore no cumulative effects, and will not be further evaluated in this section:

- Land Use, Formally Classified Lands, Geology, Soils, and Farmland
- Floodplains
- Water Resources
- Coastal Resources
- Biological Resources
- Historic and Cultural Resources
- Socioeconomics/Environmental Justice
- Transportation
- Human Health and Safety

4.1 Region of Influence

To determine cumulative effects, impacts on each resource are analyzed for a geographic scope that includes an area footprint appropriate for the resource. Various areas of Payne County were analyzed for regional cumulative impacts. Local utility webpages (<u>https://51erwi.com/current-projects</u>) were accessed. The Oklahoma Department of Transportation interactive GIS website was accessed (<u>https://oklahoma.gov/odot/programs-and-projects0/8-year-construction-work-plan.html</u>) to determine if any road projects are occurring in the area. News articles were researched, and discussions were held with local agencies. The identified actions are described in the following section.

4.2 Past, Present, and Reasonably Foreseeable Future Actions

Past actions that have affected the resources of the area include:

- Private agriculture near the Site is now common, which resulted in the removal of native vegetation;
- Railroad development took place, setting aside land for rail and removing it from other uses;
- Construction of roadways removed land from use and created on-going air and noise sources;
- Construction of the existing transmission line directly south of the proposed Ripley Energy Center took land out of use and spanned several wetlands;
- Construction of the existing Stillwater Substation took land out of use;
- Construction of the existing water pipeline near the proposed Ripley Energy Center took land out of use.

Present actions that have affected the resources of the area may include:

- Asphalt plant to the northwest of Ripley Energy Center will impact its immediate footprint for various resources; and
- Transmission line upgrades independent of the Proposed Action have the potential to locally affect various resources.

Reasonably foreseeable actions that may affect the resources of the area include the following:

- The State of Oklahoma has established a Priority Action Plan (PAP) that was submitted to EPA on February 29, 2024 (ODEQ, 2024)², as part of the Inflation Reduction Act grant process. The PAP presents the State's intention to reduce GHG emissions by following "Priority Measures" that support the development of solar farms and increase grid resiliency.
- Transmission line upgrades to accommodate the Proposed Action, but not associated with the Proposed Action have the potential to locally affect various resources.
- Highway projects including resurfacing SH-108 adjacent to the Site will have minimal effects during construction but no additional long-term effects are anticipated.

The various entities involved in implementing each of these actions would have been and are required to obtain their own permits, clearances, and/or licenses prior to construction and operation of their respective actions. These entities would also be responsible for the on-going maintenance and compliance of their actions. The potential cumulative impacts on each resource are described in the following sections.

4.2.1 Wetlands and Water Bodies

As discussed in Section 3.3.1, several wetlands and water bodies were identified for the Project Area, and there are more adjacent to the site. Due to their abundance in the Study Area, it seems likely that past projects may have impacted and likely altered wetland and water bodies in the region. Present and future actions are subject to federal permitting requirements that may not have existed previously. While the identified present and future actions in the area may also have the potential to impact wetlands and water bodies, each of the entities undertaking those actions will be required to survey, permit, and/or mitigate impacts to wetlands, implementing what the USACE determines is appropriate. It is anticipated that wetlands impacts will mostly be avoidable for these other actions. Therefore, there are not anticipated to be significant cumulative impacts to wetlands in the area.

4.2.2 Aesthetics

The landscape of Payne County has been altered by residential and business development, and agriculture. Construction of identified past activities required vegetation clearing and in some instances, built permanent visual features into the viewshed (e.g., existing transmission line and other community infrastructure).

The aesthetics of the surrounding area could be altered by reasonably foreseeable future actions. Vegetation could need to be cleared and light emissions from construction could occur. However, none of the identified future actions are likely to cause long-term effects,

² <u>https://www.deq.ok.gov/wp-content/uploads/air-division/CPRGOK_Priority_Action_Plan.pdf</u>

having a limited footprint. Overall, the aesthetics of the area are not anticipated to significantly change.

4.2.3 Air Quality

Past actions would have contributed to construction emissions and vehicle emissions in the area. Present actions have the potential to temporarily impact air quality during construction and operation. Construction activities are typically intermittent and temporary in nature, ceasing after construction is complete. During operation, the asphalt plant is likely to have air emissions, but would get an air permit to operate.

The identified future actions are reasonably actions are expected to have minimal and temporary air emissions during construction, but minimal additional emissions in the long term. The State of Oklahoma does not have any definitive GHG emissions reduction goals (C2ES, 2023)³, but as mentioned, it has submitted a PAP with actionable Priority Measures as part of the Inflation Reduction Act grant process. The Ripley Energy Center fosters these Priority Measures by providing reliable, fast-start capacity to cover solar shortfalls and improved transmission facilities.

There is no current state policy mandating GHG emissions reductions, and the PAP presents anticipated GHG emissions levels in 2050 that are very similar to the projected existing levels (i.e., "Business As Usual"). The increases associated with the Ripley Energy Center will be minimal over current levels (~0.5% of State total GHG). Cumulatively, emissions are not anticipated to substantially impact the overall air quality in the region, as the ODEQ and EPA regulate activities to maintain ambient air quality. Therefore, no adverse cumulative impacts to air quality are anticipated as a result of the identified actions.

4.2.4 Noise

Existing residential and agricultural activities, and associated traffic all currently contribute to noise in the Study Area. Identified past actions may have increased existing noise during construction, and the addition of large roadways has created a long-term source of noise in the area. The identified present and future actions will have temporary construction noise associated with them.

Operational impacts from most of the actions are anticipated to be negligible long-term. The asphalt plant and existing substation will have localized noise impacts and the roadways are a long-term source of noise in the community. There have been localized cumulative noise impacts near the Project Site from the various actions, but none are currently considered adverse cumulative noise impacts because most of the actions are expected to have no long-term impact or are far enough away to not create cumulative impacts.

³ https://www.c2es.org/document/greenhouse-gas-emissions-targets/

5.0 Summary of Mitigation

The following Table 5-1 is a summary of mitigation proposed for the Project by resource.

Table 5-1:Summary of Mitigation

Resource	Potential Environmental Consequences	Mitigation Measures Required	Intensity of Residual Effects
Land Use, Formally Classified Lands, Geology, Soils, and Farmland	Construction and operation of the Project will occur on previously disturbed land within the Facility boundary. Land use within the area is expected to change from agricultural to industrial for a small portion of the site, and land not used for facilities will likely still be hayed.	No mitigation measures are anticipated.	Minimal
Floodplains	Construction will not occur in any floodplains.	No mitigation measures are anticipated.	None
Wetlands and Water Bodies	11.53 acres of wetlands and eight streams are present within the construction zone and have the potential to be impacted by the Project and associated transmission line construction.	All wetlands will be spanned by transmission structures and no fill will enter any waterways. No other mitigation measures are anticipated.	Low
	A new 8-inch water pipeline will supply water to the facility and connect to an existing water transmission main.	Facility will have its own dedicated water supply. No mitigation is necessary.	Not Applicable
Water Resources	Soil erosion and stormwater runoff into nearby streams and rivers may impact waterways during construction.	Before construction activities commence, AECI's EPC contractor will apply for the appropriate ODEQ NPDES Construction Stormwater permit and will follow all requirements of the permit. AECI's EPC contractor will prepare a SWP3 that will describe the BMPs to be implemented during construction.	Minimal
	Stormwater runoff into nearby streams and rivers may impact waterways during operation.	Once the EPC files the Notice of Termination (NOT) and ODEQ inspects the site and it passes, that will conclude the construction stormwater permit obligation. AECI's operational runoff for the plant will be covered in the facility's water permit.	Minimal
Threatened and Endangered Species	The Project may affect but is not likely to adversely affect the tricolored bat or monarch butterfly.	Tree clearing will occur outside of tricolor bat roosting season.	Minimal

Resource	Potential Environmental Consequences	Mitigation Measures Required	Intensity of Residual Effects
	Potential bird strikes on transmission lines may occur.	There is no suitable habitat for migratory birds or eagles on the Project Site, and no forest clearing will be undertaken. AECI/KAMO will install bird diverters on the transmission lines where they cross water features, thereby reducing the likelihood of collisions.	None
Vegetation	Construction will occur on previously disturbed soils on an active hay field.	No mitigation measures are anticipated.	Not Applicable
	It is not expected that construction related disturbances will provide an opportunity for the establishment of invasive species as the area will not be conducive to the growth of vegetation.	No mitigation measures are anticipated.	None
Wildlife	Facility will be built on an existing hay field. Habitat and foraging characteristics will be permanently removed before and after the Project.	No mitigation measures are anticipated.	Minimal
	During construction, noise and activity may drive wildlife out of the area immediately surrounding the Project.	No mitigation is needed. After construction ends, wildlife will return.	Minimal
	Construction activities will not introduce or spread invasive species in the area.	No mitigation measures are anticipated.	None
Historical and Cultural Properties	Construction will occur on previously disturbed soils and no eligible resources were identified.	No mitigation measures are anticipated. An Unanticipated Discovery Plan has been created.	Minimal
Aesthetics	There will likely be visual contrast from the new Facility.	General landscaping and No mitigation measures are anticipated.	None

Resource	Potential Environmental Consequences	Mitigation Measures Required	Intensity of Residual Effects
	Air emissions from construction are low and temporary in nature, fall off rapidly with distance from the construction site, and will not result in any long-term impacts.	 Fugitive dust control measures will include, but are not limited to, the following: Applications of water; Paving or watering of roadways after completion of grading; Reduction in speed on unpaved roadways to 15 miles per hour or less; Use of sweepers or water trucks to remove mud at points of public street access; and Stabilization of dirt storage piles by seedling and mulching, tarps, or barrier fencing. 	Minimal
Air Quality	Emissions from construction activities can be difficult to quantify, as they are dependent on the number and type of construction vehicles in operation at any given point during construction, the number of construction workers driving to and from the site, and the number and type of construction activities occurring, etc.	Air emissions from construction equipment are low and temporary in nature, fall off rapidly with distance from the construction site, and will not result in any long-term impacts. No mitigation is anticipated.	Minimal
	Emissions will occur from operation of the Project	Air emission calculations have determined that the Project will not be a major PSD source and only requires a construction permit through the minor source permitting process. All equipment will meet the applicable NSPS and NESHAP limits. The Project will include an SCR system to control NO _x emissions and an oxidation catalyst to control emissions of CO. Good combustion practices and the use of clean fuels will mitigate emissions of PM ₁₀ and PM _{2.5} . AECI will comply with the requirements in the air construction permit, once received. A Title V operating permit will be applied for within 12 months after the commercial operation date.	Low
Socioeconomic and Community Resources	Project will generally have a positive impact on the socioeconomics of the surrounding areas. Project is not located within an environmental justice area.	No mitigation measures are anticipated.	None

Resource	Potential Environmental Consequences	Mitigation Measures Required	Intensity of Residual Effects
Noise	Noise will be produced from the construction equipment and activities. Actual noise levels generated by construction will vary on a daily and hourly basis, depending on the activity that is occurring, and the types and number of pieces of equipment that are operating.	Any excessive construction noise should be of short duration and have minimal adverse long-term effects on land uses or activities associated with the Project area.	Minimal
	Noise will be produced from the operation of the Project.	Sound mitigation measures will be included in the base design of the Project. Details of these measures will be determined as the Project proceeds.	Minimal
Turana da kita a	Construction of the Project will cause increased traffic in the area surrounding the Project.	As construction and operation of the proposed Project will have only temporary impacts on transportation, no mitigation measures are anticipated.	Minimal
Transportation	Damage to existing roads during construction.	Roadways will not be purposefully damaged. In the event this does occur, repairs for damage caused by construction activities will be made when appropriate.	Minimal
	EMF will be strongest directly under the transmission line and decreases with increasing distance from the transmission line ROW. The proposed Project is not anticipated to significantly increase the existing EMF levels in the current transmission corridor.	No mitigation necessary.	None
Human Health and Safety	During construction, the site will be managed to prevent harm to the general public. The general public will not be allowed to enter any construction areas associated with the proposed Project. The major risk to the general public will be from an increase in traffic volume on the roadways near the proposed Project as a result of commuting construction workers and transportation of equipment and materials.	Perimeter fences and controlled access will remain in place throughout the construction and future operation of the Project. Increases in traffic will be temporary in nature and following construction will decrease to acceptable, safe travel levels.	Minimal

Resource	Potential Environmental Consequences	Mitigation Measures Required	Intensity of Residual Effects
	There are a number of risks to human health and safety possible in the course of constructing and operating a power plant including hazards such as fire, slips, trips, falls, electrical hazards, confined space entry, and many others. Additionally, hazardous substances or wastes may be released, generated, or required for construction and operation of the Facility.	A comprehensive safety program is in place at AECI. For instance, a safety briefing is required annually for employees and upon entry for contractors. Adequate training for human health and safety concerns will be mandatory for all construction workers on the Project site. Personal safety equipment such as hard hats, ear and eye protection, and safety boots will be required for all workers onsite. Accidents and injuries will be reported to the designated safety officer onsite.	Minimal
	Construction and operation of the proposed Project will also involve the use and storage of regulated and hazardous materials. During construction, diesel fuel, gasoline, and lubricating oils from heavy equipment and vehicles may accidentally leak or spill. Hydraulic fluid, paints, and solvents will likely be used during the construction phase as well. Additionally, the presence of aboveground fuel storage tanks and oil-filled equipment present the potential to release into the environment.	Risk management associated with hazardous materials is an additional human health and safety concern. To reduce the potential for a release of regulated or hazardous materials during the construction phase of the proposed Project, work will be planned and performed in accordance with OSHA standards and protocols addressing the use of potentially hazardous materials and applicable federal and state environmental regulations. If a hazardous release were to occur, emergency response, cleanup, management, and disposal of contaminated soils will be conducted according to EPA and State standards. Conformance to these standards and procedures will reduce the potential for significant impacts resulting from the release of hazardous materials during the construction phase.	Minimal

6.0 Coordination, Consultation, and Correspondence

The following sections detail the agency and tribal coordination efforts completed for the Project and public involvement plan.

6.1 Public Involvement

The AECI Project team met with the Mayor of Ripley on November 3, 2023. The mayor expressed no concerns about the project.

A public open house was held on December 14, 2023, at the Payne County Expo Center Heritage Hall in Stillwater, OK. Several methods of outreach were used to inform the public of this meeting. Approximately 3,000 email invitations and 4,000 postcards were sent, and a social media campaign was conducted which reached 5,903 people. At the public open house, there were 66 in-person attendees. No written comments were received at the meeting; however, two email inquiries were received regarding career opportunities.

Prior to the public open house, members of AECI met with Blaine Arthur, the Oklahoma Secretary of Agriculture and Kaleb Hoffman, the Superintendent of Ripley Public Schools. Ms. Author and Mr. Hoffman expressed concern about the location of the project being slightly outside the Ripley school district, which would limit tax benefits for the Ripley community.

6.2 Agency Consultation

Letters were sent to agencies to inform agency contacts that AECI had engaged RUS and was requesting financing for the Project. The letter provided a Project description and explained that the action triggers an EA. The agencies were provided with this information on the Project as an opportunity to ask questions and provide initial feedback. Agency correspondence is provided in Appendix D. Table 6-1 provides a list of agencies who received letters.

Agency	Date(s)	Contact	Response		
	Federal Agencies				
USACE ¹	June 9, 2023 March 25, 2024	Tulsa District	Response to Approved Jurisdictional Determination request received May 1, 2024, indicating four non-jurisdictional wetlands onsite and no permit required.		
USEPA ²	June 8, 2023	Earthea Nance	No response received		
USDA - NRCS	June 8, 2023	Stacy Riley/Jacob Bushong	Project required Form AD-1006 Farmland Conversion Impact Rating be filled out. Follow up resulted in score well below the Farmland Protection Policy Act thresholds.		
USFWS ³	June 8, 2023	Laurence Lavesque	Also spoke with Matt Fullerton in the Tulsa office regarding bats; he stated no consultation required.		
FAA	June 8, 2023	Luke Wray			

Table 6-1: RUS Scoping Letter Distribution

State Agencies					
OK SHPO	June 8, 2023 June 16, 2023	Lynda Ozan	Follow-up letter sent with Cultural Resources Report resulted in finding that no historic properties affected by Project.		
OK DOT	June 8, 2023	Dawn Sullivan/Emily Pehrson	Email response stated no conflicting construction projects in the area.		
OK Corporate Commission	June 8, 2023	Matt Skinner	No response received		
OK Archaeological Survey	June 8, 2023 June 16, 2023	Kary Stackelbeck	Follow-up letter sent with Cultural Resources Report resulted in concurrence with findings of the SHPO.		
OK Water Resources Board	June 8, 2023	Chris Neel	Phone call follow up resulted in no concern regarding Project.		
OK DEQ	June 8, 2023	Scott Thompson/Jon Roberts	Email response stated no adverse environmental impacts under DEQ jurisdiction.		
OK Dept of Wildlife	June 8, 2023	J.D. Strong	No response received		
	Local Agencies				
Payne County Administrator	June 8, 2023	Chris Reding	No response received		

¹ United States Army Corps of Engineers

² Environmental Protection Agency

³ United States Fish and Wildlife Service

Agencies that responded expressed no concern regarding the Project. In general, agencies responded that the Project should obtain permits if needed prior to any construction.

6.2.1 Federal Permitting

Appendix H provides the Federal permits and approvals required for the Project.

6.2.2 State Agency Coordination

The following sections provide details about specific State agency coordination and correspondence, as well as a list of state permits required for the Project.

6.2.2.1 Oklahoma Department of Energy

AECI met with Oklahoma Secretary of Energy, Ken McQueen, and the on April 27, 2023. The purpose and need of the project was discussed along with the proposed location and a potential project schedule. No concerns were expressed at the time.

6.2.2.2 Oklahoma Archaeological Society

The Oklahoma Archaeological Survey (OAS) was sent a letter on June 8, 2023, with details about the Project. Upon review, the OAS determined that an archaeological field inspection was necessary along portions of the transmission line to be upgraded. The archaeological field inspection was deemed necessary due to the topographic and hydrologic setting of the Project.

Findings from the inspection were provided to OAS, with a recommended finding of no effect. The OAS concurred with this finding.

6.2.2.3 Oklahoma Department of Environmental Quality

The ODEQ Director, Business & Regulatory Affairs also met with AECI on April 27, 2023. The meeting provided a general overview of the proposed project along with a permitting matrix that outlined the expected permits that would be needed for the project. ODEQ was also sent a letter on June 8, 2023, with details about the Project, to which ODEQ responded via email on June 16, 2023. ODEQ did not anticipate any adverse environmental impacts under ODEQ jurisdiction.

6.2.2.3.1 Air Permitting

AECI and their contractor held several project pre-application meetings concerning air permitting with ODEQ representatives, including Phillip Fielder (Chief Engineer) and Joseph Wills (Dispersion modeling lead), over the course of the project. Pursuant to the requirements specified in the Oklahoma Administrative Code Title 252, Chapter 100, to which AECI submitted a construction air permit application on 12/22/23. A notice of administrative completion for the application was received on 3/26/24. Comments will be accepted during the 30-day public comment period after the draft permit has been completed. The ODEQ provided notification of the air permit approval and will issue the final permit after all comments are addressed.

6.2.3 Oklahoma State Historic Preservation Office

A letter was sent to the Oklahoma SHPO on June 8, 2023, providing preliminary information about the Project. The SHPO concurred with all findings in the cultural survey and subsequent correspondence.

6.2.4 State Permitting

Appendix H provides the State permits and approvals required for the Project. The table includes permits that are related to the overall AECI Project, including permits that are the responsibility of entities other than AECI.

6.3 Tribal Coordination

On June 16, 2023, Section 106 Consultation Letters that provided preliminary Project details were mailed by RUS to the tribes listed below.

- Apache Tribe of Oklahoma
- Cherokee Nation
- Cheyenne and Arapaho Tribes, Oklahoma
- Muscogee (Creek) Nation
- Osage Nation
- Otoe-Missouria Tribe of Indians, Oklahoma
- Wichita and Affiliated Tribes (Wichita, Keechi, Waco, and Tawakonie), Oklahoma

Section 106 Consultation Letters containing further details about the Project were mailed to the tribes listed above on November 29, 2023. The expected 30-day timeline for the second round of letters was January 5, 2023. The Osage Nation contacted RUS after this date to request changes to the cultural report and the Unanticipated Discovery Plan. The changes were made and a response was submitted to the Osage Nation on February 27, 2024. The Osage Nation sent a letter of concurrence on March 1, 2024.

Local Coordination 6.4

AECI held a phone call on February 28, 2024, with the neighboring landowner due west of the project boundary, whose pond would ultimately receive the effluent water leaving the facility. AECI provided an overview of the Project and explained that with the current design his pond would receive the Project's effluent water after it was discharged from the constructed process pond and then flowed through the series of two existing ponds on AECI property. It was explained that the facility will have a NPDES permit from the ODEQ regulating the limits of any pollutants in the discharge water. AECI provided information on expected NPDES permit limits related to similar simple cycle units. Further questions from the landowner are included in the following table (Table 6-2).

Question	AECI Response		
Has AECI built other plants like this facility in other locations?	Yes, AECI provided an overview of all the power plants AECI owns and then provided information on the power plants AECI owns that are Peaker units like this proposed facility. Additional information was provided explaining what a Peaker unit was and that it would be limited to a run time capacity of 43%		
What percentage of run time on natural gas versus fuel oil has AECI experienced at their similar facilities?	A very low percentage and running off fuel oil only happens when natural gas prices get very high and exceed the price of fuel oil. Recent winter storms over the last several years have created these scenarios, but overall run time on fuel oil is 1% or less and the facilities are allotted limited hours on the air permit to run on fuel oil.		
What has AECI's experience been when running on fuel oil related to smoke emissions?	The facility will be outfitted with emissions controls, such as Selective Catalytic Reduction (SCR) controls, oxidation catalyst, and water injection to control Nitric Oxides (NOx). Further, the facility's air permit would limit the opacity of the emissions. While there may be a brief period of visible emissions during a cold start-up on fuel oil or during the switch from natural gas to fuel oil, there should not be a noticeable difference in emissions once running at operating level on fuel oil.		
What can he expect for noise at his property?	The project is targeting 60DB or less at nearby rural residential homes.		
What has AECI's research shown to how the project will impact property values?	AECI does not have any information on how the facility would impact his property values but understood the landowners concern that most people do not want to live across the road of an industrial facility.		
What kind of water use does AECI expect at the facility?	Simple cycle plants, versus other types of power plants, use relatively little water. The amount of process water discharged is expected to vary with operation and weather. While detailed design is not complete, preliminary modeling shows discharged process water while the plant is operating to be in the range of 7GPM to 25GPM.		

Table 6-2: Landowner Communication

The following coordination occurred related to the Proposed Action, outside of AECI's public outreach meeting:

- Throughout the fall of 2023 AECI met with:
 - Mayor of Ripley, Oklahoma to discuss the Project and provided stakeholder information through a slide deck.
 - Oklahoma Energy Secretary, ODEQ Director of Economic Development.
 - Hosted a call with Ripley School Superintendent and County Commissioner to share Project information slide deck.
- February 2024
 - Hosted call with neighboring landowner to the west of the Project. The Project was discussed, and questions were answered that the neighbor had related to the Project including air, noise, and water effluent.

6.5 Locations for Public Review of EA

This EA was made available to the public for a 14-day public review and comment period beginning on August 1, 2024. Notice of Availability of the document for review and comment was published in the following newspapers:

- Cushing Citizen (July 31, 2024)
- Yale News (August 1, 2024)

Copies of the EA were made available for public review at RUS, 1400 Independence Avenue, SW, Washington DC 20250-3201; on the RUS website at

https://www.rd.usda.gov/resources/environmental-studies/assessment/ripley-energy-center; at the headquarters of AECI at 2814 South Golden Avenue, Springfield, Missouri 65807; and at the following libraries:

Cushing Public Library	Yale Public Library
215 North Steele Avenue	213 North Main Street
Cushing, Oklahoma 74023	Yale, Oklahoma 74085

All comments from reviewers were directed to be sent via email to <u>RUSPublicComments@usda.gov</u> or via mail addressed to:

Environmental and Historic Preservation Division USDA, Rural Utilities Service Environmental Protection Specialist 1400 Independence Avenue SW Room 2244, Stop 1571 Washington, DC 20250-1571

RUS received no comments on the draft EA. Should RUS choose to issue a FONSI for the Proposed Action, a newspaper notice will be published informing the public of the RUS finding and the availability of the EA and FONSI. The notice shall be prepared in accordance with RUS guidance.

7.0 References

Center for Climate and Energy Solutions (C2ES), 2021. *Natural Gas.* <u>https://www.c2es.org/content/natural-gas/</u>. Retrieved July 2021.

- C2ES, 2023, U.S. State Greenhouse Gas Emissions Targets. Retrieved 18 June 2024 from https://www.c2es.org/document/greenhouse-gas-emissions-targets/
- Council on Environmental Quality (CEQ), 1997. Environmental Justice: Guidance Under the National Environmental Policy Act. Executive Office of the President. Washington, DC, USA.
- Cowardin, L.M., V Carter V., F.C. Golet, E.T. Laroe, 1979. *Classification of Wetlands and Deepwater Habitats of the United States. U.S. Fish and Wildlife Service Report On. FWS/OBS/-79/31. Washington D.C.*
- Environmental Laboratory, 1987. "Corps of Engineers Wetlands Delineation Manual," Technical Report Y-87-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Executive Order 12898. Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations. 1994.
- Executive Order 13990. Protecting Public Health and the Environment and Restoring Science to Tackle the Climate Crisis. 2021.
- Executive Order 14008. Tackling the Climate Crisis at Home and Abroad. 2021.
- Federal Highway Administration (FHWA), 2018, Highway Construction Noise Handbook. Retrieved 30 September 2022 from <u>https://www.fhwa.dot.gov/environment/noise/construction_noise/handbook/</u>
- Intergovernmental Panel on Climate Change (IPCC), 2007. AR4 Climate Change 2007: Synthesis Report. Accessed December 2021 from <u>https://www.ipcc.ch/report/ar4/syr/</u>.
- International Commission on Non-Ionizing Radiation Protection, 2010. ICNIRP Guidelines for limiting exposure to time-varying Electric and Magnetic Fields (1 Hz - 100 kHz). Retrieved 30 September 2022 from <u>https://www.icnirp.org/cms/upload/publications/ICNIRPLFgdl.pdf</u>
- Interagency Working Group on the Social Cost of Greenhouse Gases (IWG), 2021. Technical Support Document: Social Cost of Carbon, Methane, and Nitrous Oxide Interim Estimates under Executive Order 13990.
- Kansas Department of Wildlife and Parks (KDWP), 2023. Retrieved 5 September 2023 from <u>https://ksoutdoors.com/Services/Threatened-and-Endangered-Wildlife/All-</u> <u>Threatened-and-Endangered-Species/PEPPERED-CHUB</u>.

Lackner, et al., 2021. *Pricing Methane Emissions from Oil and Gas Production.* Accessed November 2021 from https://www.odf.org/sites/dofault/files/content/Pricing%20Methane%20Emission

https://www.edf.org/sites/default/files/content/Pricing%20Methane%20Emissions%2 Ofrom%20Oil%20and%20Gas%20Production.pdf.

- Missouri Department of Conservation (MDC). Alligator Snapping Turtle. Retrieved 5 September 2023 from <u>https://mdc.mo.gov/discover-nature/field-guide/alligator-snapping-turtle#:~:text=The%20preferred%20habitats%20include%20deep,over%20a%20three%</u>2Dyear%20period.
- Multi-Resolution Land Characteristics (MRLC) Consortium, 2019. Retrieved from <u>https://www.mrlc.gov/viewer/</u>.
- National Institute of Environmental Health, 2002. Electric and Magnetic Fields Associated with the Use of Electric Power. Retrieved 30 September 2022 from <u>https://www.niehs.nih.gov/health/materials/electric_and_magnetic_fields_assoc_iated_with_the_use_of_electric_power_questions_and_answers_english_508.pdf</u>
- Northwest Power and Conservation Council (NPCC), 2020. Upstream Methane Emissions and Power Planning. <u>https://www.nwcouncil.org/sites/default/files/2020_01_p3.pdf</u>. Retrieved May 2023.
- Oklahoma Climatological Survey, 2021. Normal Annual Precipitation. Retrieved from <u>https://climate.ok.gov/index.php/climate/map/normal_annual_precipitation/oklahom</u> <u>a_climate</u>.
- Oklahoma Department of Environmental Quality (ODEQ), 2012. Advice for Obtaining "Permit Exempt" Applicability Determinations. Retrieved 7 September 2023 from <u>https://www.deq.ok.gov/wp-content/uploads/air-</u> <u>division/PG Permit Exempt Applicability Determination Advice.pdf</u>.
- ODEQ. 2024. Oklahoma's Priority Action Plan. Retrieved 19 June 2024 from https://www.deq.ok.gov/wp-content/uploads/airdivision/CPRGOK_Priority_Action_Plan.pdf
- Oklahoma Department of Wildlife Conservation (ODWC). Oklahoma Field Guide. Retrieved 23 February 2024 from <u>https://www.wildlifedepartment.com/wildlife/field-guide</u>.
- OWDC. Arkansas River Shiner. Retrieved 5 September 2023 from <u>https://www.wildlifedepartment.com/wildlife/field-guide/fish/arkansas-river-shiner</u>.
- Oklahoma National Heritage Inventory (OHNI). Retrieved 23 February 2024 from <u>http://oknaturalheritage.ou.edu/content/biodiversity-info/endangered-species/</u>.
- Oklahoma Water Resources Board (OWRB), 2022. Public Water Supply Systems in Oklahoma. Retrieved from

https://owrb.maps.arcgis.com/apps/webappviewer/index.html?id=68c5f3fd492a43ee 8386f39a80f88afb

- U.S. Army Corps of Engineers (USACE), 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Great Plains Region (Version 2.0), ed. J. S. Wakeley, R. W. Lichvar, and C. V. Noble. ERDC/EL TR-10-1. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
- U.S. Census Bureau (USCB), 2019. "Annual Estimates of the Resident Population: April 1, 2010 to July 1, 2019." Retrieved from <u>https://data.census.gov/table/PEPPOP2019.PEPANNRES?q=Oklahoma&g=050XX00U</u> <u>S40119_1400000US40119011101_1500000US401190111013&d=PEP_Population</u> <u>Estimates.</u>
- USCB, 2020a. "RACE." American Community Survey, ACS 5-Year Estimates Detailed Tables, Table B02001. Retrieved from <u>https://data.census.gov/table/ACSDT5Y2020.B02001?q=Oklahoma&g=050XX00US4</u> 0119_1400000US40119011101_150000US401190111013.
- USCB, 2020b. "EMPLOYMENT STATUS." American Community Survey, ACS 5-Year Estimates Subject Tables, Table S2301. Retrieved from <u>https://data.census.gov/table/ACSST5Y2020.S2301?g=Oklahoma&g=050XX00US401</u> <u>19 1400000US40119011101 1500000US401190111013.</u>
- USCB, 2020c. "INCOME IN THE PAST 12 MONTHS (IN 2020 INFLATION-ADJUSTED DOLLARS)." American Community Survey, ACS 5-Year Estimates Subject Tables, Table S1901. Retrieved from https://data.census.gov/table/ACSST5Y2020.S1901?q=Oklahoma&g=050XX00US4011 9_1400000US40119011101_1500000US401190111013.
- USCB, 2020d. "POVERTY STATUS IN THE PAST 12 MONTHS OF FAMILIES." American Community Survey, ACS 5-Year Estimates Subject Tables, Table S1702. Retrieved from https://data.census.gov/table/ACSST5Y2020.S1702?q=Oklahoma&g=050XX00US401 19_1400000US40119011101_1500000US401190111013.
- USCB, 2020e. "SELECTED CHARACTERISTICS OF THE TOTAL AND NATIVE POPULATIONS IN THE UNITED STATES." American Community Survey, ACS 5-Year Estimates Subject Tables, Table S0601. Retrieved from <u>https://data.census.gov/table/ACSST5Y2020.S0601?q=Oklahoma&g=050XX00US401</u> <u>19 1400000US40119011101 1500000US401190111013.</u>
- USCB, 2021. "Annual Estimates of the Resident Population for the United States, Regions, States, District of Columbia, and Puerto Rico: April 1, 2020 to July 1, 2021." Retrieved from <u>https://data.census.gov/table/PEPPOP2021.NST_EST2021_POP?g=Oklahoma&g=050</u> XX00US40119_1400000US40119011101_1500000US401190111013&d=PEP Population Estimates.
- U.S. Federal Emergency Management Agency (FEMA), 2016. National Flood Hazard Area. Retrieved 3 October 2022 from <u>https://hazards-</u> <u>fema.maps.arcgis.com/apps/webappviewer/index.html?id=8b0adb51996444d487933</u> <u>8b5529aa9cd</u>

- U.S. Department of Agriculture (USDA), 2019. Soils layer retrieved 30 September 2022 from <u>https://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx</u>.
- U.S. Environmental Protection Agency (USEPA), 2017. *Greenhouse Gas Reporting Rule, Table A-1 to Subpart A of Part 98, Title 40.* Accessed Sept 28 2023 from https://www.ecfr.gov/current/title-40/appendix-Table%20A-1%20to%20Subpart%20A%20of%20Part%2098.
- USEPA, 2021. *Basics of Climate Change.* Retrieved December 2021 from <u>https://www.epa.gov/climatechange-science/basics-climate-</u> <u>change.%20Retrieved%20December%202021</u>
- USEPA, 2022. Available and Emerging Technologies for Reducing Greenhouse Gas Emissions from Combustion Turbine Electric Units. Retrieved from <u>https://www.epa.gov/stationary-sources-air-pollution/white-paper-available-and-</u> <u>emerging-technologies-reducing</u>.
- USEPA, 2023a. *Greenhouse Gas Emissions.* Accessed June 2023 from <u>https://www.epa.gov/ghgemissions/overview-greenhouse-gases.</u>
- USEPA, 2023b. *Greenhouse Gas Inventory Data Explorer.* Retrieved June 2023 from https://cfpub.epa.gov/ghgdata/inventoryexplorer/#iallsectors/allsectors/allgas/gas/a
- USEPA, 2023c. *EPA Inventory of U.S. Greenhouse Gas Emissions and Sinks.* Retrieved June 2023 from https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks
- USFWS. Information for Planning and Consulting. Retrieved from <u>https://ipac.ecosphere.fws.gov/</u>.
- USFWS, 2023a. National Wetlands Inventory. Retrieved from <u>https://fwsprimary.wim.usgs.gov/wetlands/apps/wetlands-mapper/</u>.
- USFWS, 2023b. Piping Plover. Retrieved 5 September 2023 from <u>https://www.fws.gov/species/piping-plover-charadrius-melodus</u>.
- USFWS, 2023c. Rufa Red Knot. Retrieved 5 September 2023 from https://www.fws.gov/species/rufa-red-knot-calidris-canutus-rufa.
- USFWS, 2023d. American Burying Beatle. Retrieved 5 September from <u>https://www.fws.gov/species/american-burying-beetle-nicrophorus-americanus</u>.
- USFWS, 2023e. Tricolored Bat. Retrieved 5 September 2023 from <u>https://www.fws.gov/species/tricolored-bat-perimyotis-subflavus</u>.
- U.S. Geological Survey (USGS), 2019. Geology layer retrieved 30 September 2022 from <u>https://mrdata.usgs.gov/mrds</u>.

Woods, A.J., Omernik, J.M., Butler, D.R., Ford, J.G., Henley, J.E., Hoagland, B.W., Arndt, D.S., and Moran, B.C., 2005. Ecoregions of Oklahoma. Retrieved from <u>https://gaftp.epa.gov/EPADataCommons/ORD/Ecoregions/ok/ok_front.pdf</u>.

8.0 List of Preparers

The environmental review for the Project was prepared by RUS, AECI, and Burns & McDonnell Engineering Company, Inc. The following is a list of preparers of this document.

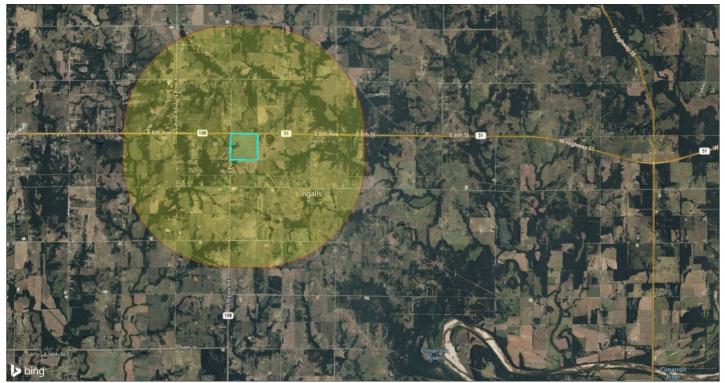
Rural Utilities Services

• Environmental and Historic Preservation Division

Associated Electric Cooperative Inc.

- Rob LeForce, Environmental Analyst Land & Water Resources
- Blake Pinkerton, Manager Air Quality

Burns & McDonnell Engineering Company, Inc.


- Chris Howell, Project Manager
- Chris Mallott, Assistant Environmental Scientist
- Taylor Volkers, Assistant Environmental Engineer
- Jessi Schoolcraft, Assistant Environmental Engineer
- Tess Fuller, Senior Environmental Engineer
- Michael Davis, Senior Cultural Resources Specialist
- Christa Wisniewski, Section Manager Natural and Cultural Resources

APPENDIX A - NEPASSIST

NEPAssist Report Ripley Energy Center

A3 Landscape

March 18, 2024 Project Buffer Ripley Energy Center © 2024 Microsoft Corporation © 2024 Maxar ©CNES (2024) Distribution Airbus DS © 2024 TomTom

96.908144,36.116555,-96.907951	
Project Area	0.24 sq mi
Within 2 miles of an Ozone 1-hr (1979 standard) Non-Attainment/Maintenance Area?	no
Within 2 miles of an Ozone 8-hr (1997 standard) Non-Attainment/Maintenance Area?	no
Within 2 miles of an Ozone 8-hr (2008 standard) Non-Attainment/Maintenance Area?	no
Within 2 miles of an Ozone 8-hr (2015 standard) Non-Attainment/Maintenance Area?	no
Within 2 miles of a Lead (2008 standard) Non-Attainment/Maintenance Area?	no
Within 2 miles of a SO2 1-hr (2010 standard) Non-Attainment/Maintenance Area?	no
Within 2 miles of a PM2.5 24hr (2006 standard) Non-Attainment/Maintenance Area?	no
Within 2 miles of a PM2.5 Annual (1997 standard) Non-Attainment/Maintenance Area?	no
Within 2 miles of a PM2.5 Annual (2012 standard) Non-Attainment/Maintenance Area?	no
Within 2 miles of a PM10 (1987 standard) Non-Attainment/Maintenance Area?	no
Within 2 miles of a CO Annual (1971 standard) Non-Attainment/Maintenance Area?	no
Within 2 miles of a NO2 Annual (1971 standard) Non-Attainment/Maintenance Area?	no
Within 2 miles of a Federal Land?	no
Within 2 miles of an impaired stream?	yes
Within 2 miles of an impaired waterbody?	no
Within 2 miles of a waterbody?	yes
Within 2 miles of a stream?	yes
Within 2 miles of an NWI wetland?	Available Online
Within 2 miles of a Brownfields site?	no

Input Coordinates: 36.116555,-96.907951,36.116382,-96.899111,36.109396,-96.899025,36.109448,-96.908144,36.116555,-96.907951

Within 2 miles of a Superfund site?	no
Within 2 miles of a Toxic Release Inventory (TRI) site?	no
Within 2 miles of a water discharger (NPDES)?	no
Within 2 miles of a hazardous waste (RCRA) facility?	no
Within 2 miles of an air emission facility?	yes
Within 2 miles of a school?	no
Within 2 miles of an airport?	no
Within 2 miles of a hospital?	no
Within 2 miles of a designated sole source aquifer?	no
Within 2 miles of a historic property on the National Register of Historic Places?	no
Within 2 miles of a Land Cession Boundary?	yes
Within 2 miles of a tribal area (lower 48 states)?	no
Within 2 miles of the service area of a mitigation or conservation bank?	yes
Within 2 miles of the service area of an In-Lieu-Fee Program?	yes
Within 2 miles of a Public Property Boundary of the Formerly Used Defense Sites?	no
Within 2 miles of a Munitions Response Site?	no
Within 2 miles of an Essential Fish Habitat (EFH)?	no
Within 2 miles of a Habitat Area of Particular Concern (HAPC)?	no
Within 2 miles of an EFH Area Protected from Fishing (EFHA)?	no
Within 2 miles of a Bureau of Land Management Area of Critical Environmental Concern?	no
Within 2 miles of an ESA-designated Critical Habitat Area per U.S. Fish & Wildlife Service?	no
Within 2 miles of an ESA-designated Critical Habitat river, stream or water feature per U.S. Fish & Wildlife Service?	no

Created on: 3/18/2024 5:17:22 PM

APPENDIX B - WETLANDS REPORT

March 22, 2024

Mr. Rob LeForce, B.W. Environmental Analyst, Land and Water Resources Associated Electric Cooperative, Inc. 2814 S. Golden Ave Springfield, MO 65801

Re: Ripley Energy Center Wetland Delineation Report

Dear Mr. LeForce:

Burns & McDonnell Engineering Company, Inc. (Burns & McDonnell) was retained by Associated Electric Cooperative, Inc. (AECI) to provide wetland delineation services for the proposed Ripley Energy Center (Project) in Payne County, Oklahoma (Figure A-1, Appendix A). The following summarizes the proposed Project and the results of the wetland delineation effort.

INTRODUCTION

AECI plans to construct a simple cycle combustion turbine in Payne County, Oklahoma. The proposed project would include construction of a simple cycle combustion turbine, transmission line rebuild, transmission lead line, water line, distribution line, and other appurtenant facilities. The Project is located approximately 8 miles east of Stillwater, Oklahoma.

The Project has the potential to impact wetlands or other water bodies that may be under the jurisdiction of the U.S. Army Corps of Engineers (USACE) as designated by Section 404 of the Clean Water Act. Burns & McDonnell conducted a wetland delineation for the Project to evaluate the presence of wetlands and other water bodies, including streams, drainages, and ponds. The delineation was conducted based on the proposed Project layout (Survey Area). The Survey Area included in this report and displayed in the accompanying figures is based on the latest Project design and encompasses approximately 228 acres.

METHODS

The following discussions summarize the methods used for the review of existing data and the wetland delineation.

Existing Data Review

Burns & McDonnell reviewed available background information for the area containing the Survey Area prior to conducting a site visit. This available background information included 2018 U.S. Geological Survey (USGS) 7.5-minute topographic maps (Ripley quadrangle), USGS National Hydrography Dataset (NHD), U.S. Fish & Wildlife Service (USFWS) National Wetland Inventory (NWI) maps, National Agriculture Imagery Program (NAIP) aerial photography (2019), and U.S. Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) 2017 Soil Survey Geographic (SSURGO) digital data for Payne County, Oklahoma. Figures A-2 and A-3 in Appendix A depict this data. The USACE

Antecedent Precipitation Tool was used to evaluate climate conditions during the time of survey (Appendix D).

Wetland presence based only on NWI maps cannot be assumed to be an accurate assessment of potentially occurring jurisdictional wetlands. Wetland identification criteria differ between the USFWS and the USACE. As a result, wetlands shown on an NWI map may not be under the jurisdiction of the USACE, and all USACE-jurisdictional wetlands are not always included on NWI maps. Therefore, a field visit was conducted to identify any wetlands or other aquatic resources that may be present within the proposed Project.

Wetland Delineation Field Survey

Burns & McDonnell wetland scientists completed onsite wetland delineations on June 21 to 22, 2023, July 25 to 26, 2023, and October 24 to 26, 2023. The delineation was completed following the 1987 *Corps of Engineers Wetlands Delineation Manual* (1987 Manual) and the 2010 *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Great Plains – Version 2.0* (Regional Supplement).

Sample plots were established at multiple locations, and Wetland Determination Data Forms from the Regional Supplement were completed to characterize the Survey Area (Appendix B). Vegetation, soil conditions, and hydrologic indicators were recorded at each sample plot. Locations of sample plots and other identified features were recorded using a sub-meter accurate global positioning system (GPS) unit. Natural color photographs were taken onsite and are included in Appendix C.

RESULTS

The following sections describe the results of the existing data review and the completed wetlands delineation.

Existing Data Review

The existing USGS topographic maps were reviewed to familiarize Burns & McDonnell wetland personnel with the topography of the Survey Area and potential locations of wetlands and other aquatic resources (Figure A-2). The USGS topographic maps indicate that the majority of the Survey Area is relatively flat and generally sloping to the southwest, with gently rolling hills.

The NWI data indicates one palustrine scrub-shrub (PSS) wetland, one palustrine forested (PFO) wetland, two palustrine unconsolidated bottom (PUB) wetlands, one palustrine unconsolidated shore (PUS), and four riverine wetlands are located within the Survey Area. The NHD data indicates twelve stream crossings within the Survey Area. The 2018 aerial photography indicates that the Project Area consists primarily of grassland and a maintained transmission line right-of-way (Figure A-3 and Figure A-4). According to the FEMA Flood Hazard Rate map for Payne

County, there are zone A and AE designated floodways and floodplains located within the Survey Area (Figure A-2).

The NRCS SSURGO digital data indicates that a portion of twenty-seven soil map units are located within the Survey Area (Figure A-3). None of these soils are on local and national hydric soil lists (Figure A-3; Soils Series Legend).

The USACE Antecedent Precipitation Tool indicates that the area near the Survey Area experienced normal conditions during the three months prior to the June 21-22 and October 26 survey, wetter than normal conditions prior to the July 25-26 survey, and drier than normal conditions prior to the October 24 survey (Appendix D).

Wetland Delineation Field Survey

On June 21 to 22, July 25 to 26, and October 24 to 26, 2023, a two-person team comprised of a wetland scientist and a wetland scientist/GPS specialist, both with Burns & McDonnell, conducted a wetland delineation of the Survey Area. The land cover and delineated wetlands and other aquatic resources are discussed in detail below.

Vegetation. The Survey Area was comprised mainly of grassland. The dominant vegetation in the upland areas in the Survey Area included Johnson grass (*Sorghum halepense*), cheatgrass (*Bromus tectorum*), field brome (*Bromus arvensis*), big bluestem (*Andropogon gerardii*), little false bluestem (*Schizachyrium scoparium*), yellow bluestem (*Bothriochloa ischaemum*), yellow indian grass (*Sorghastrum nutans*), Bermuda grass (*Cynodon dactylon*), beaked cut-throat grass (*Coelorachis cylindrica*), white sagebrush (*Artemisia ludoviciana*), sawtooth raspberry (*Rubus argutus*), coral-berry (*Symphoricarpos orbiculatus*), prairie bundle-flower (*Desmanthus illinoensis*), prairie broomweed (*Amphiachyris dracunculoides*), annual ragweed (*Ambrosia artemisiifolia*), rough buttonweed (*Hexasepalum teres*), blue grama (*Bouteloua gracilis*), hairy crab grass (*Digitaria sanguinalis*), common persimmon (*Diospyros virginiana*), and rough-leaf dogwood (*Cornus drummondii*). Common vegetation observed within delineated wetland areas is described below and species are indicated on the Data Forms in Appendix B.

Soils. Typical upland soils ranged from dark reddish brown (5YR 3/3) to dark yellowish brown (10YR 4/4) in color and sandy clay loam to clay in texture. Typical wetland soils ranged from pinkish grey (5YR 6/2) to very dark grey (7.5YR 3/1) in color and sandy loam to clay in texture. Redoximorphic features were typically present in wetland soils, but they were uncommon in typical upland soils.

Hydrology. The primary source of hydrology for the wetlands was from precipitation and overland flow. Indicators of hydrology within the wetlands included surface water, high water

table, saturation, drift deposits, oxidized rhizospheres along living roots, drainage patterns, crayfish burrows, geomorphic position, and a positive FAC-neutral test.

Delineated Areas

Twenty-one wetlands and ten streams were identified during the wetland delineation. The wetlands and stream are described by type below, and their locations are shown on Figure A-4 in Appendix A. Sample plots were located in the wetlands and adjacent uplands. Data forms of these sample plots are included in Appendix B. Photographs of sample plots, wetlands, and streams are included in Appendix C.

Wetlands

Table 1 provides the type and size of each wetland delineated within the Survey Corridor. Delineated wetland types included palustrine emergent (PEM), PSS, PUB, and palustrine aquatic bed (PAB); each type is described in more detail below.

A total of eight PEM wetlands, encompassing 1.42 acres, were delineated. Vegetation in the wetlands was dominated by flat-stem spike rush (*Eleocharis compressa*), blunt spike-rush (*Eleocharis obtusa*), false daisy (*Eclipta prostrata*), little bluestem (*Schizachyrium scoparium*), bog rush (*Juncus marginatus*), golden crown grass (*Paspalum dilatatum*), narrow-leaf cat-tail (*Typha angustifolia*), hard-stem club-rush (*Schoenoplectus acutus*), globe flat sedge (*Cyperus echinatus*), axil-flower (*Mercardonia acuminata*), common persimmon (*Diospyros virginiana*), and eastern cottonwood (*Populus deltoides*). Observed indicators of wetland hydrology included surface water, high water table, saturation, crayfish burrows, oxidized rhizospheres along living roots, drainage patterns, geomorphic position, and a positive FAC-neutral test. Soils ranged from pinkish grey (5YR 6/2) to very dark grey (7.5YR 3/1) in color and contained redoximorphic concentrations. Soils ranged from sandy loam to clay in texture. Hydric soil was mostly indicated by Depleted Matrix (F3) and Redox Dark Surface (F6).

One PSS wetland, encompassing 0.43 acre, was delineated. Vegetation in the wetland was dominated by blunt spike-rush, American germander (*Teucrium canadense*), and green ash (*Fraxinus pennsylvanica*). Observed indicators of wetland hydrology included drift deposits, drainage patterns, geomorphic position, and a positive FAC-neutral test. Soil was very dark grey (7.5YR 3/1) in color and contained redoximorphic concentrations. Soil was clay loam in texture. Hydric soil was mostly indicated by Redox Dark Surface (F6).

Eleven PUB wetlands, encompassing 8.75 acres, were delineated. PUB wetlands were open water ponds characterized by a combined areal cover of less than 30 percent of vegetation. Vegetation surrounding the wetlands included sawtooth blackberry, narrow-leaf cattail, black willow (*Salix nigra*), eastern red cedar (*Juniperus virginiana*), and common persimmon.

One PAB wetland, encompassing 0.93 acre, was delineated. The PAB wetland was an open water pond characterized by a combined areal cover of 30 percent or more of vegetation. Vegetation surrounding the wetland included Johnson grass, annual ragweed, and American lotus (*Nelumbo lutea*).

		Delineated Area	Associated Photos	Figure A-4
Wetland ID	Wetland Type ^a	(acre)	in Appendix C	Page Number
W-1	PUB	0.25	C-28	18
W-2	PUB	5.16	C-29	20
W-3	PEM	0.04	C-1	20
W-4	PEM	0.78	C-3	21
W-5	PSS	0.43	C-6	19
W-6	PUB	0.56	C-30	22
W-7	PEM	0.14	C-9	22
W-8	PEM	0.08	C-12	16
W-9	PEM	0.01	C-14	15
W-10	PAB	0.93	C-31	12,13,14
W-11	PUB	0.04	C-32	11
W-12	PUB	0.08	C-33	11
W-13	PUB	0.25	C-34	10
W-14	PUB	1.46	C-35	9
W-15	PEM	0.10	C-16	7
W-16	PEM	0.20	C-18	6
W-17	PUB	0.19	C-36	5
W-18	PUB	0.44	C-37	3
W-19	PEM	0.07	C-20	1
W-20	PUB	0.07	C-38	2
W-21	PUB	0.25	C-39	2,3
	TOTAL:	11.53		

Table 1: Delineated Wetlands

(a) Symbols for wetland type: PEM = palustrine emergent, PSS= palustrine scrub-shrub, PUB = palustrine unconsolidated bottom, PAB = palustrine aquatic bed

Streams

Table 2 provides the type and delineated length of the stream recorded within the Survey Area.

Eight ephemeral stream crossings, extending for a delineated length of 1,049 feet, were identified. The ephemeral streams were characterized by a defined bed and bank but had limited or no flow during the site visit, indicating that the stream largely carries water only during and after precipitation events. The ephemeral streams ranged from approximately 0.75 to 5 feet wide at the ordinary high-water mark (OHWM) and 2 to 15 feet wide at the top of bank. Bank heights ranged from 1 to 10 feet. The depth from the OHWM ranged from 0.25 to 0.75 foot. These stream crossings flowed through a maintained transmission right-of-way and forested riparian corridor within the Survey Area, where common riparian vegetation included cheatgrass, big bluestem, tall goldenrod (*Solidago altissima*), Johnson grass, and eastern red cedar.

One intermittent stream crossing, extending for a delineated length of 1,014 feet, was identified. The Intermittent stream was characterized by the presence of a limited volume of flow at the time of the site visit, indicating that the stream is partially fed by groundwater but that the streams may not flow during dry periods. The intermittent stream was approximately 5 feet wide at the OHWM and 8 feet wide at the top of bank. Bank height was approximately 4 feet. The depth from the OHWM was approximately 0.50 foot. The intermittent stream flowed through a maintained transmission line right-of-way within the Survey Area, where common riparian vegetation included Johnson grass and common greenbrier (*Smilax rotundifolia*).

One perennial stream crossing, extending for a total delineated length of 105 feet, was identified. The perennial stream was characterized by the presence of a substantial volume of flow at the time of the site visit, indicating that water likely flows year-round. The perennial stream was approximately 8 feet wide at the OHWM and 80 feet wide at the top of bank. Bank height was approximately 30 feet. The depth from the OHWM was approximately 1 foot. The perennial stream flowed through a maintained transmission line right-of-way within the Survey Area, where common riparian vegetation included Johnson grass.

Stream ID	Stream Type	Delineated Length (feet)	Associate Photos in Appendix C	Figure A- 4 Page Number
S-1	Ephemeral	323	C-40	20
S-2	Intermittent	1,014	C-41	12,13
S-3	Ephemeral	127	C-42	12
S-4	Ephemeral	114	C-43	11

Table 2: Delineated Streams

Stream ID	Stream Type	Delineated Length (feet)	Associate Photos in Appendix C	Figure A- 4 Page Number
S-5	Perennial	105	C-44	8
S-6	Ephemeral	157	C-45	8
S-7	Ephemeral	103	C-46	5
S-8	Ephemeral	117	C-47	4
S-9	Ephemeral	58	C-48	17
S-10	Ephemeral	50	C-49	14
	TOTAL:	2,168		

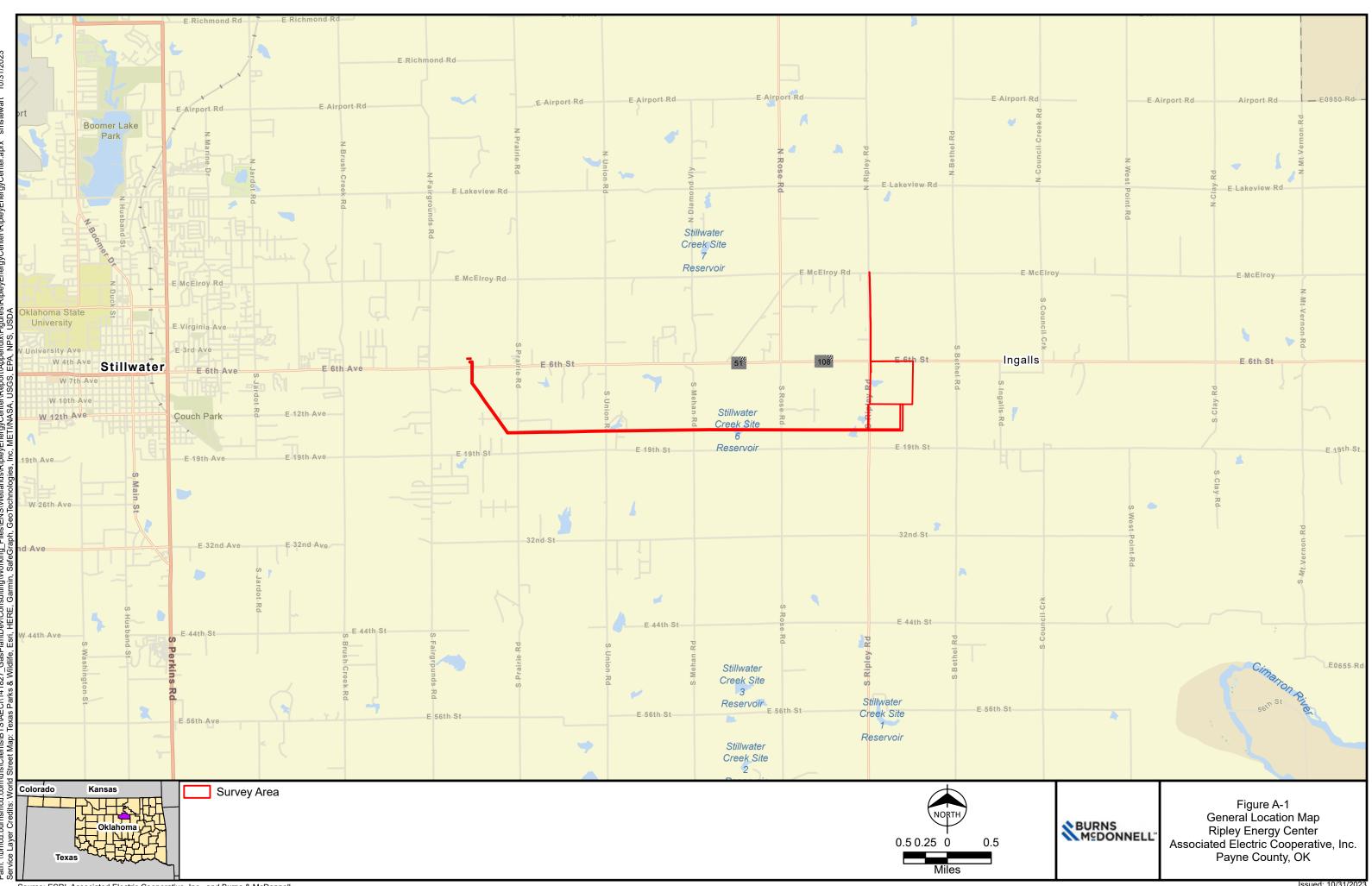
SUMMARY

Burns & McDonnell conducted a wetland delineation of the Survey Area to identify the presence of wetlands and other aquatic resources. A total of twenty-one wetlands and ten streams were identified during the delineation efforts. To avoid the need for a Section 404 Permit from the USACE, the proposed Project should be designed to avoid all impacts to potentially jurisdictional waters. If impacts to jurisdictional features cannot be completely avoided, they should be minimized, and a Section 404 Nationwide Permit from the USACE would be required.

If you have any questions or require additional information, please feel free to contact Sam Stewart by telephone at (816) 591-8658 or by email at smstewart@burnsmcd.com.

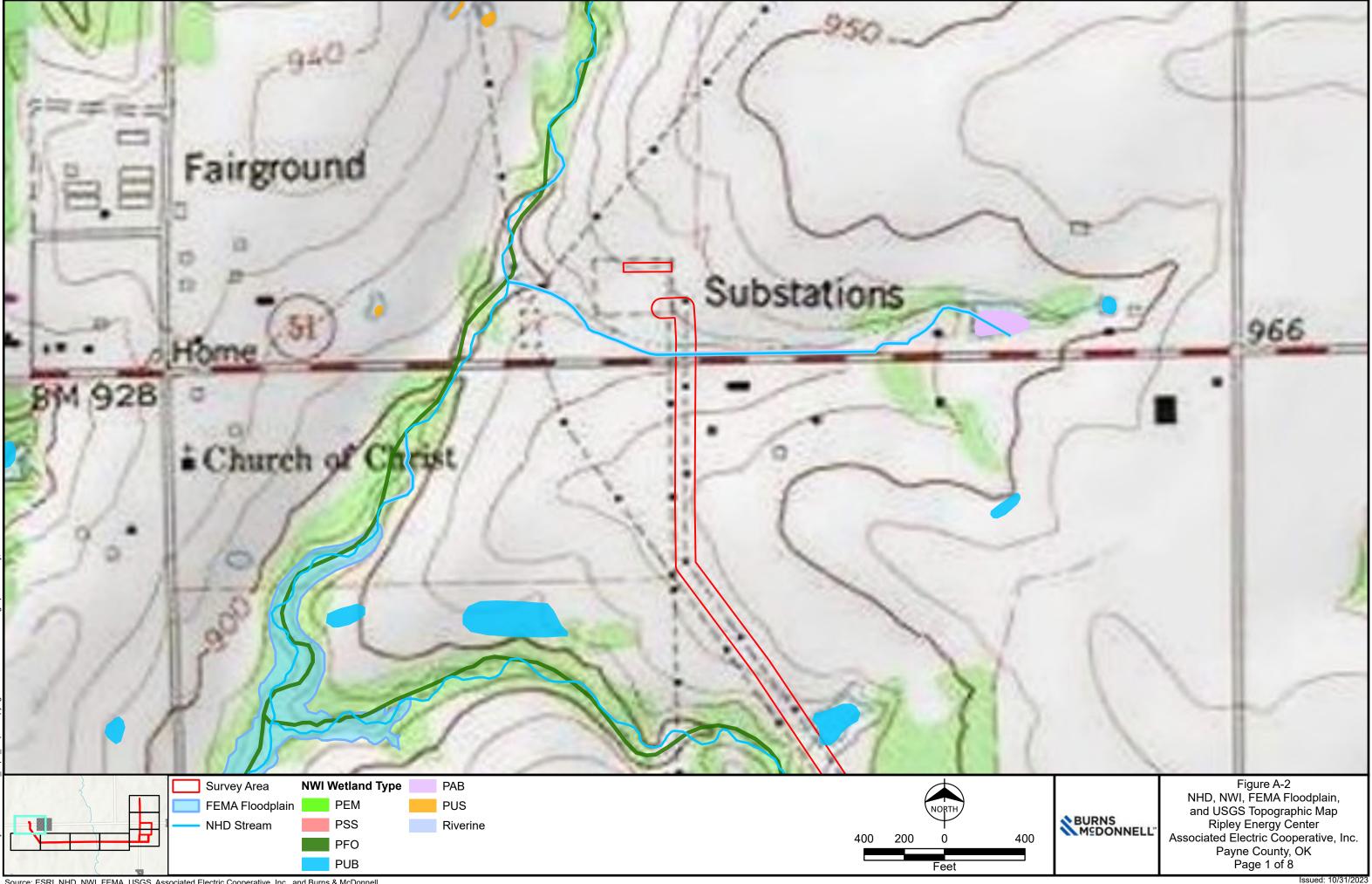
Sincerely,

Sam Stewart Environmental Scientist

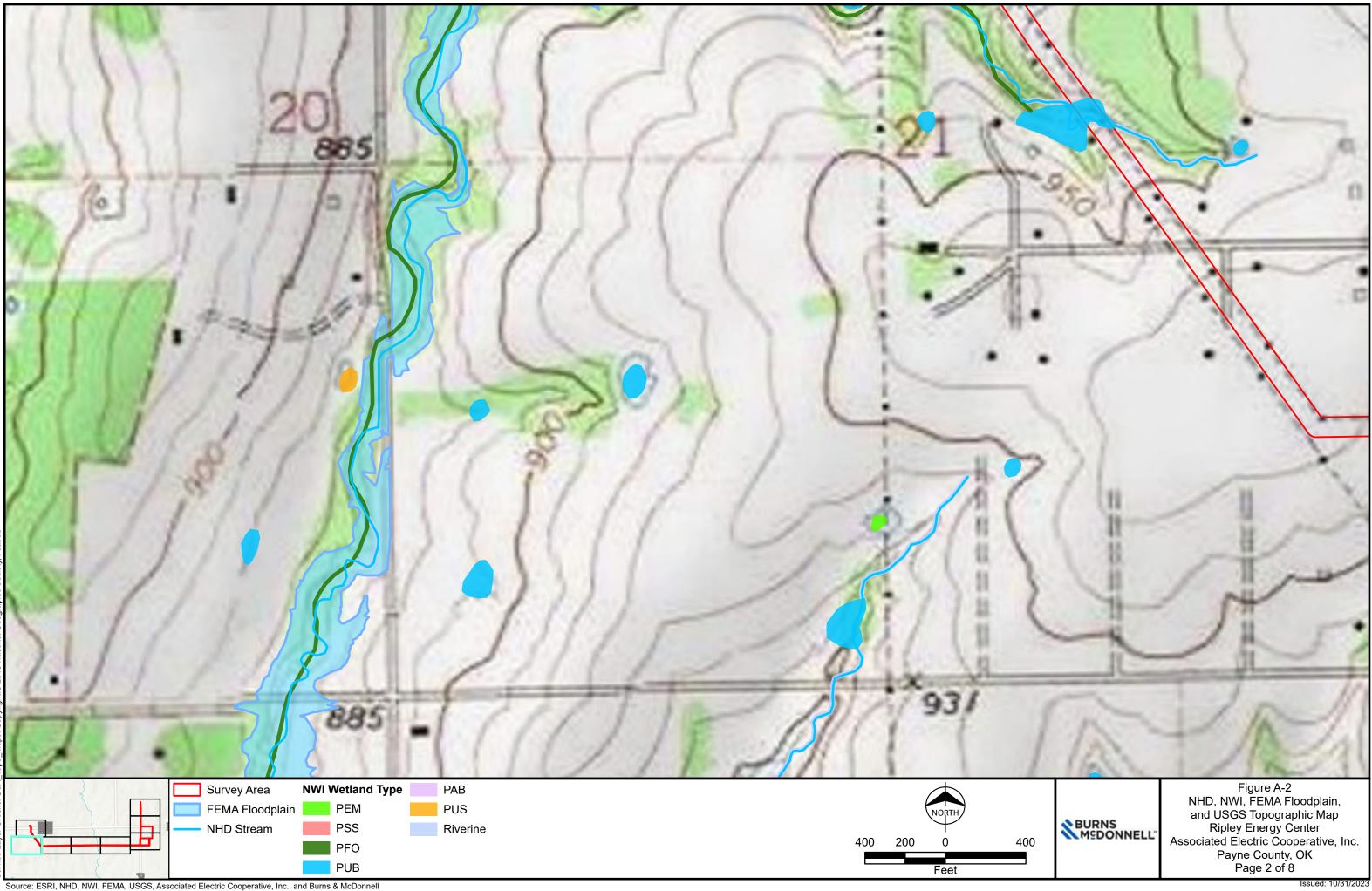

Attachments:

Appendix A - Figures Appendix B - Routine Wetland Determination Data Forms Appendix C - Ground Photographs Appendix D - Antecedent Precipitation Tool Results

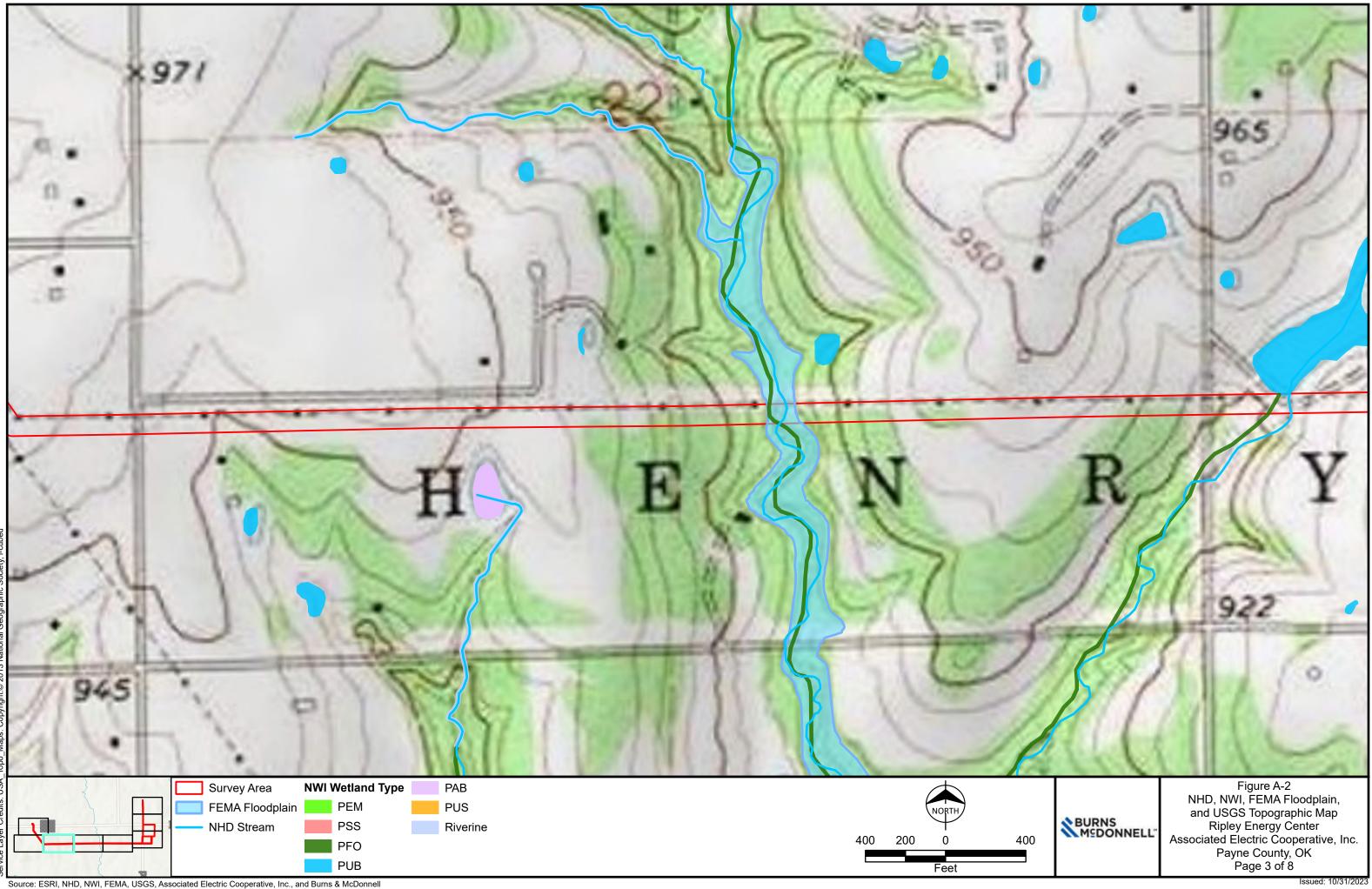
cc: Chris Howell, Burns & McDonnell


APPENDIX A -FIGURES

APPENDIX B -WETLAND DETERMINATION DATA FORMS



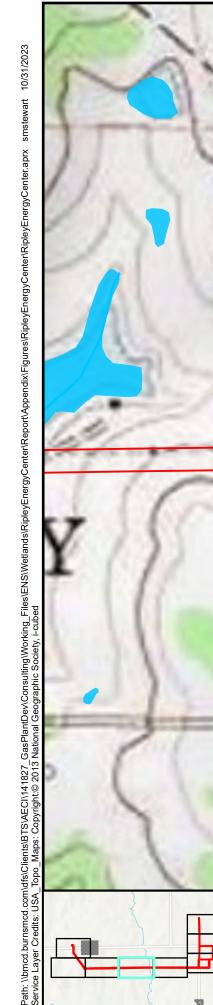
Source: ESRI, Associated Electric Cooperative, Inc., and Burns & McDonnell

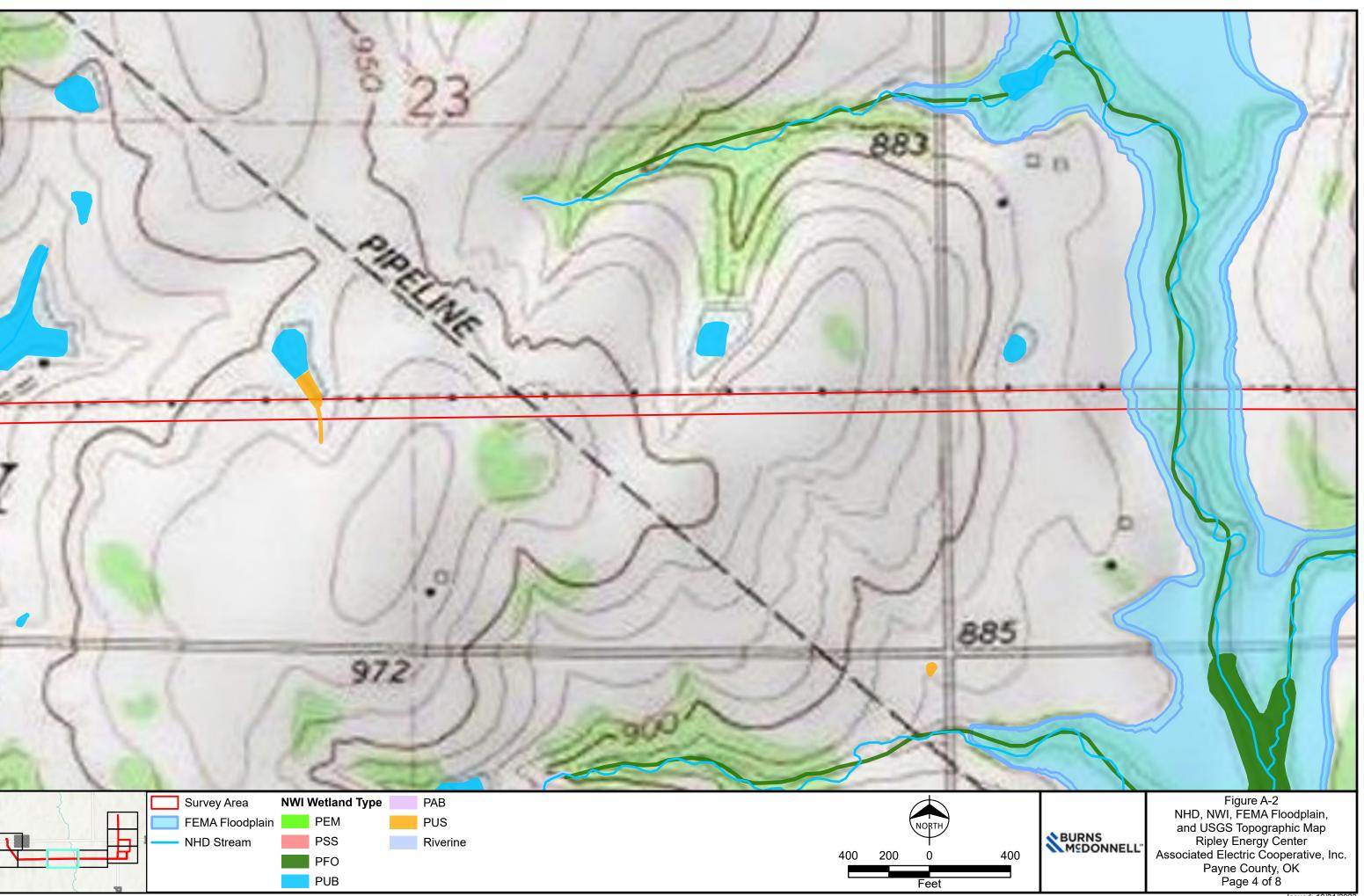

Issued: 10/31/2023

Source: ESRI, NHD, NWI, FEMA, USGS, Associated Electric Cooperative, Inc., and Burns & McDonnell

Ъ Д

10/31/2023

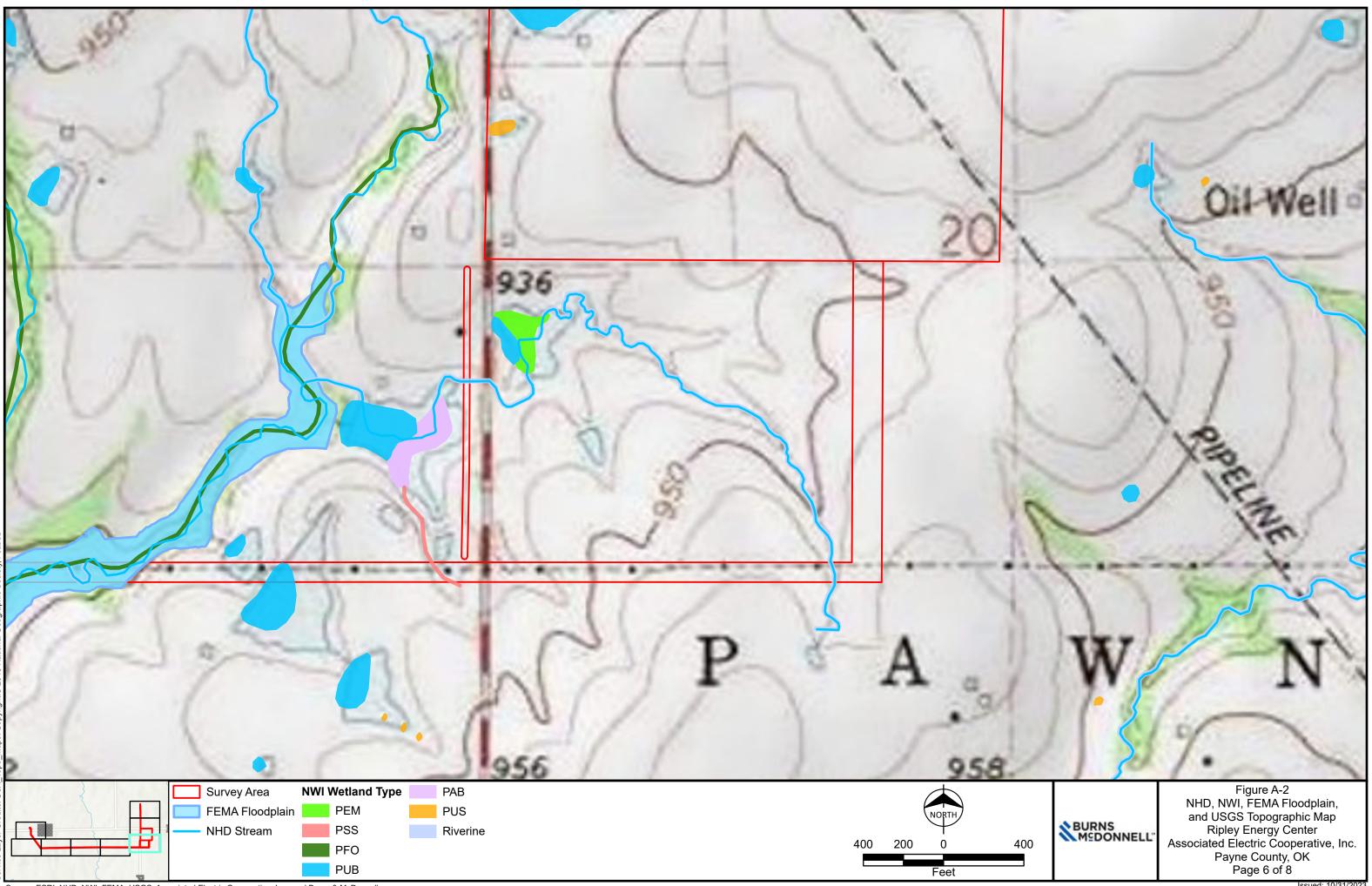

art


smste

Š

GasP


CI\141827


Source: ESRI, NHD, NWI, FEMA, USGS, Associated Electric Cooperative, Inc., and Burns & McDonnell

Issued: 10/31/2023

ñ

Source: ESRI, NHD, NWI, FEMA, USGS, Associated Electric Cooperative, Inc., and Burns & McDonnell

Source: ESRI, NHD, NWI, FEMA, USGS, Associated Electric Cooperative, Inc., and Burns & McDonnell

10/31/2023

vart

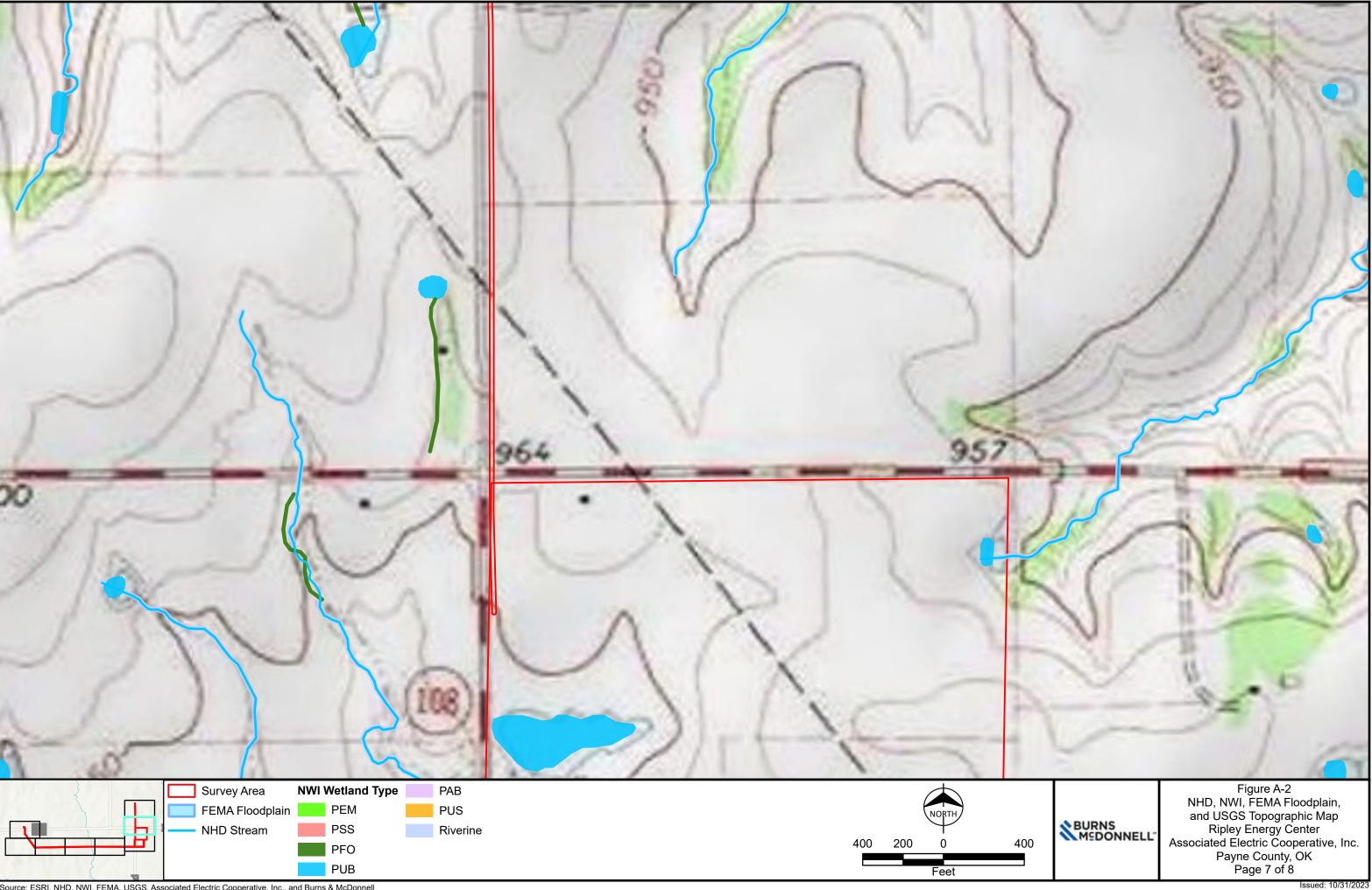
sms

NC NC

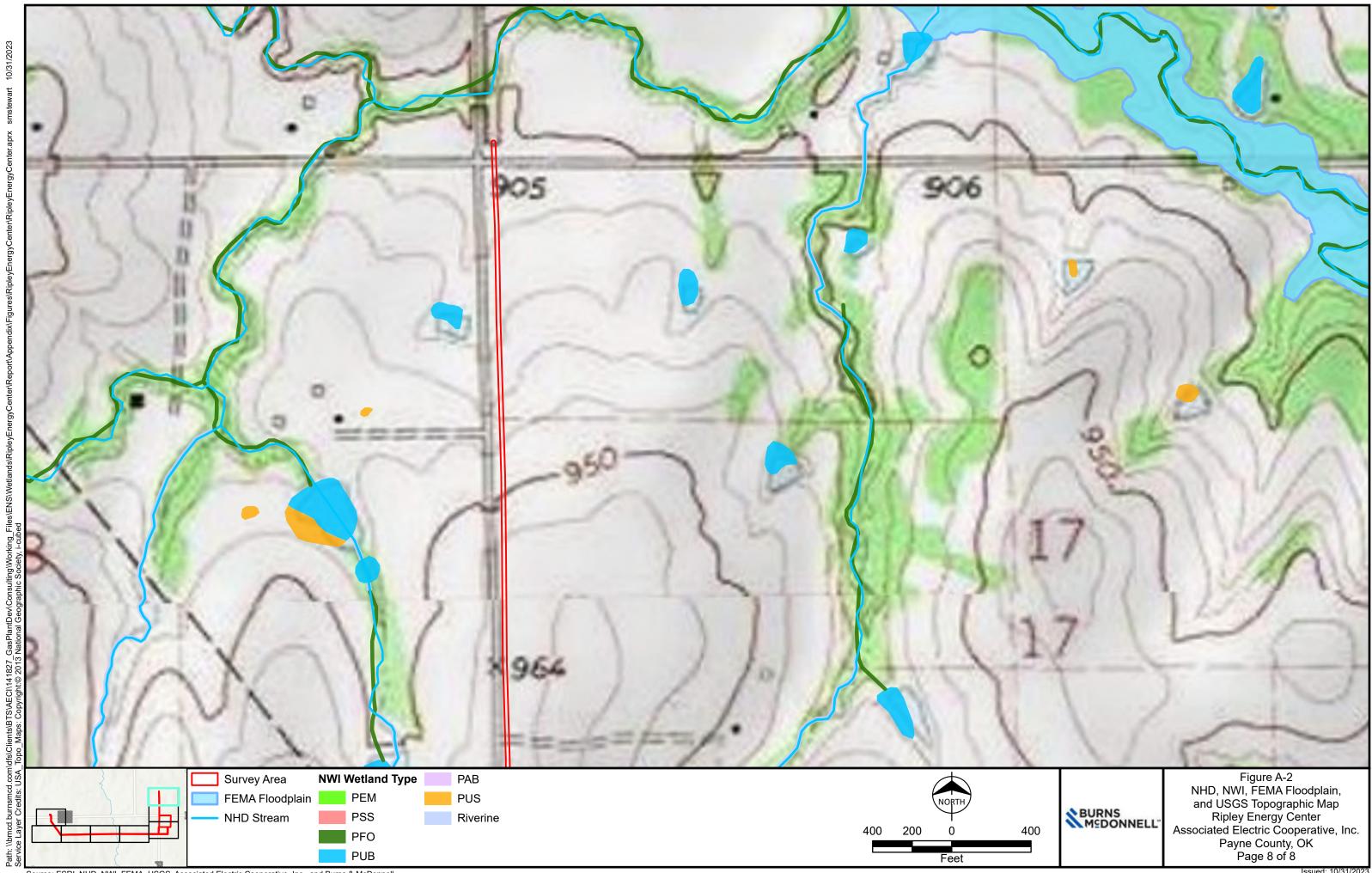
-/Rinl

lergyCent

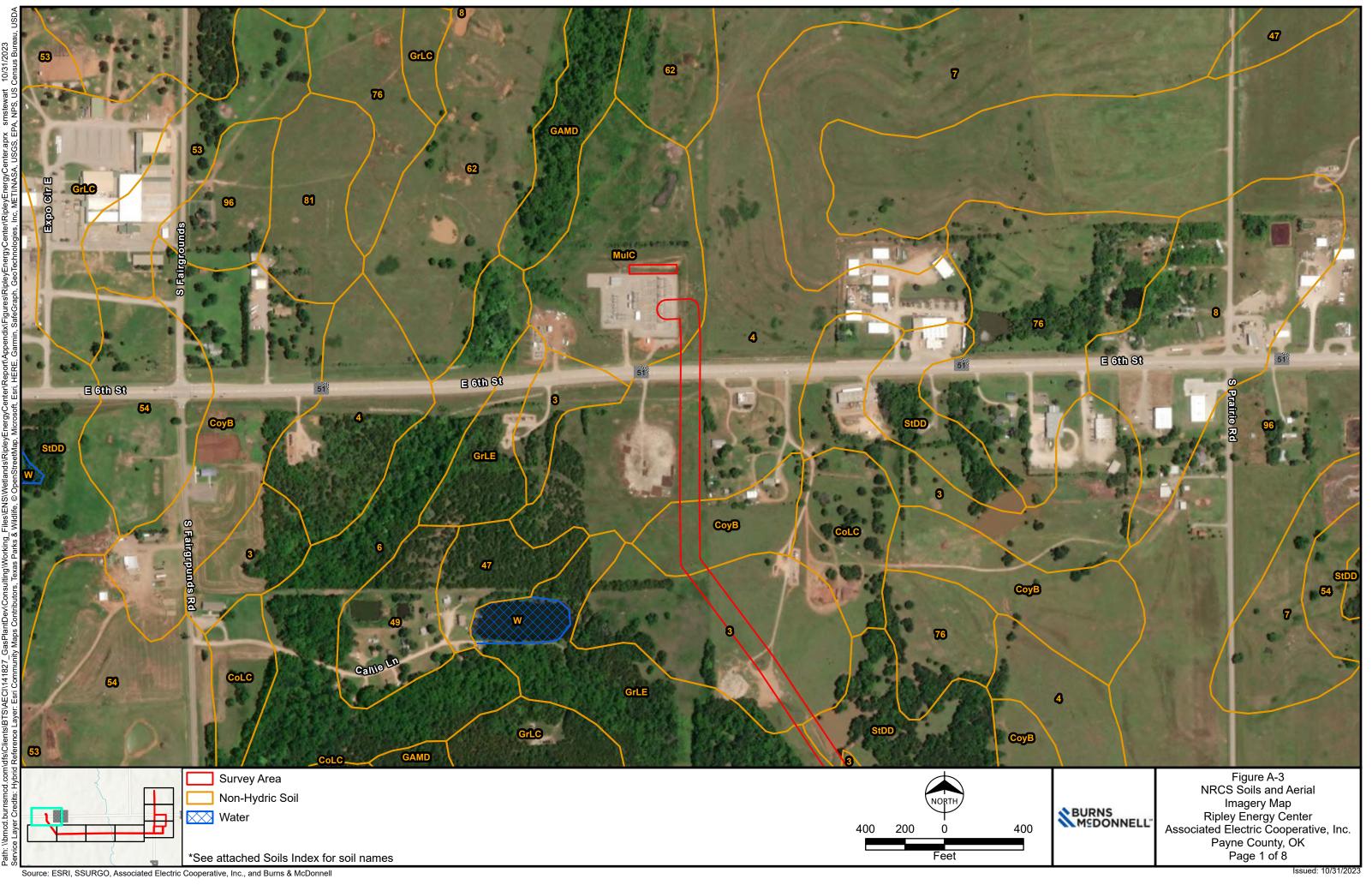
Ř

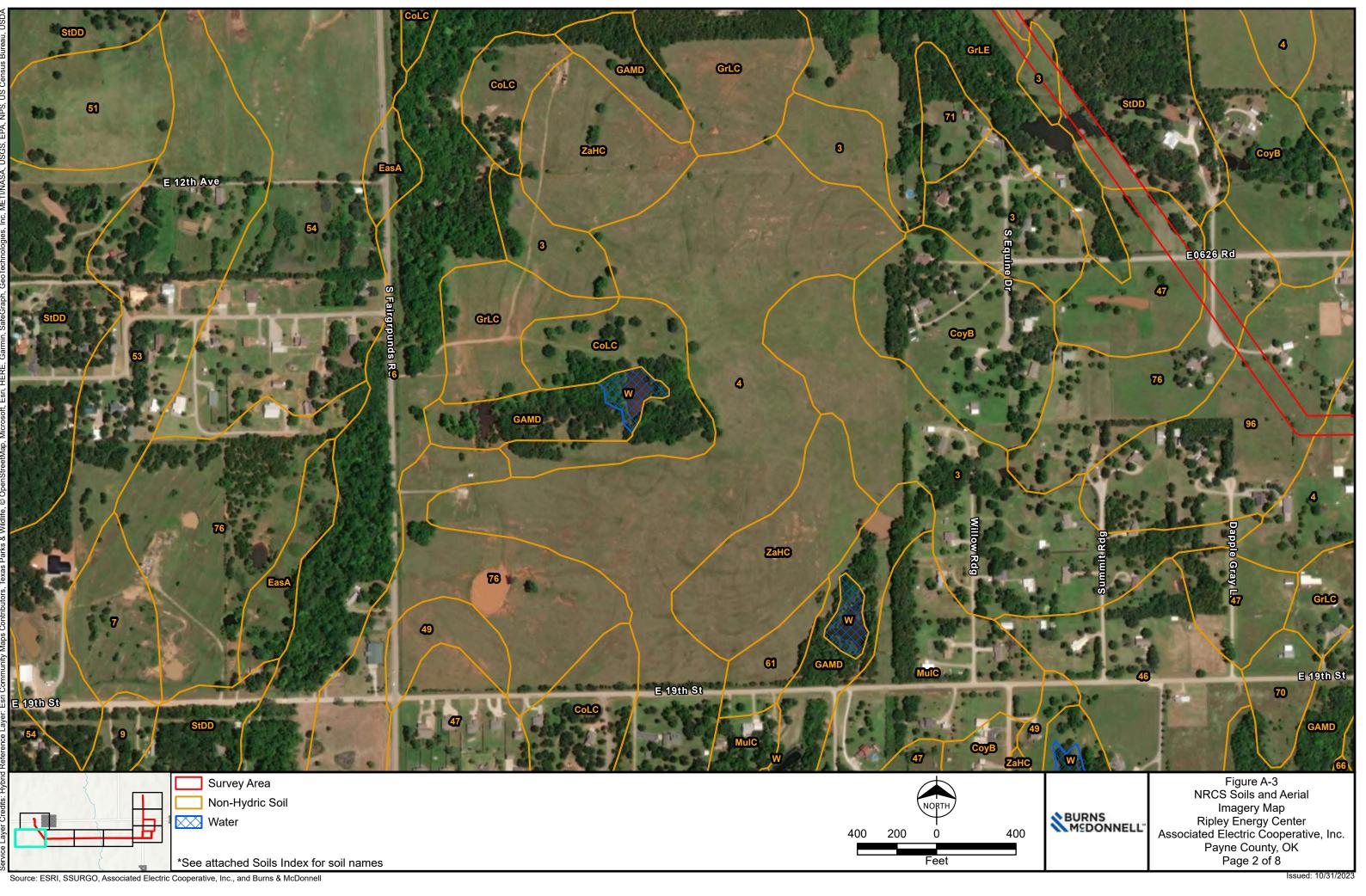

s/ENS//

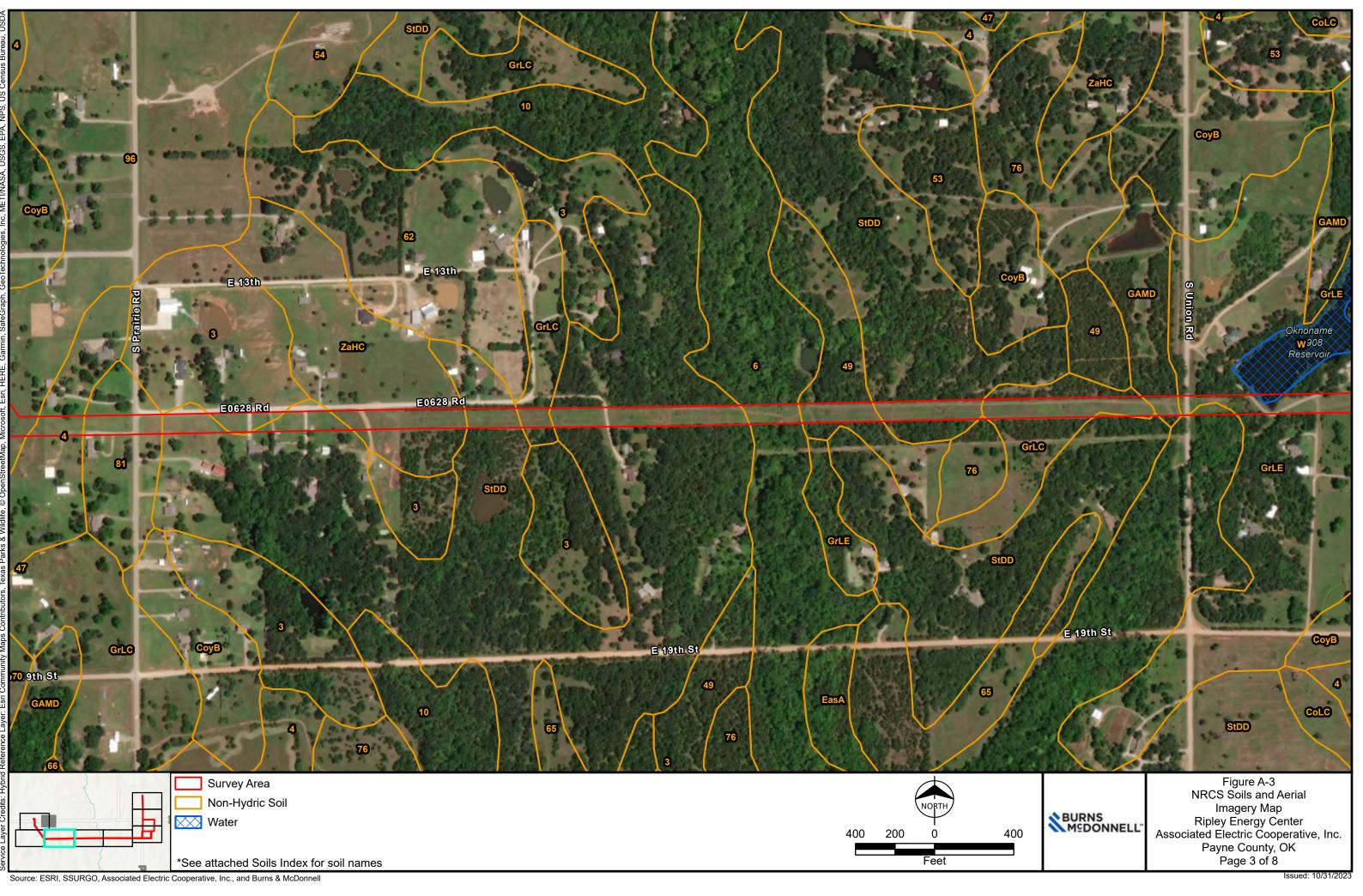
Gas 827

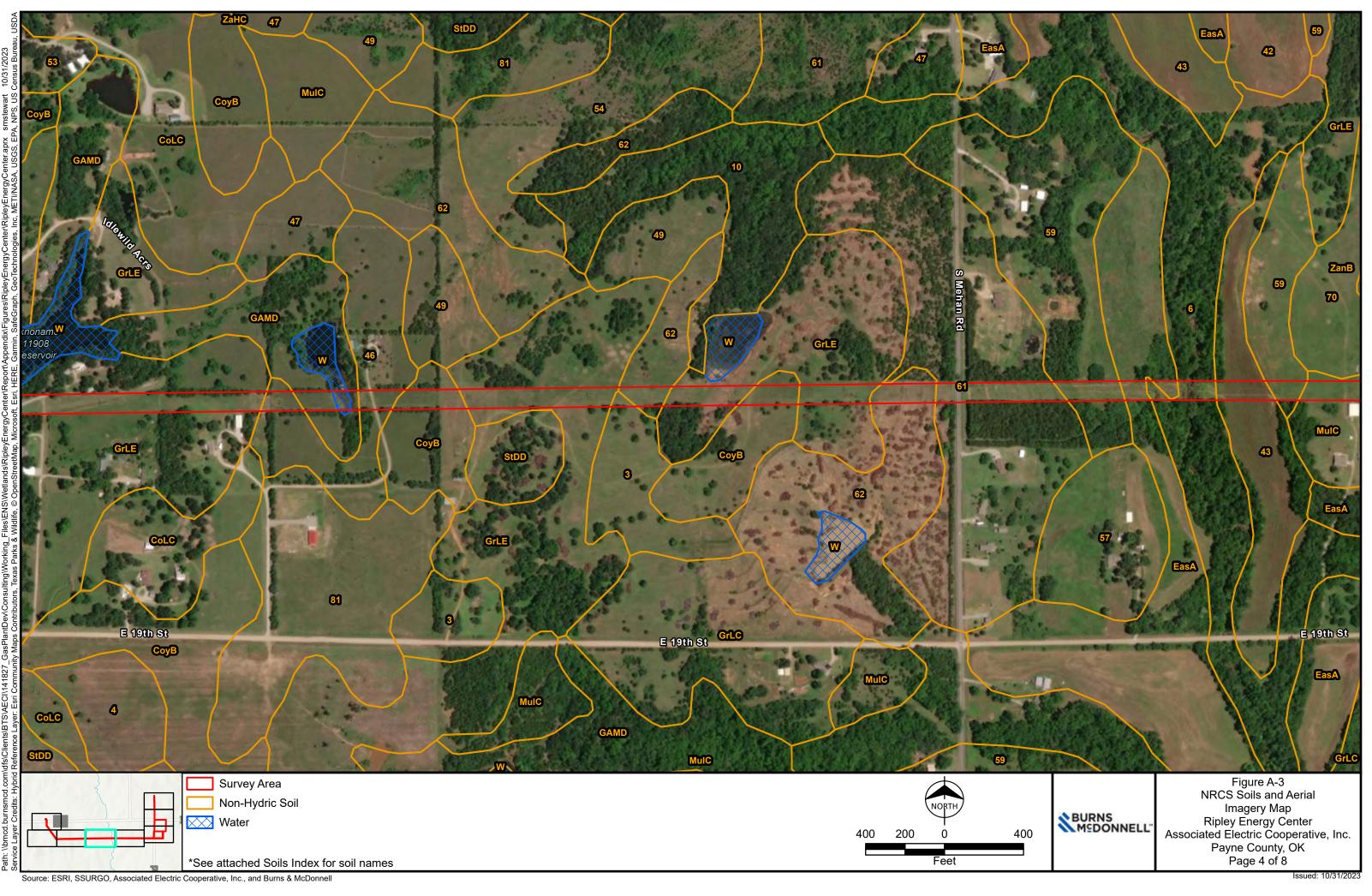

BTS/AECI/14

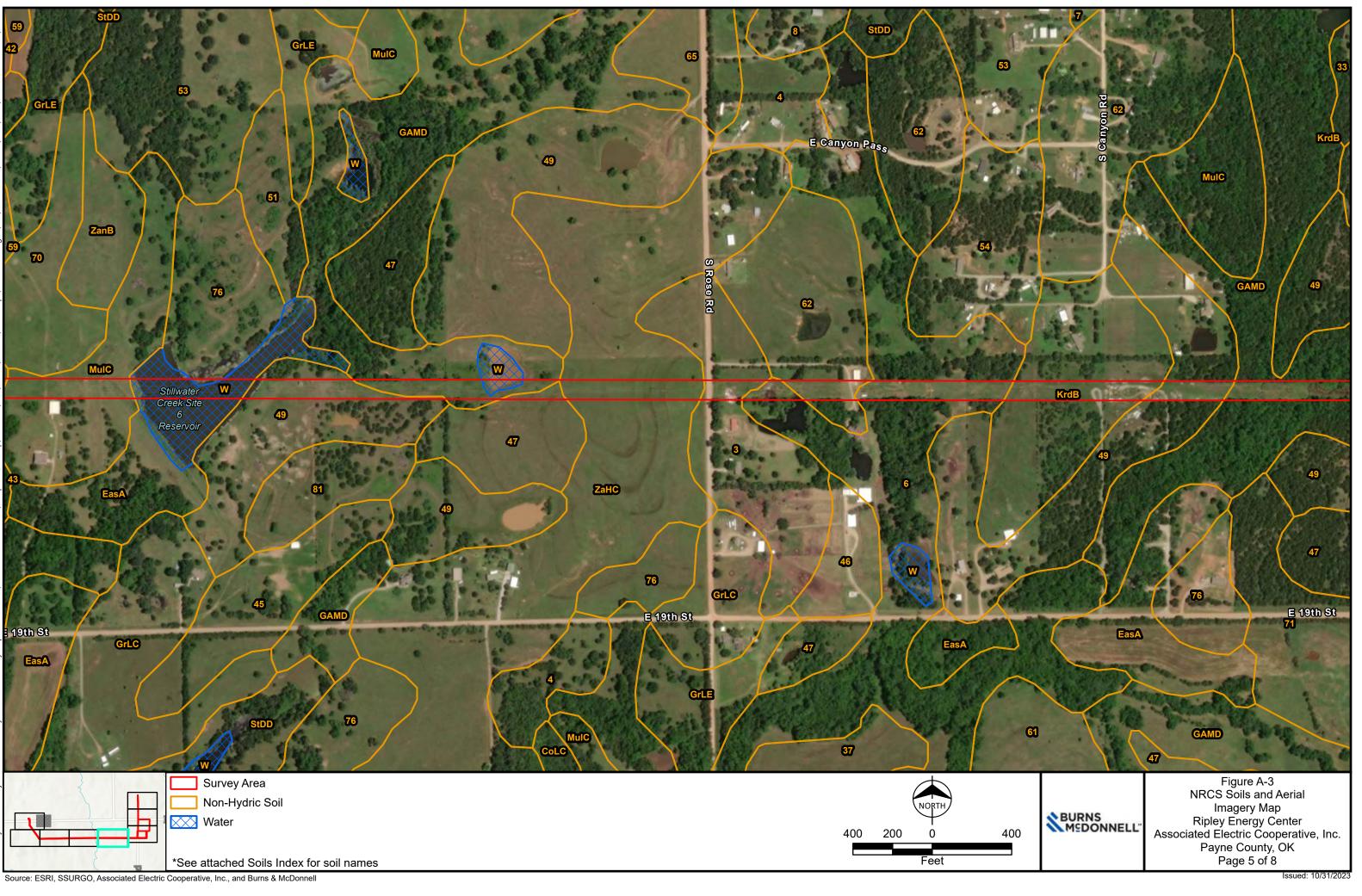
\dfs\Cli

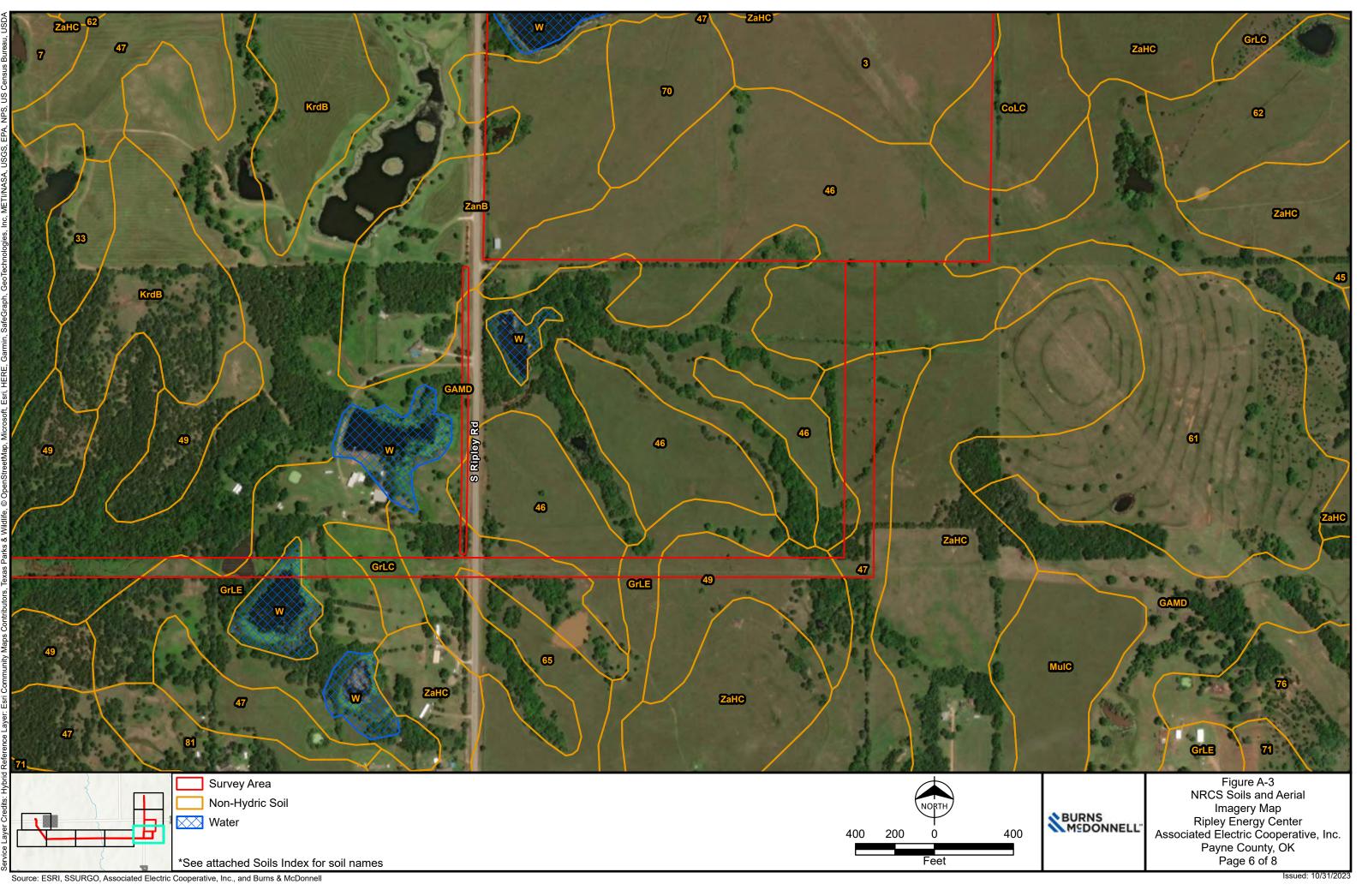

ñ

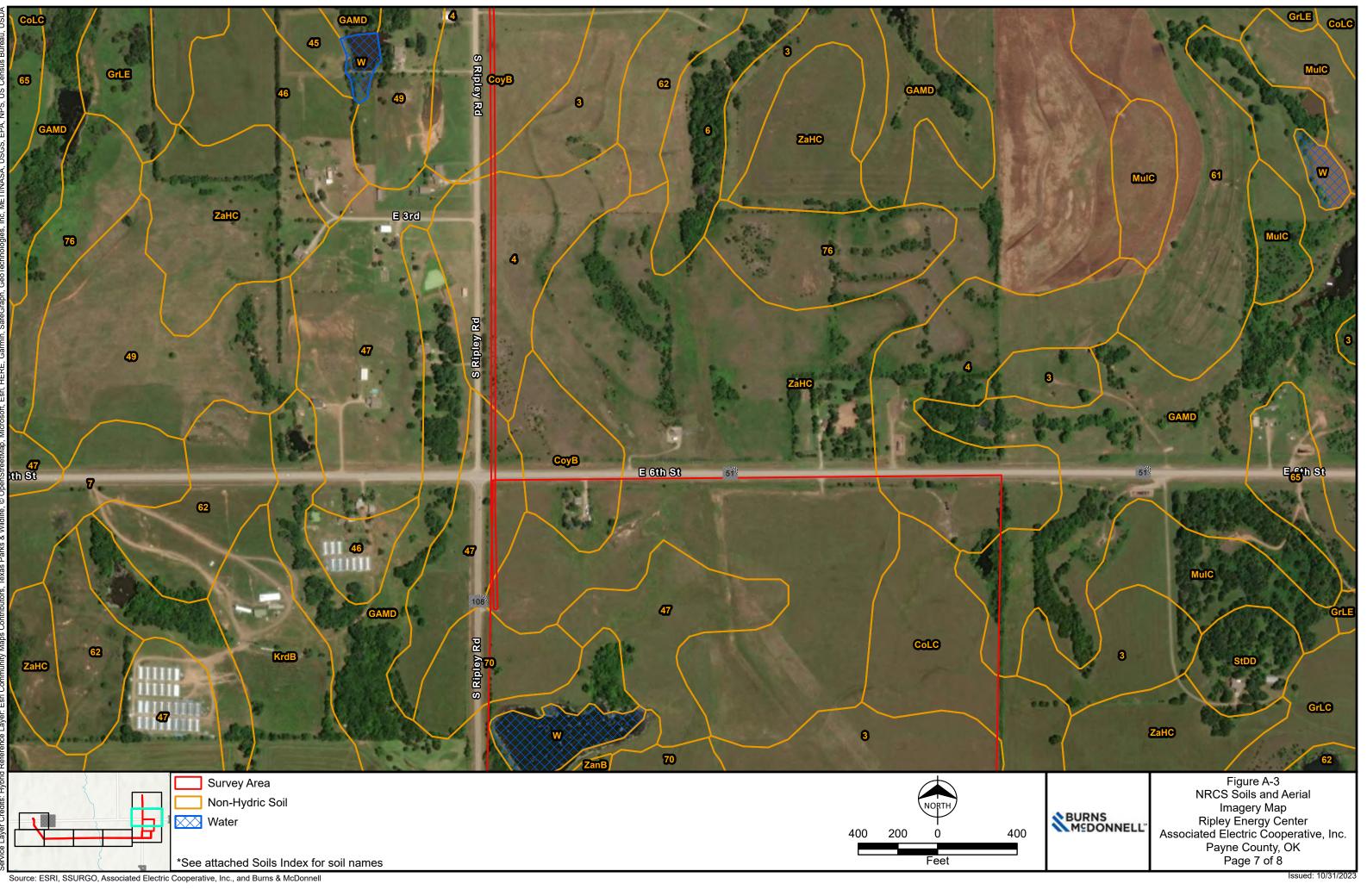



Source: ESRI, NHD, NWI, FEMA, USGS, Associated Electric Cooperative, Inc., and Burns & McDonnell

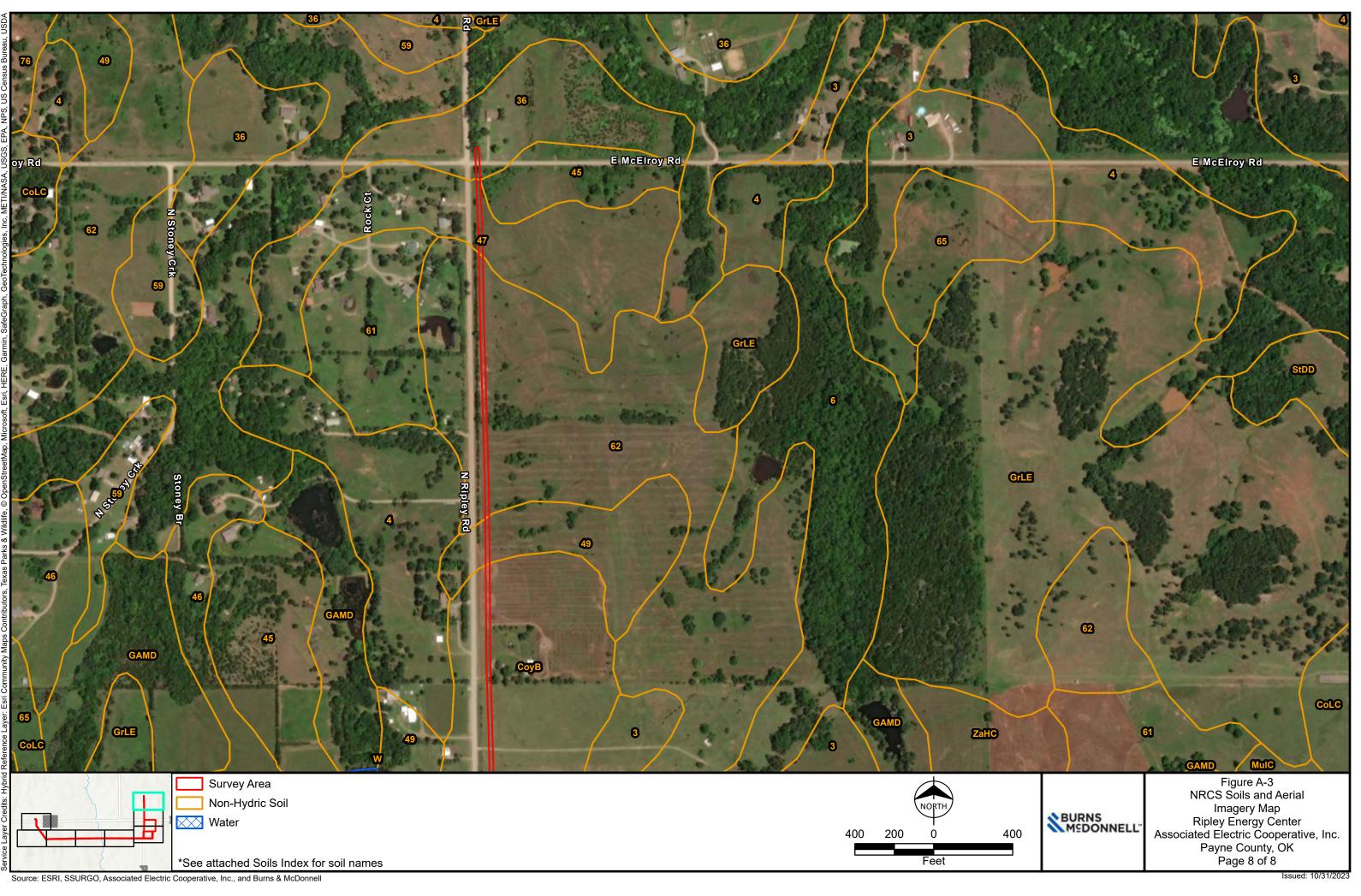



Source: ESRI, NHD, NWI, FEMA, USGS, Associated Electric Cooperative, Inc., and Burns & McDonnell

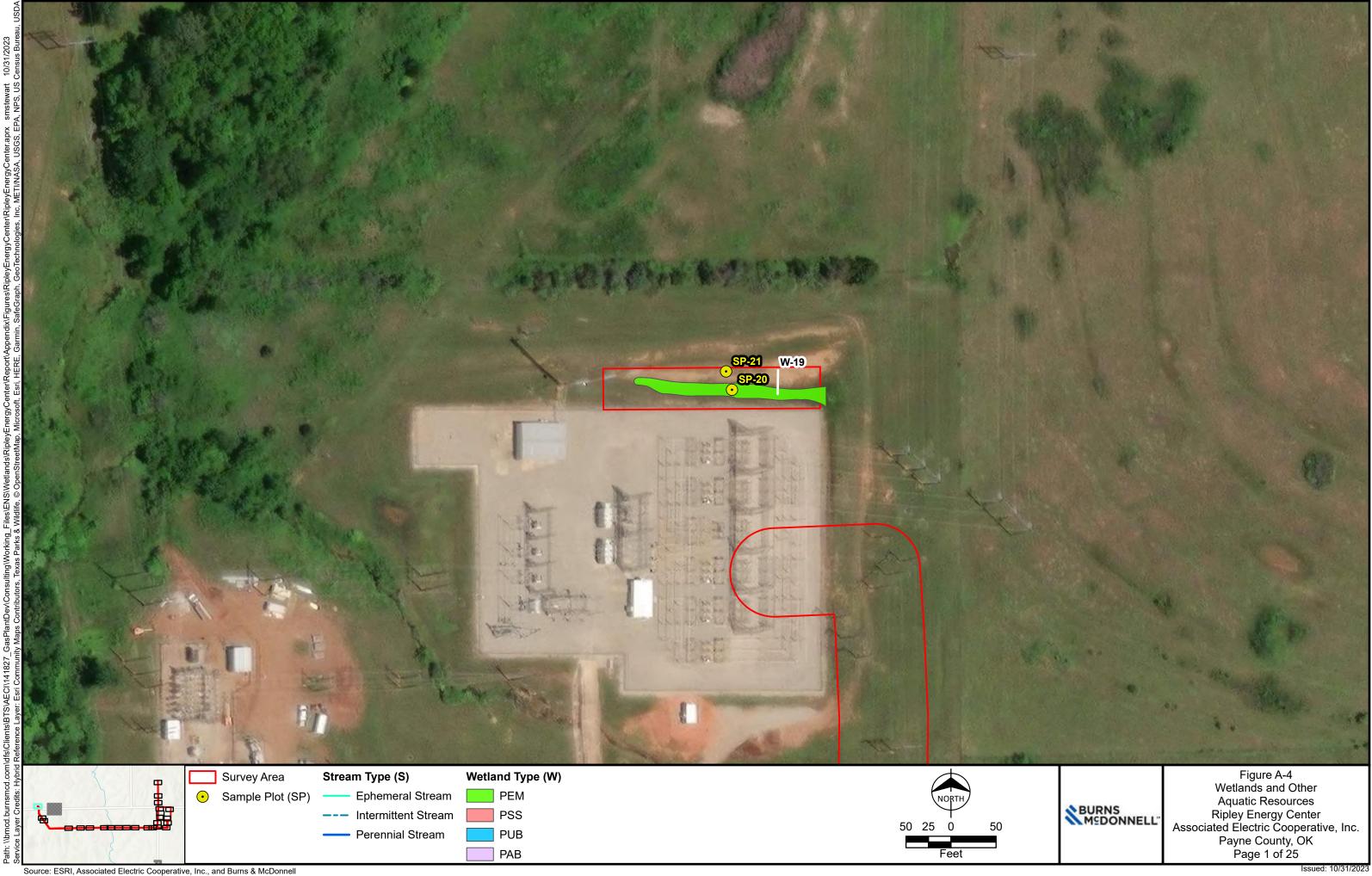




10/31/2023


Source: ESRI, SSURGO, Associated Electric Cooperative, Inc., and Burns & McDonnell

ñ



ñ

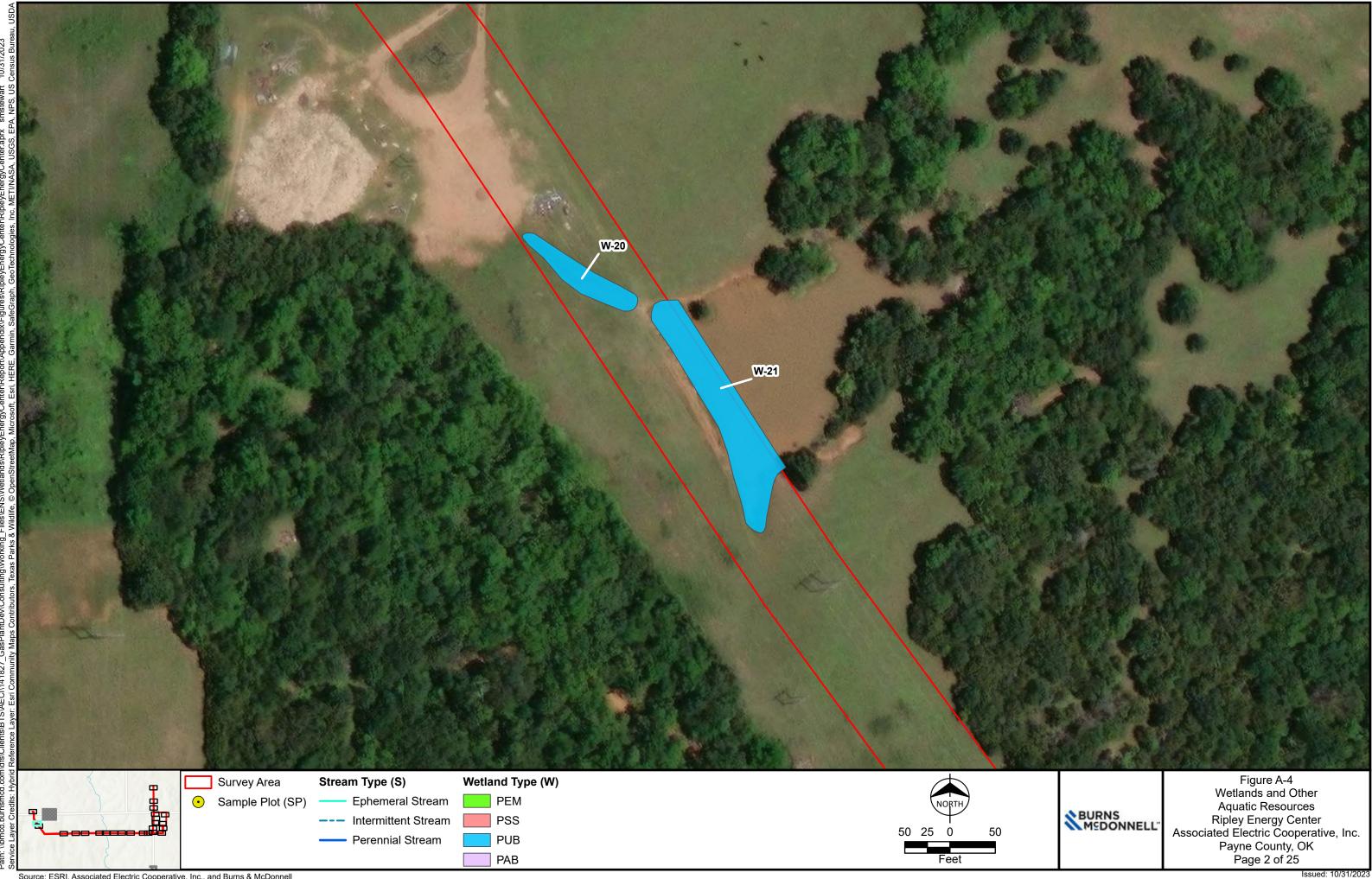


Figure A-3 Soils Index

Soil Map Symbol	Map Unit Name					
CoLC	-	Coyle-Lucien complex, 1 to 5 percent slopes				
76	-	Coyle and Zaneis soils, 3 to 5 percent slopes, severely eroded				
CoyB	-	Coyle loam, 1 to 3 percent slopes				
3	-	Coyle loam, 3 to 5 percent slopes				
4	-	Coyle loam, 3 to 5 percent slopes, eroded				
96	-	Doolin silt loam, 1 to 3 percent slopes				
EasA	-	Easpur loam, 0 to 1 percent slopes, occasionally flooded				
GAMD	-	Grainola-Ashport frequently flooded-Mulhall complex, 0 to 8 percent slopes				
		Grainola-Lucien complex, 1 to 5 percent slopes				
GrLE	-	Grainola-Lucien complex, 5 to 12 percent slopes				
65	-	Grainola clay loam, 3 to 5 percent slopes				
81	-	Huska silt loam, 1 to 3 percent slopes				
KrdB	-	Kirkland silt loam, 1 to 3 percent slopes				
59	-	Konawa and Teller soils, 3 to 8 percent slopes, eroded				
36	-	McLain silt loam, 0 to 1 percent slopes, rarely flooded				
MulC	-	Mulhall loam, 3 to 5 percent slopes				
61	-	Mulhall loam, 3 to 5 percent slopes, eroded				
		Mulhall loam, 3 to 5 percent slopes, gullied				
6	-	Pulaski fine sandy loam, 0 to 1 percent slopes, frequently flooded				
43	-	Pulaski fine sandy loam, 0 to 1 percent slopes, occasionally flooded				
		Renfrow and Grainola soils, 3 to 8 percent slopes, severely eroded				
47	-	Renfrow loam, 3 to 5 percent slopes, eroded				
46	-	Renfrow silt loam, 3 to 5 percent slopes				
		- Stephenville-Darnell complex, 3 to 8 percent slopes, rocky				
		- Zaneis-Huska complex, 1 to 5 percent slopes				
ZanB	-	Zaneis loam, 1 to 3 percent slopes				
70	-	Zaneis loam, 3 to 5 percent slopes				

ñ

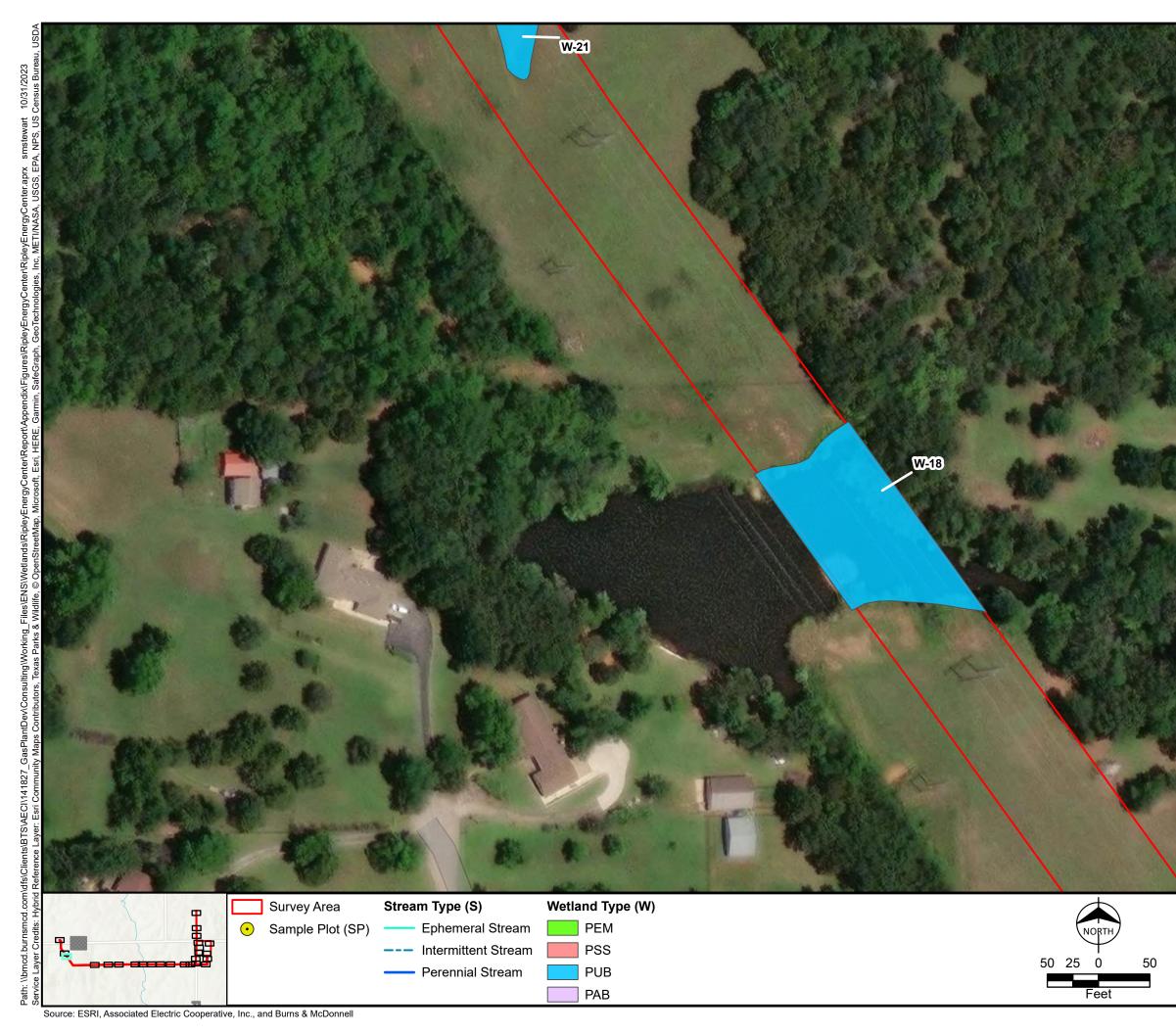
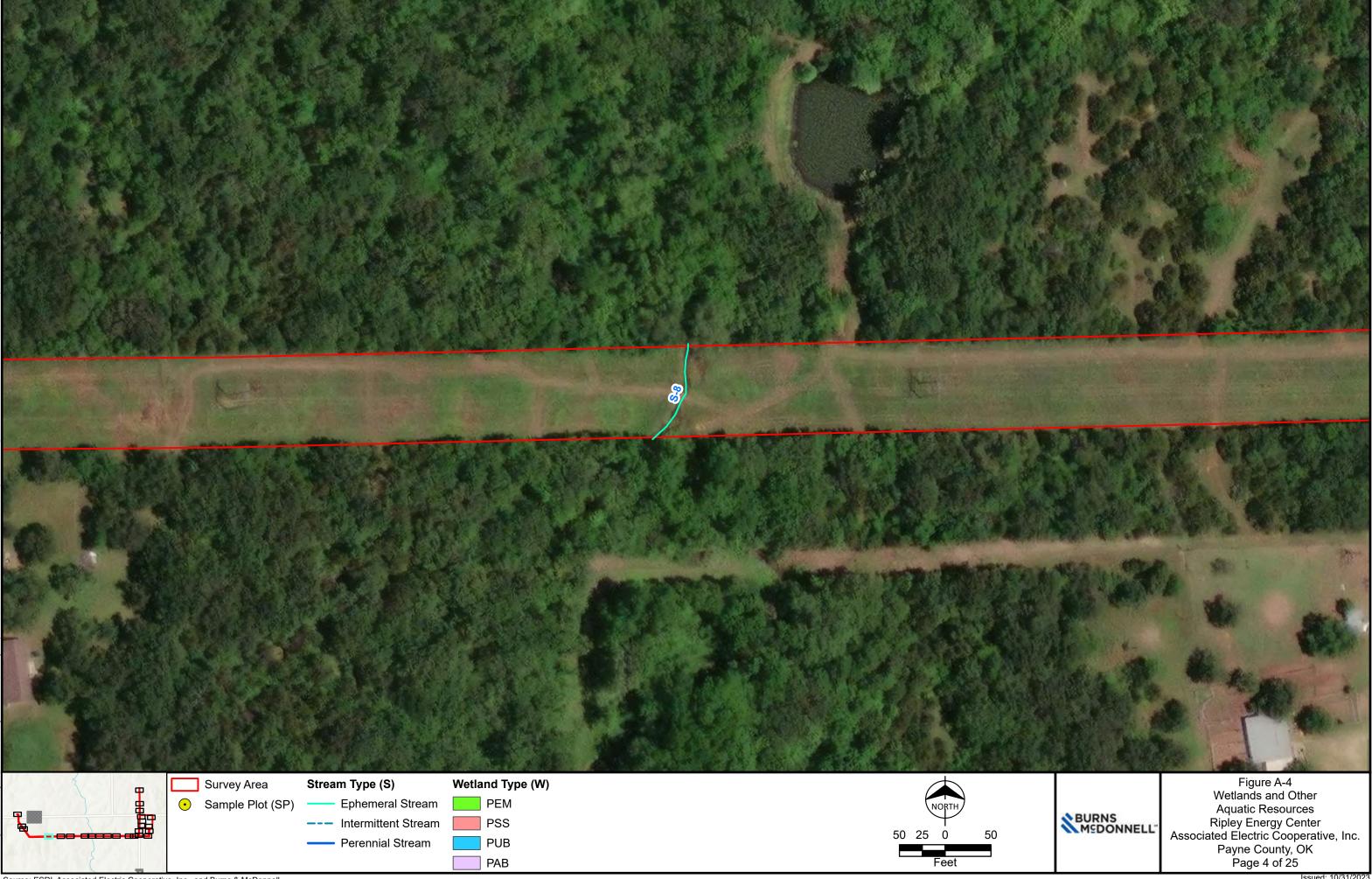
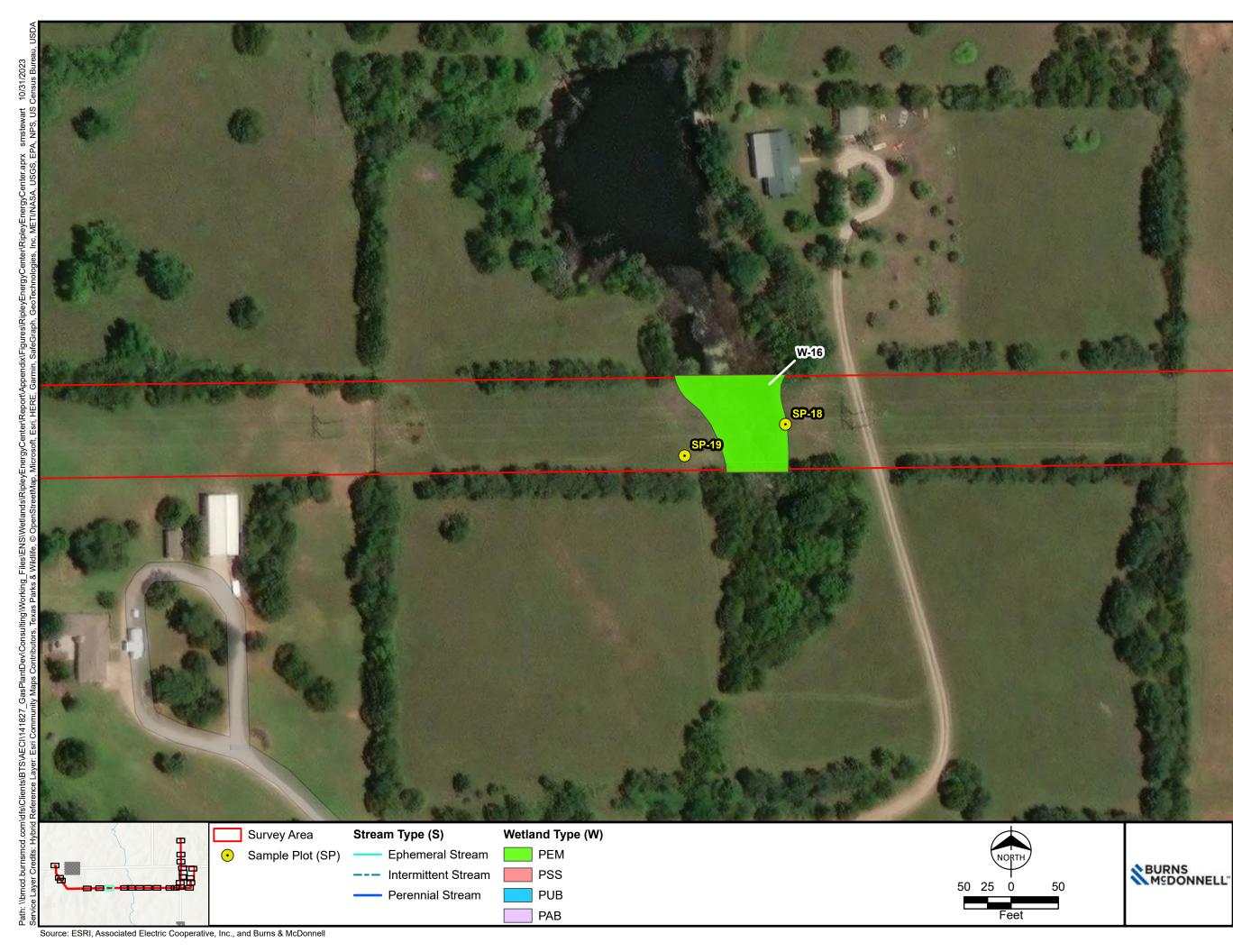
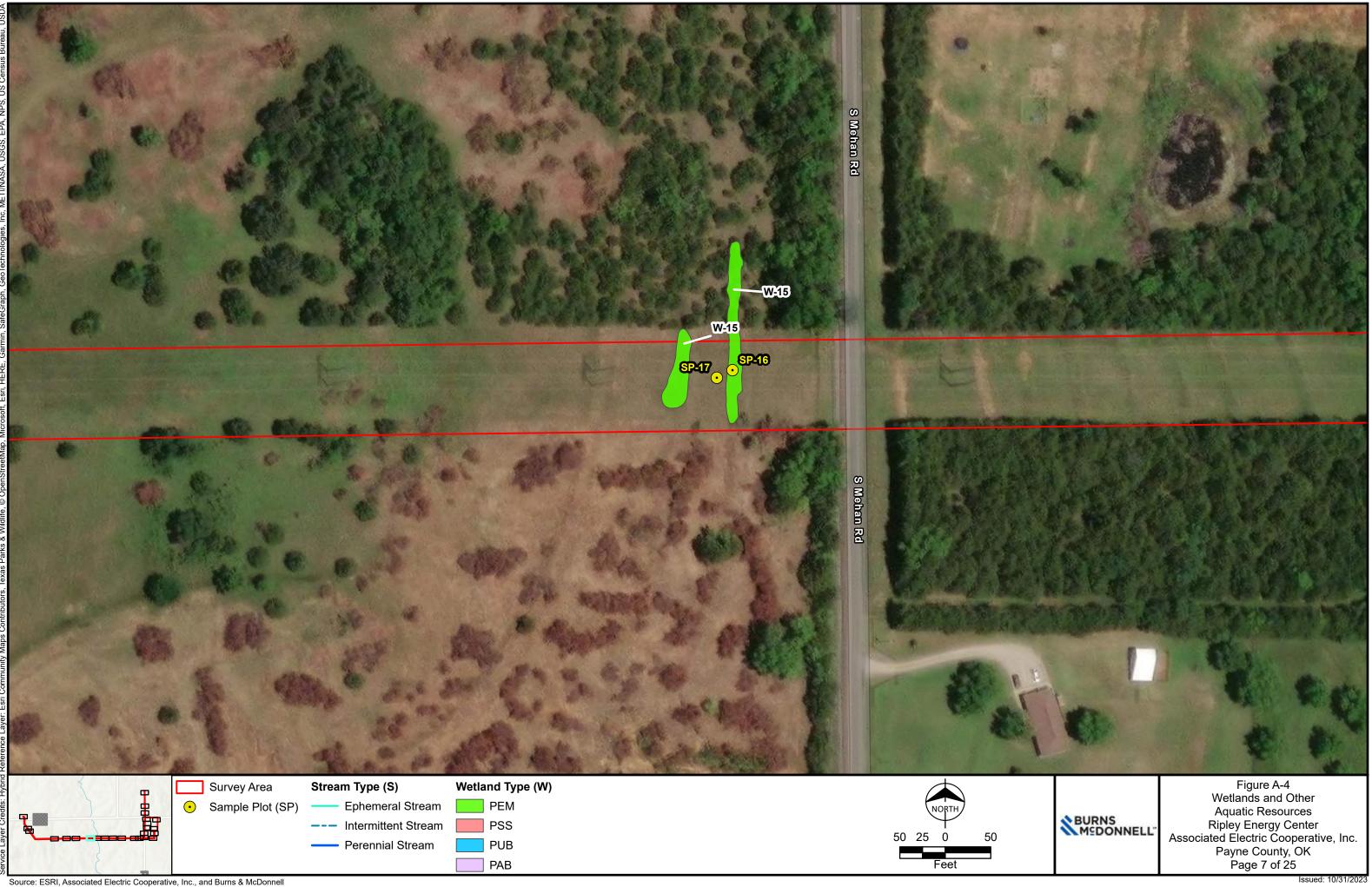
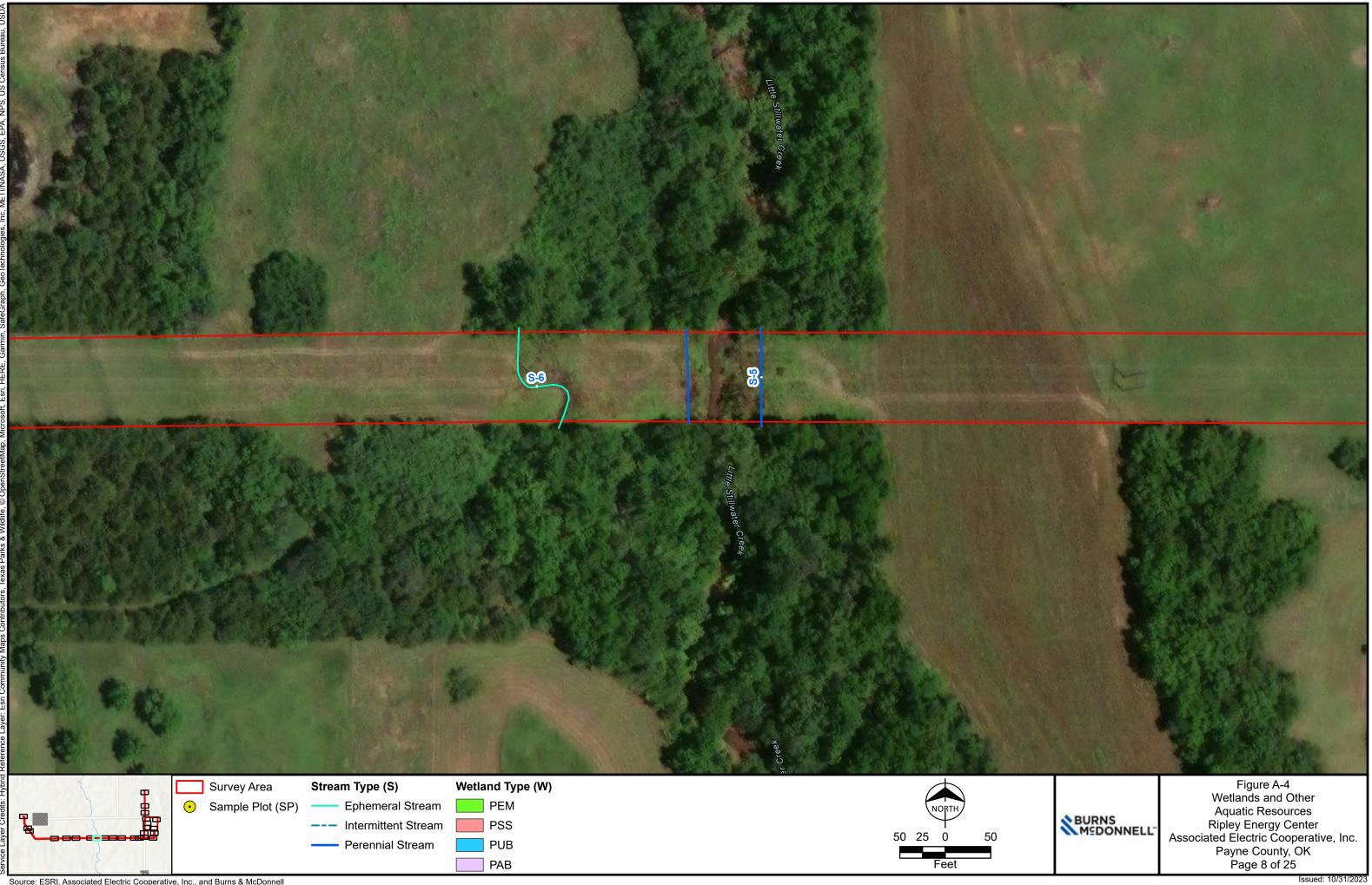
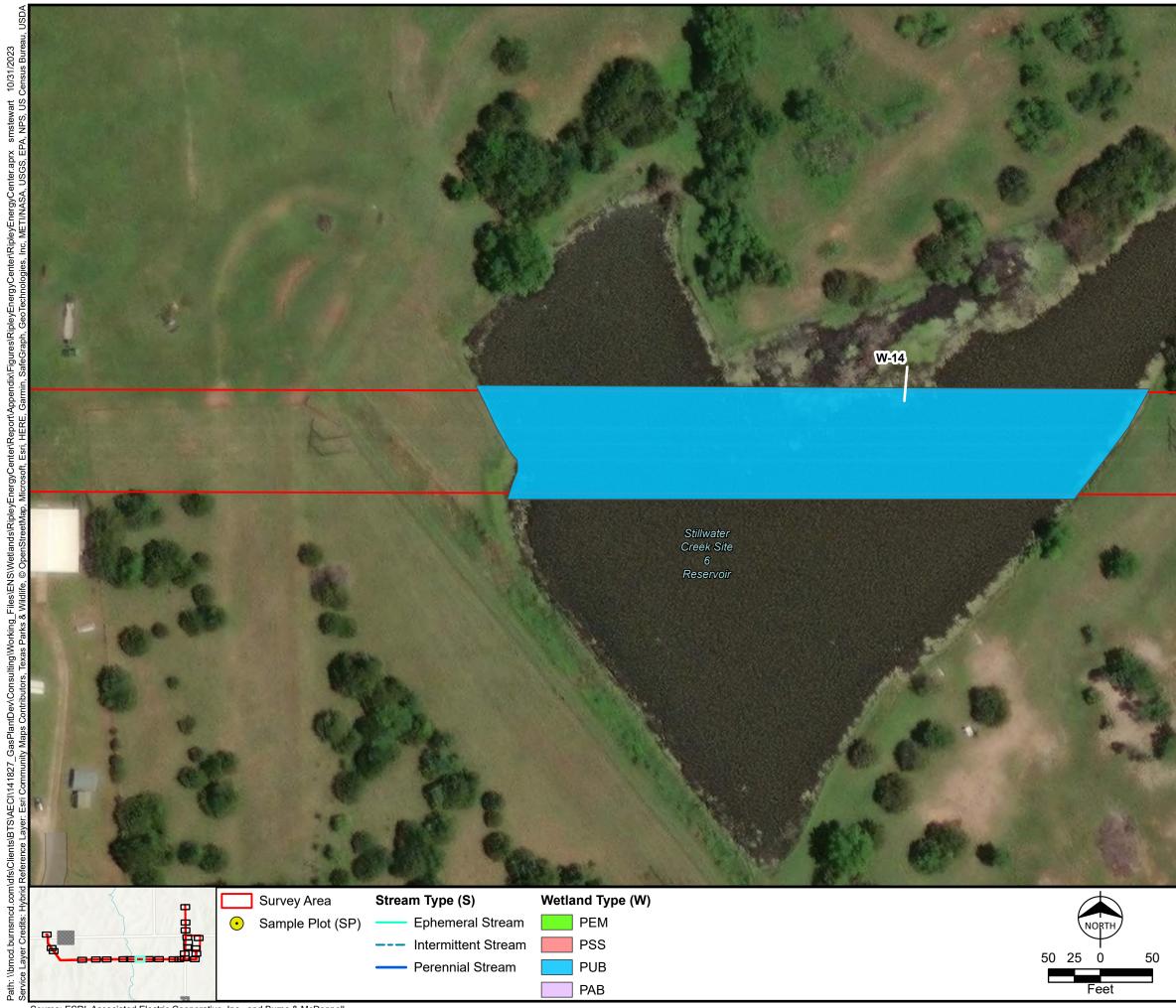



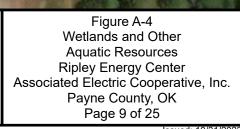
Figure A-4 Wetlands and Other Aquatic Resources Ripley Energy Center Associated Electric Cooperative, Inc. Payne County, OK Page 3 of 25

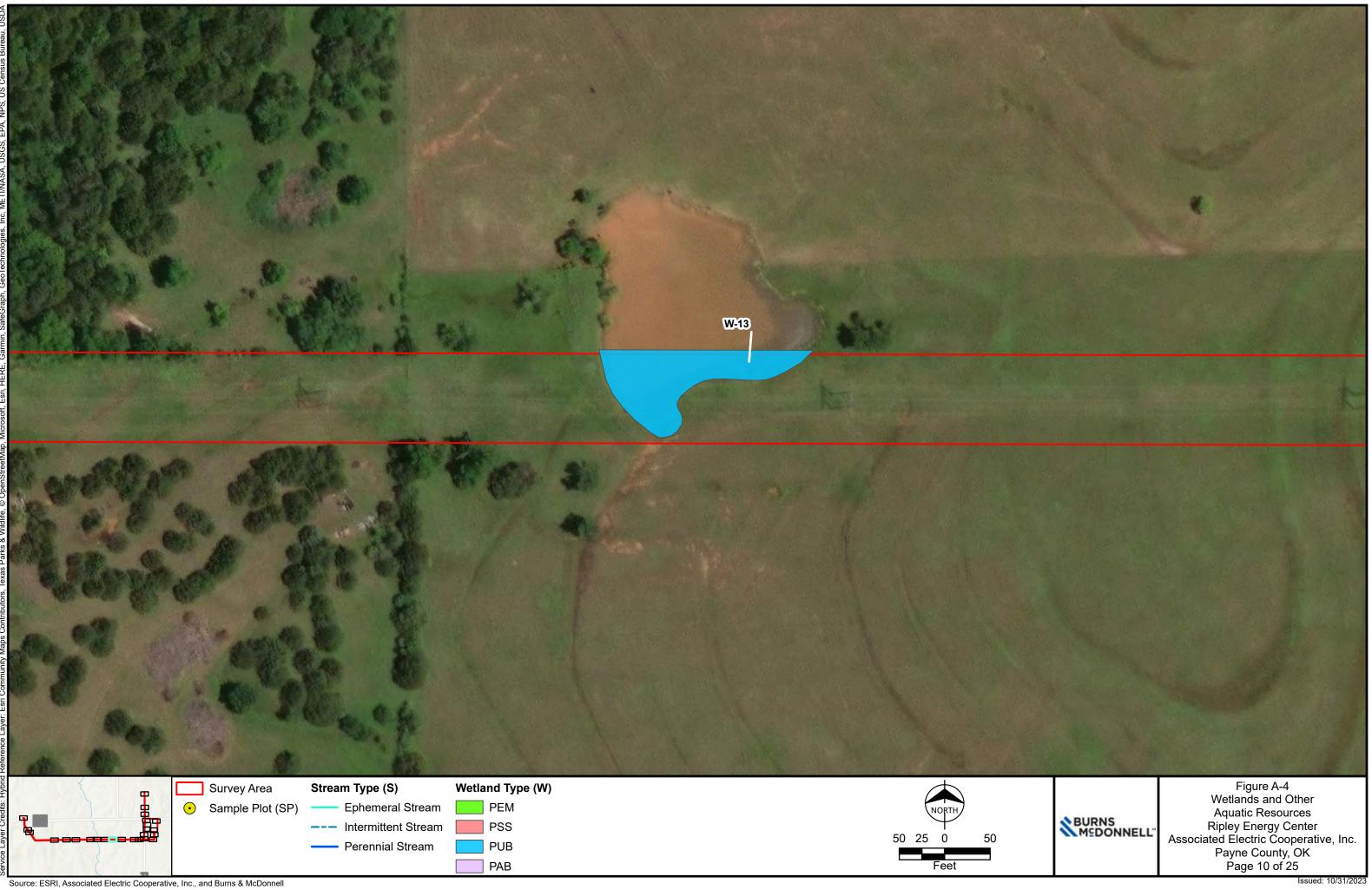
10/31/20

Issued: 10/31/2023


Figure A-4 Wetlands and Other Aquatic Resources Ripley Energy Center Associated Electric Cooperative, Inc. Payne County, OK Page 6 of 25




GasP

10/31/2023

ñ

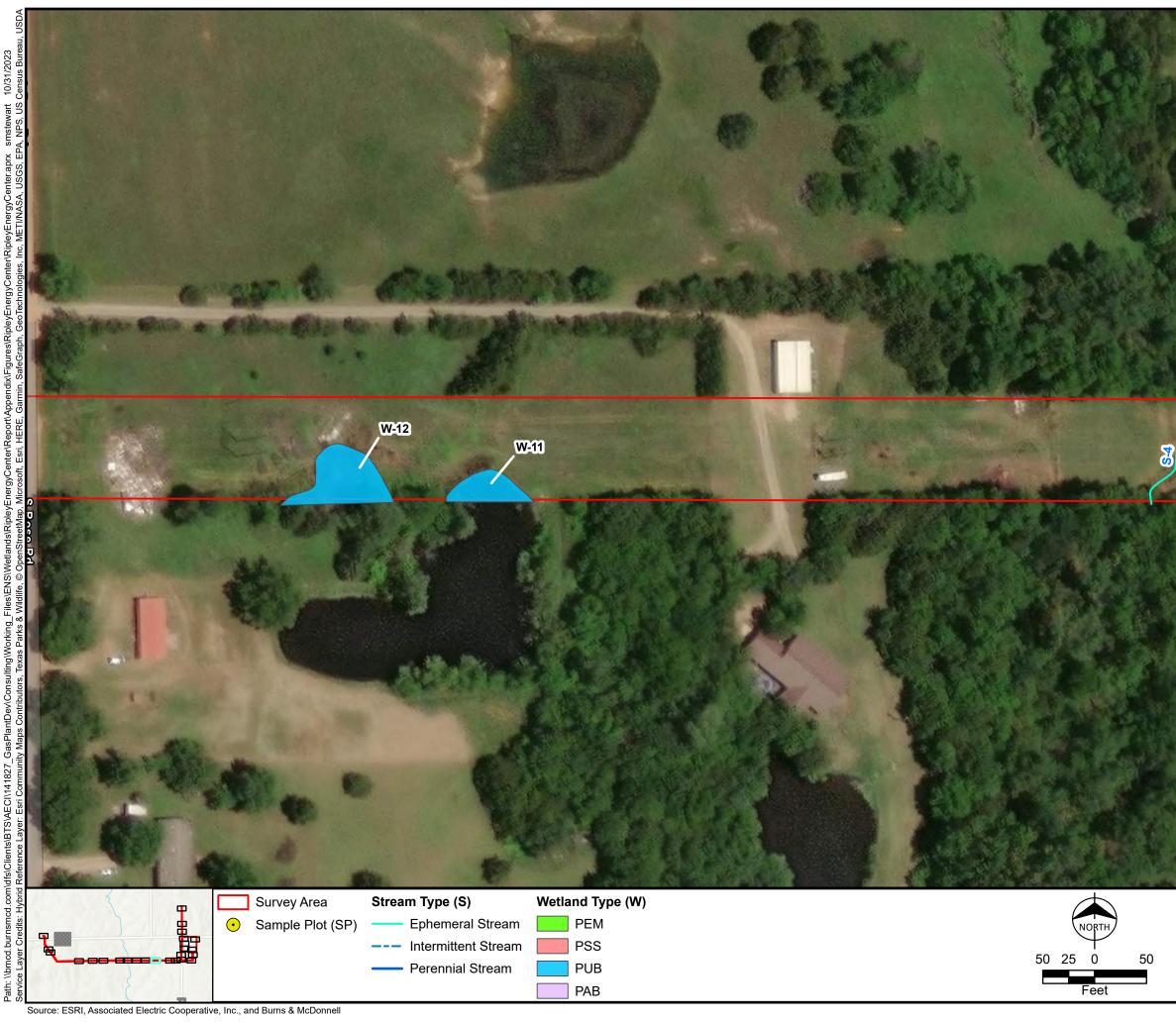
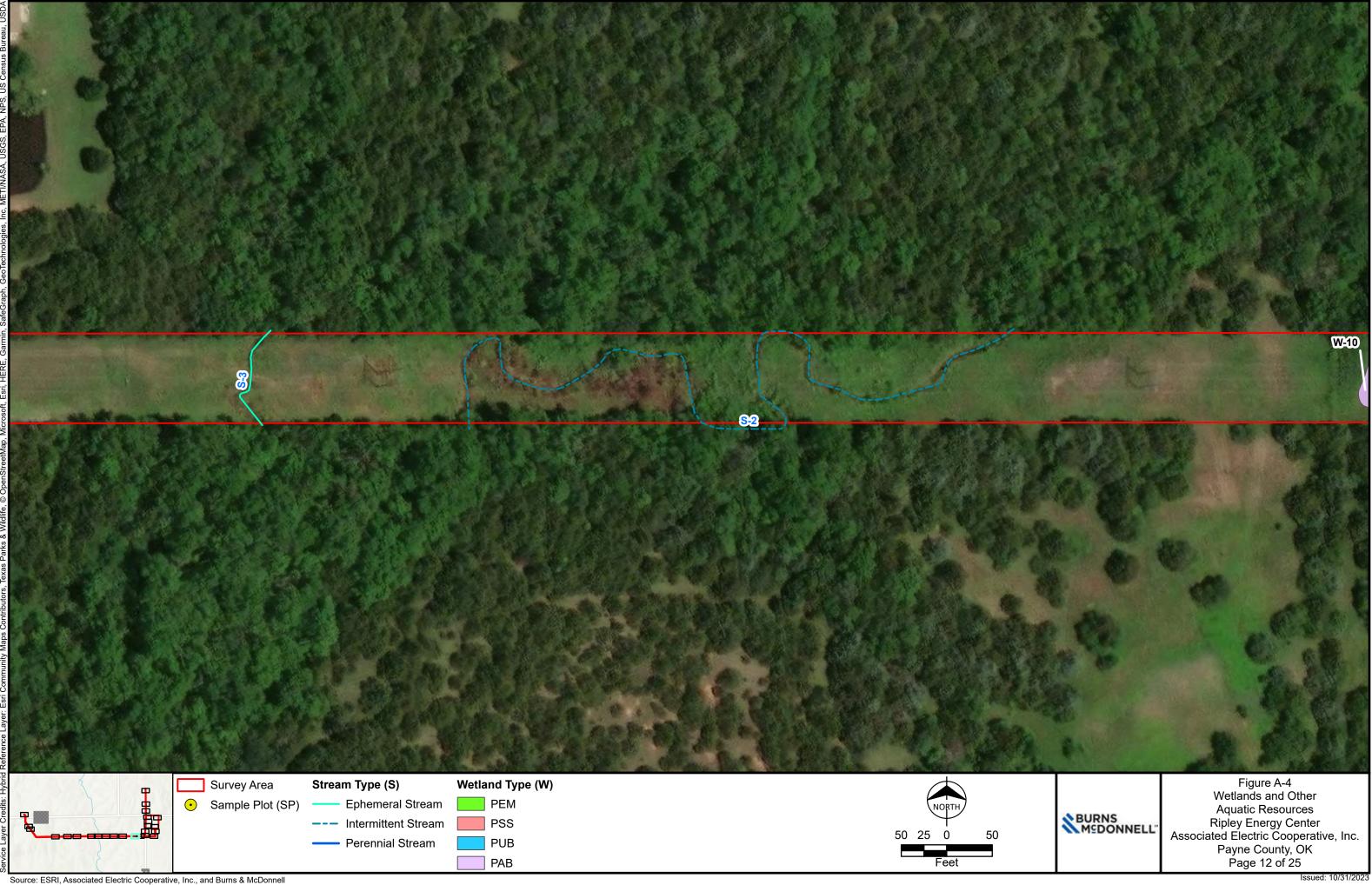
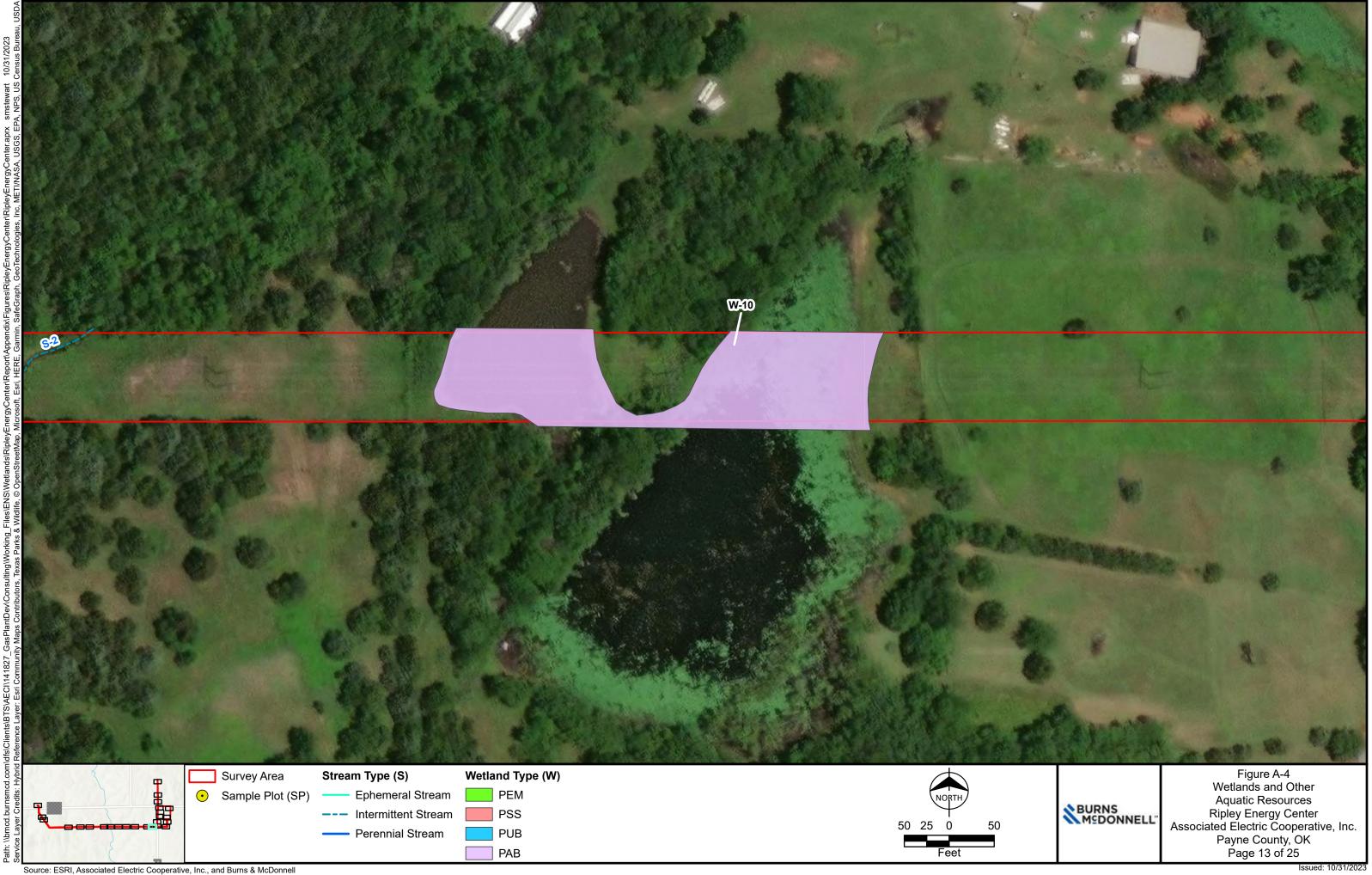
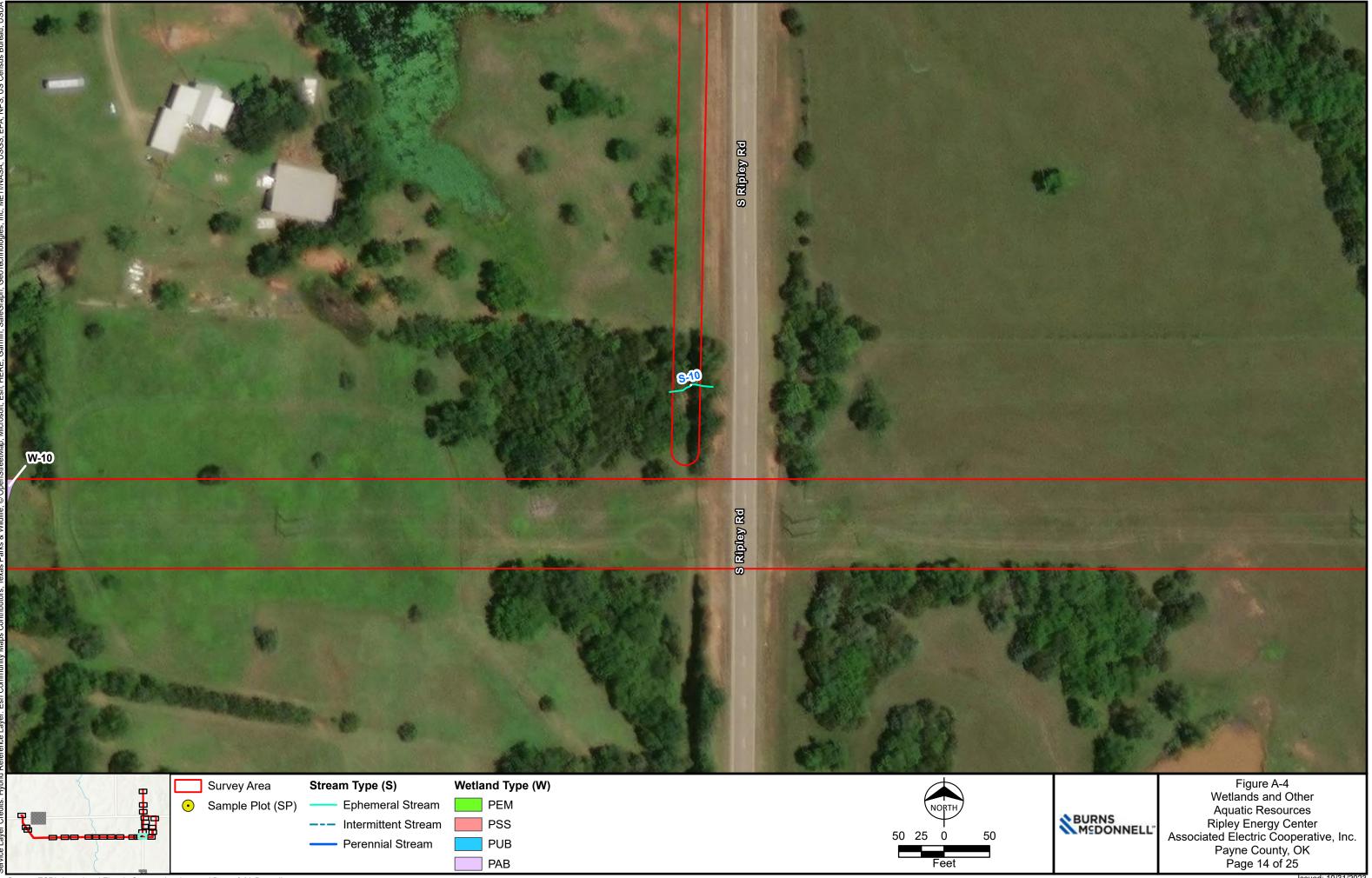
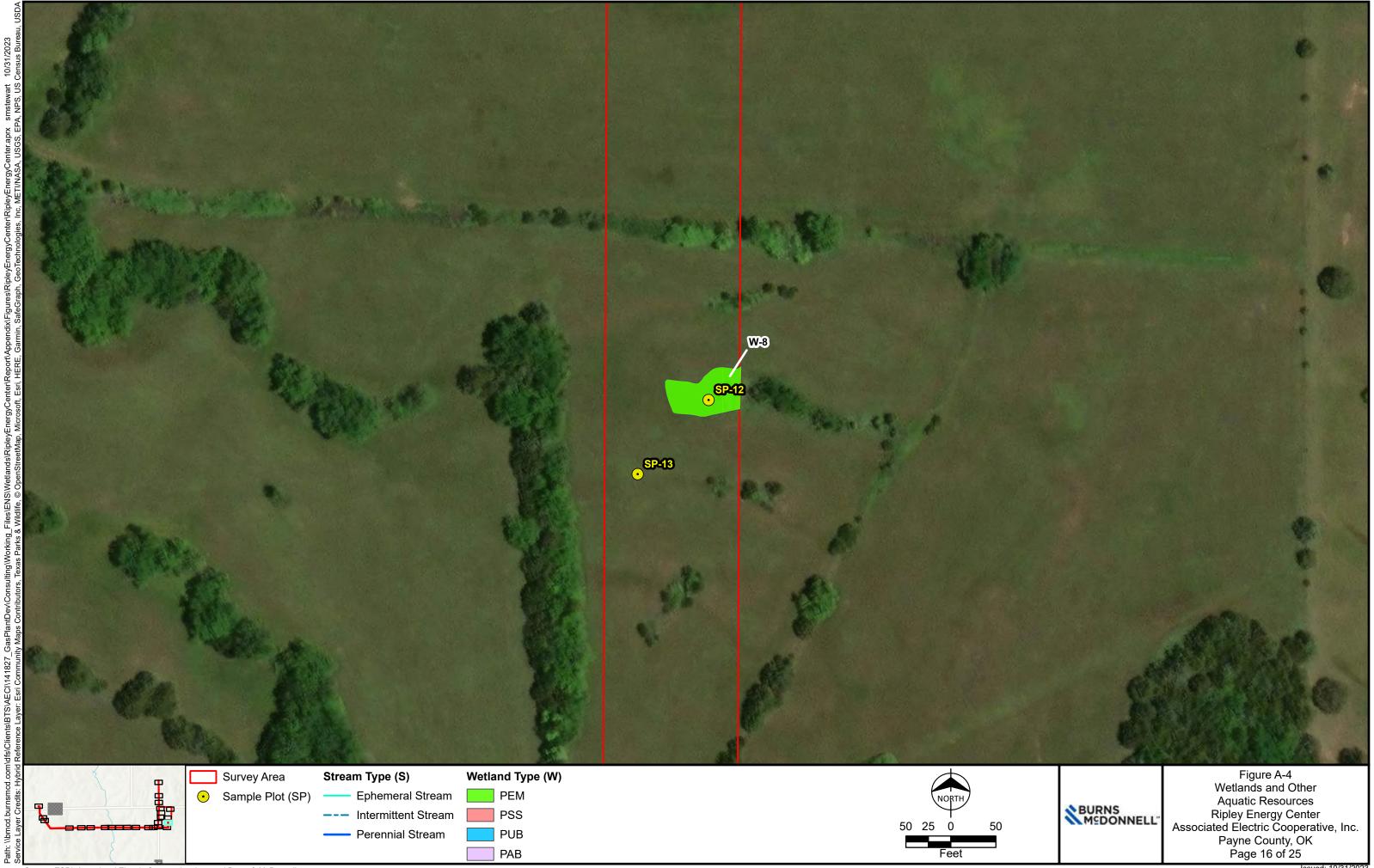
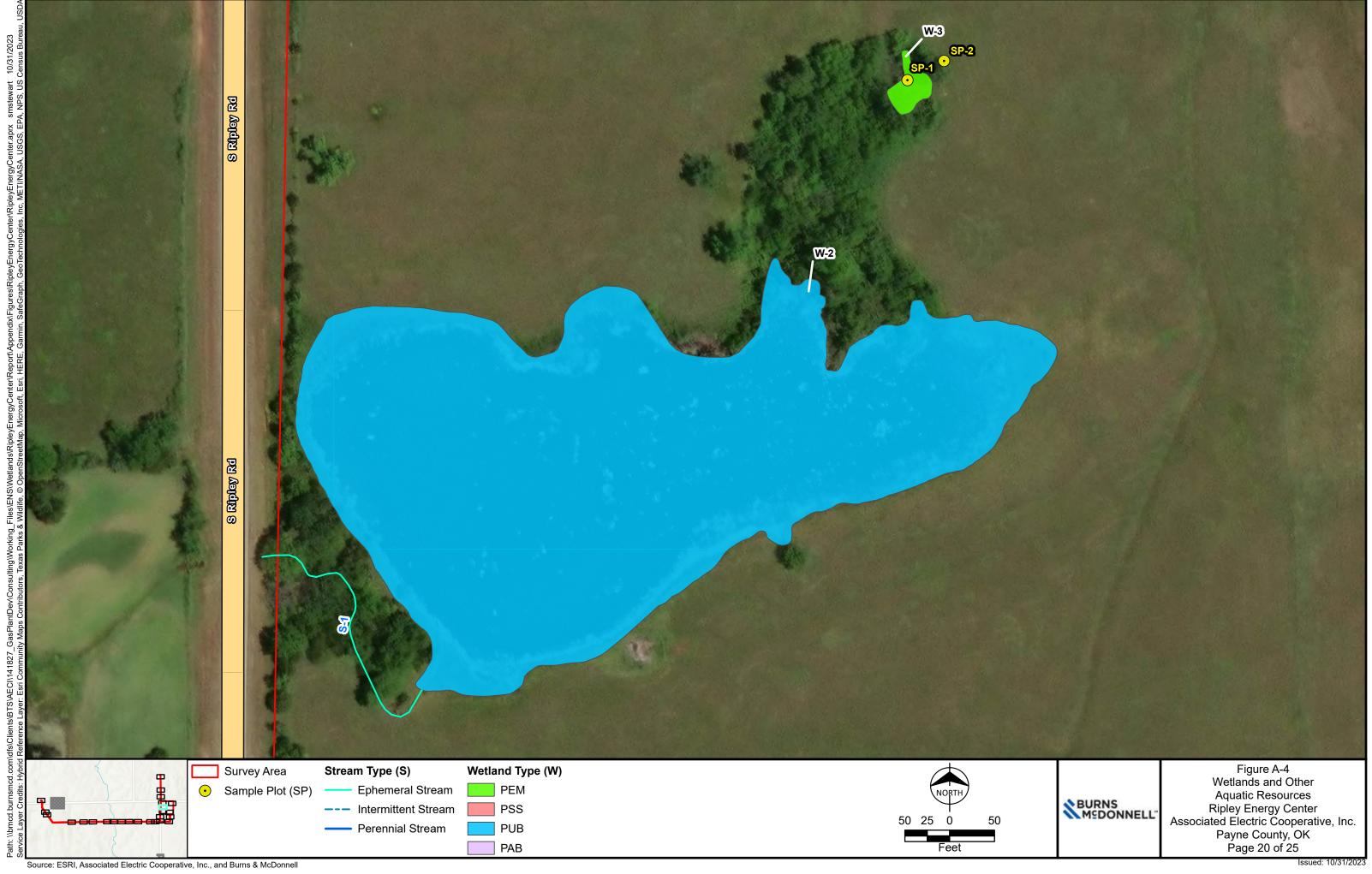





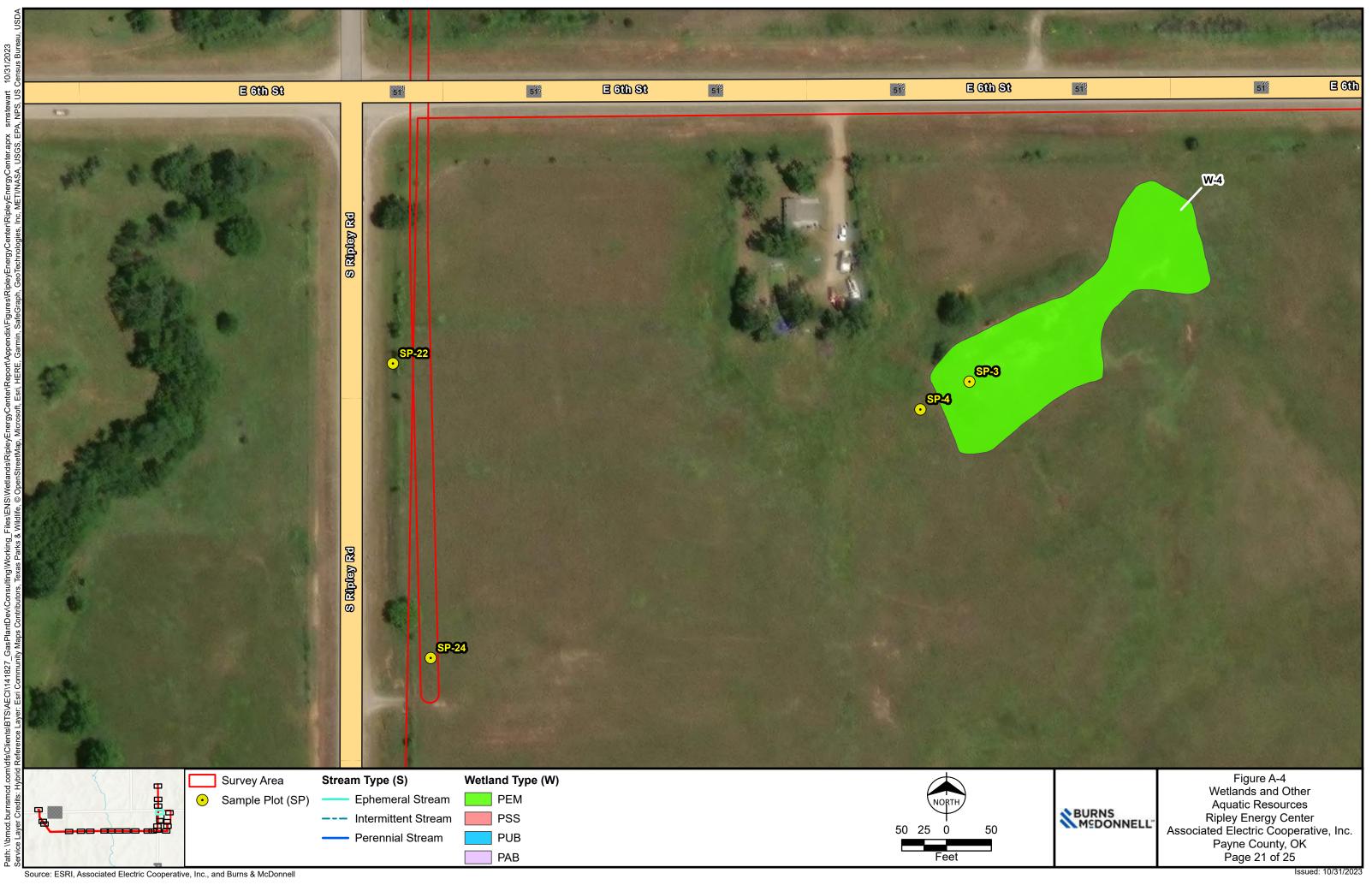
Figure A-4 Wetlands and Other Aquatic Resources Ripley Energy Center Associated Electric Cooperative, Inc. Payne County, OK Page 11 of 25



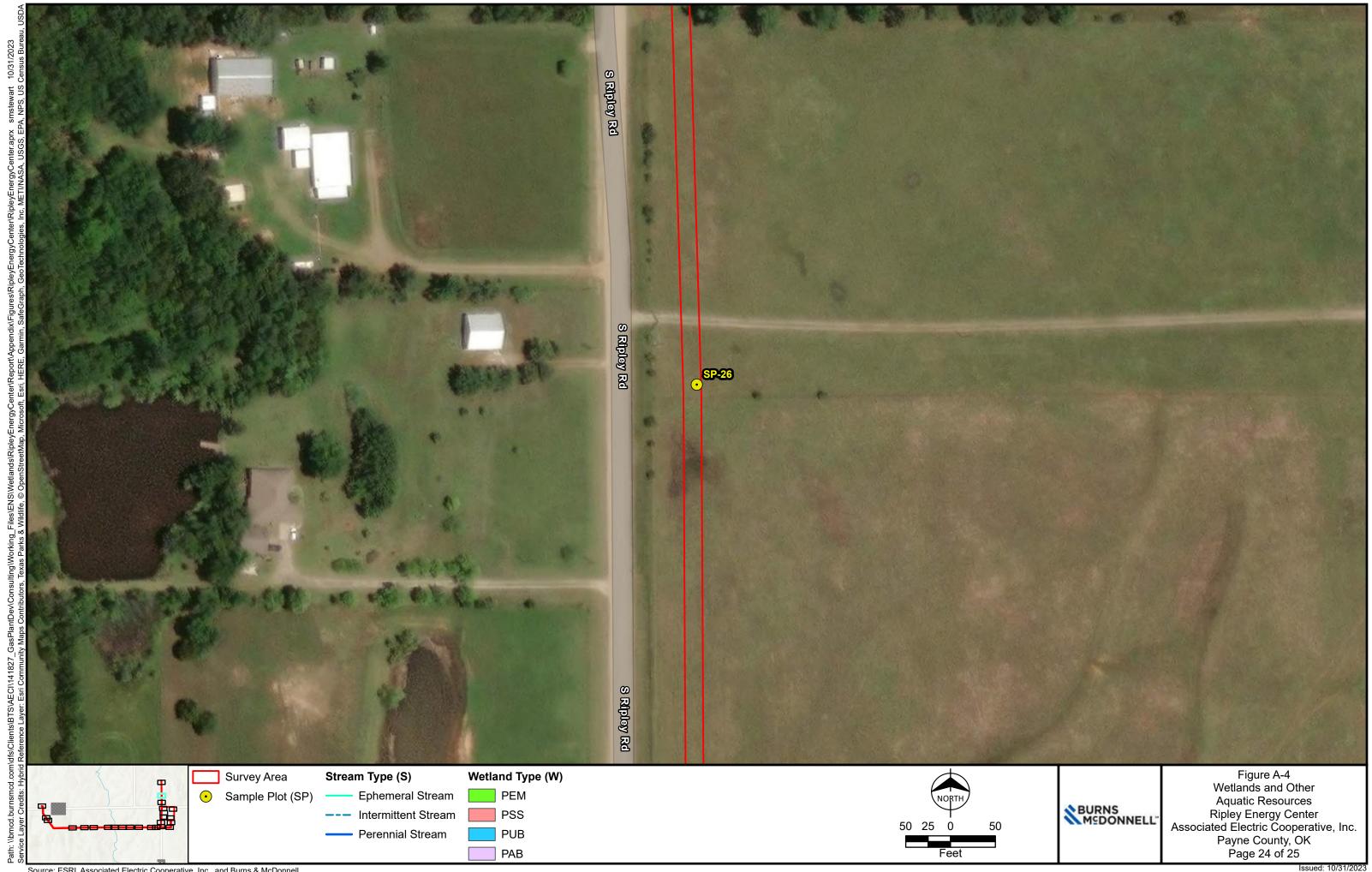
10/31/2023

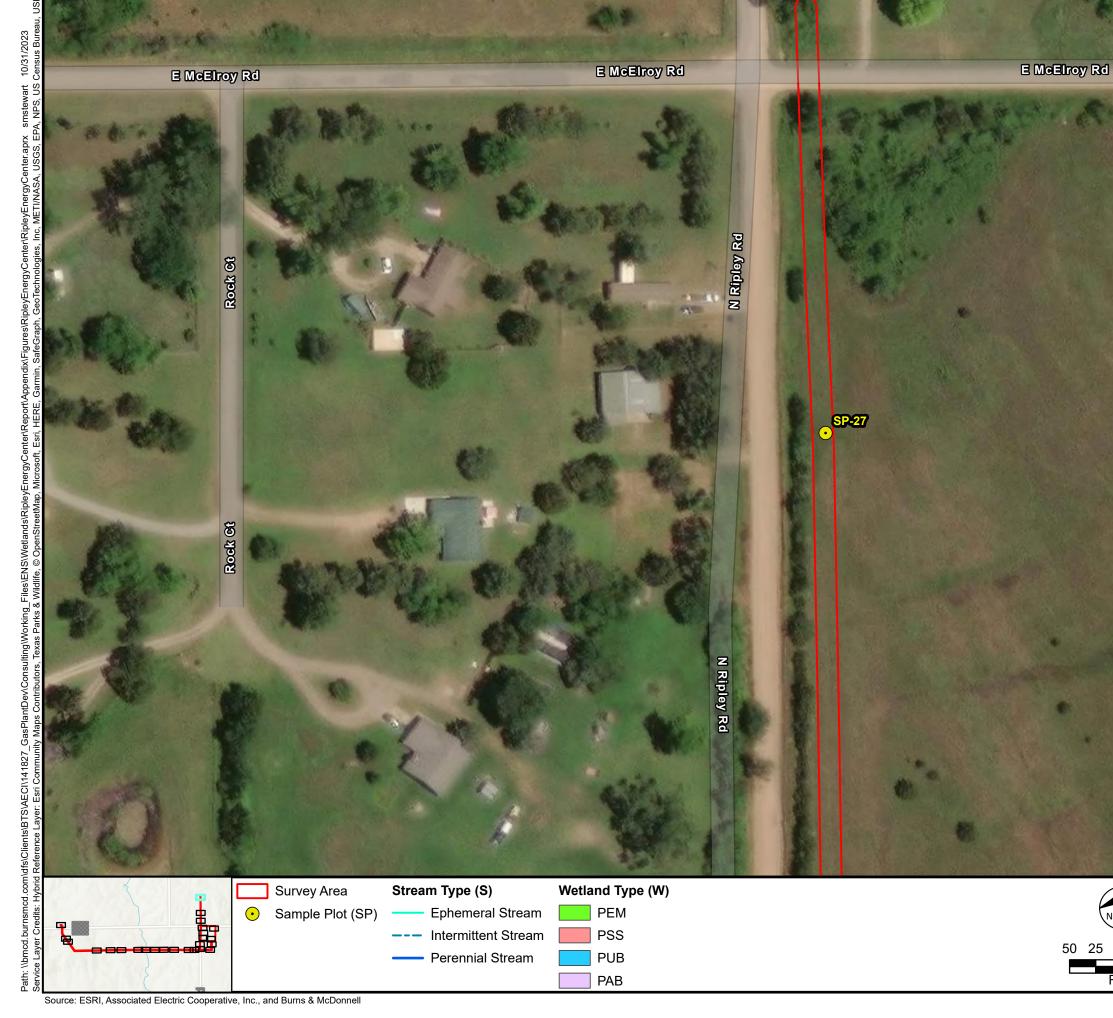



Figure A-4 Wetlands and Other Aquatic Resources Ripley Energy Center Associated Electric Cooperative, Inc. Payne County, OK Page 15 of 25



smstewart


Ъ Д



Issued: 10/31/2023

NORT

Feet

50

50 25 0

Figure A-4 Wetlands and Other Aquatic Resources Ripley Energy Center Associated Electric Cooperative, Inc. Payne County, OK Page 25 of 25

WETLAND DETERMINATION DATA FORM – Great Plains Region

Project/Site: Ripley Energy Center	City/C	_{ounty:} Payne (County	Sampling Date	<u>, 2023-06-21</u>		
Applicant/Owner: Associated Electric Cooperative, Inc.			State: Oklahoma	Sampling Poin	_{t:} SP-1		
Investigator(s): S. Stewart, R. Oltjenbruns	Sectio						
Landform (hillslope, terrace, etc.): Depression	Local	_ Local relief (concave, convex, none): Concave Slope (%): 0					
Subregion (LRR): H80A	at: 36.1141	46	Long: -96.905487	Da	atum: NAD 83		
Soil Map Unit Name: 47 - Renfrow loam, 3 to 5 percent slopes, eroded NWI classification: N/A							
Are climatic / hydrologic conditions on the site typical for this tim	e of year? Y	es 🖌 No _	(If no, explain in R	emarks.)			
Are Vegetation, Soil, or Hydrology significantly disturbed? Are "Normal Circumstances" present? Yes 🗹 No							
Are Vegetation, Soil, or Hydrology natur	ally problema	itic? (If n	eeded, explain any answe	rs in Remarks.)			
SUMMARY OF FINDINGS – Attach site map sho	owing sam	pling point l	ocations, transects	, important	features, etc.		
Hydrophytic Vegetation Present? Yes V No Is the Sampled Area Hydric Soil Present? Yes V No within a Wetland? Yes V No							
VEGETATION – Use scientific names of plants.							
20 4	Cover Spec	inant Indicator cies? Status / FAC	Dominance Test work Number of Dominant Sp That Are OBL, FACW, o (excluding FAC-):	pecies	(A)		
3	<u></u>		Total Number of Domin Species Across All Stra	· · ·	(B)		
15	5 = Tota	al Cover	Percent of Dominant Sr	necies			

2				(enderson
3				Total Number of Dominant Species Across All Strata: <u>3</u> (B)
		= Total Co		
Sapling/Shrub Stratum (Plot size: 15 ft r)			VEI	Percent of Dominant Species That Are OBL, FACW, or FAC: <u>100.00</u> (A/B)
1. Diospyros virginiana	15	✓	FAC	
2				Prevalence Index worksheet:
3.				Total % Cover of: Multiply by:
				OBL species <u>0</u> x 1 = <u>0</u>
4			·	FACW species <u>40</u> x 2 = <u>80</u>
5	15			FAC species <u>33</u> x 3 = <u>99</u>
Herb Stratum (Plot size: 5 ft r)	15	= Total Co	ver	FACU species 0 x 4 = 0
1. Eleocharis compressa	40	~	FACW	UPL species $0 \times 5 = 0$
2. Rubus argutus	3		FAC	Column Totals: 73 (A) 179 (B)
3				
4				Prevalence Index = $B/A = 2.45$
5				Hydrophytic Vegetation Indicators:
				1 - Rapid Test for Hydrophytic Vegetation
6				✓ 2 - Dominance Test is >50%
7				3 - Prevalence Index is ≤3.0 ¹
8				4 - Morphological Adaptations ¹ (Provide supporting
9				data in Remarks or on a separate sheet)
10				Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size: 30 ft r)	43	= Total Co	ver	¹ Indicators of hydric soil and wetland hydrology must
				be present, unless disturbed or problematic.
1				
2			·	Hydrophytic Vegetation
% Bare Ground in Herb Stratum 60.0	0	= Total Co	ver	Present? Yes <u>V</u> No
Remarks:				
Dominance test is passed.				
See Photo C-1.				

SOIL

Profile Desc	ription: (Describe	to the dep	th needed to docur	nent the i	ndicator	or confirn	n the absence of	indicators.)
Depth	Matrix			x Features		0		
(inches)	Color (moist)	<u>%</u>	Color (moist)	<u>%</u>	Type ¹	Loc ²	Texture	Remarks
0 - 24	5YR 4/2	60	5YR 4/6	40	С	PL / M	Clay Loam	
-								
-								
-		. <u> </u>						
-								
-								
-						·		
		letion RM	=Reduced Matrix, CS		t or Coate	ad Sand G	rains ² Locati	ion: PL=Pore Lining, M=Matrix.
			LRRs, unless othe					r Problematic Hydric Soils ³ :
Histosol				Gleyed Ma				ck (A9) (LRR I, J)
	pipedon (A2)			Redox (S5	• •			airie Redox (A16) (LRR F, G, H)
Black Hi				d Matrix (S				face (S7) (LRR G)
Hydroge	en Sulfide (A4)			Mucky Mir				ns Depressions (F16)
Stratified	d Layers (A5) (LRR I	=)	Loamy	Gleyed Ma	atrix (F2)		(LRR	H outside of MLRA 72 & 73)
	ick (A9) (LRR F, G,	,	Deplete	•	,			Vertic (F18)
-	d Below Dark Surfac	e (A11)		Dark Surfa	()	,		ent Material (TF2)
	ark Surface (A12)			d Dark Su)	-	llow Dark Surface (TF12)
-	lucky Mineral (S1) /lucky Peat or Peat (S2) (I RR (Depression ains Depre	• •	(16)		plain in Remarks) hydrophytic vegetation and
	icky Peat or Peat (S			RA 72 & 7	•			ydrology must be present,
		o) (<u> </u>	(,		sturbed or problematic.
Restrictive I	Layer (if present):							
Туре:								
Depth (in	ches):						Hydric Soil Pr	esent? Yes 🔽 No
Remarks:								
Indicato	r F3 is met.							
HYDROLO	GY							
Wetland Hy	drology Indicators:							
Primary India	cators (minimum of c	ne require	d; check all that appl	y)			Secondary	Indicators (minimum of two required)
Surface	Water (A1)		Salt Crust	(B11)			Surface	e Soil Cracks (B6)
High Wa	High Water Table (A2) Aquatic Invertebrates (B13)					Sparsely Vegetated Concave Surface (B8)		
Saturatio	on (A3)		Hydrogen	Sulfide Od	dor (C1)		🖌 Draina	ge Patterns (B10)
Water Marks (B1) Dry-Season Water Table (C2) Oxidized Rhizospheres on Living Roots							ed Rhizospheres on Living Roots (C3)	
Sediment Deposits (B2)								
Drift Deposits (B3) (where not tilled) Crayfish Burrows (C8)								
Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Saturation Visible on Aerial Imagery								
Iron Deposits (B5) Thin Muck Surface (C7)							orphic Position (D2)	
	on Vis ble on Aerial	magery (B	7) Other (Exp	olain in Re	marks)			eutral Test (D5)
	tained Leaves (B9)						Frost-H	leave Hummocks (D7) (LRR F)
Field Obser								
Surface Wat			No <u>P</u> Depth (in					
Water Table			No <u>P</u> Depth (in					
Saturation P (includes cap		es	No <u> </u>	ches):		Wetl	and Hydrology P	Present? Yes 🥙 No

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:

Indicators C3, B10, D2, and D5 are met.

Project/Site: Ripley Energy Center	City/County: Pa	City/County: Payne County Sampling Date: 2023-06					
Applicant/Owner: Associated Electric Cooperative, In	с.	State: Oklahoma Sampling Point: SP-2					
Investigator(s): S. Stewart, R. Oltjenbruns	Section, Townsl	hip, Range: S20 T19N R4E					
Landform (hillslope, terrace, etc.): Sideslope		Local relief (concave, convex, none): <u>None</u> Slope (%): <u>2</u>					
Subregion (LRR): H80A	Lat: 36.114204	6.114204 Long: -96.905348					
Soil Map Unit Name: 47 - Renfrow loam, 3 to 5 percer	nt slopes, eroded	NWI classification	n: N/A				
Are climatic / hydrologic conditions on the site typical for this	time of year? Yes	No (If no, explain in Rema	rks.)				
Are Vegetation, Soil, or Hydrologysig	nificantly disturbed?	ificantly disturbed? Are "Normal Circumstances" present? Yes No _					
Are Vegetation, Soil, or Hydrology na	turally problematic?	problematic? (If needed, explain any answers in Remarks.)					
SUMMARY OF FINDINGS – Attach site map s	howing sampling p	oint locations, transects, im	portant features, etc.				
Hydrophytic Vegetation Present? Yes No	✓ Is the Sa	ampled Area					

Hydric Soil Present? Wetland Hydrology Present?	Yes Yes	No No	within a Wetland?	Yes	No
Remarks:					

Upland sample plot adjacent to PEM W-3. The USACE Antecedent Precipitation Tool indicates normal climatic conditions three months prior to survey.

VEGETATION – Use scientific names of plants.

T OL & OL & 30 ft r	Absolute	Dominant		Dominance Test worksheet:	
Tree Stratum (Plot size: <u>30 ft r</u>)		Species?		Number of Dominant Species	
1				That Are OBL, FACW, or FAC (excluding FAC-): 0 (A)	
2				$\frac{1}{2} = \frac{1}{2} $	
3				Total Number of Dominant	
4				Species Across All Strata: <u>2</u> (B)	
		= Total Co	ver	Percent of Dominant Species	
Sapling/Shrub Stratum (Plot size: 15 ft r)				That Are OBL, FACW, or FAC: 0 (A/E	3)
1				Prevalence Index worksheet:	
2				Total % Cover of: Multiply by:	
3				$OBL \text{ species } \underline{0} \qquad x 1 = \underline{0}$	
4				FACW species 0 $x 2 = 0$	
5				FAC species 0 x 3 = 0	
Herb Stratum (Plot size: 5 ft r)		= Total Co	ver	FACU species $30 \times 4 = 120$	
<u>Herb Stratum</u> (Plot size: <u>5 ft r</u>) 1. Bromus tectorum	30	~	UPL	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	
2. Sorghum halepense	<u></u>		FACU		,
2. Solighum halepense 3. Schedonorus arundinaceus				Column Totals: $\underline{60}$ (A) $\underline{270}$ (B))
 <u>3. Schedonorus arundinaceus</u> <u>4. Rudbeckia hirta</u> 	<u> </u>		FACU	Prevalence Index = $B/A = 4.5$	
	5		FACU	Hydrophytic Vegetation Indicators:	
5				1 - Rapid Test for Hydrophytic Vegetation	
6				2 - Dominance Test is >50%	
7				$3 - \text{Prevalence Index is } \le 3.0^{1}$	
8					
9				4 - Morphological Adaptations ¹ (Provide supportin data in Remarks or on a separate sheet)	ıg
10				Problematic Hydrophytic Vegetation ¹ (Explain)	
00 ft	60%	= Total Cov	ver		
Woody Vine Stratum (Plot size: 30 ft r)				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.	
1		. <u> </u>		be present, unless disturbed of problematic.	
2				Hydrophytic	
% Bare Ground in Herb Stratum 40.0		= Total Co	ver	Vegetation Present? Yes <u>No</u>	
Remarks:					
No toot is passed Vagatation is dist	م ام م اس			ithin on optive here field	

No test is passed. Vegetation is disturbed due to being within an active hay field. See Photo C-2.

Depth	ription: (Describe Matrix	to the depth		nent the ir x Features		or contirr	II THE ADSENCE OF I	nuicators.)
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0 - 18	7.5YR 3/3	100		<u> </u>			Silty Clay Loam	
18 - 24	7.5YR 3/4	100					Clay Loam	
-								
-								
				·				
				·				
				·				
-								
-				·				
	oncentration, D=Dep					d Sand G		on: PL=Pore Lining, M=Matrix.
-	Indicators: (Applic	able to all LR						Problematic Hydric Soils ³ :
Histosol				Sleyed Mat	. ,			k (A9) (LRR I, J)
	pipedon (A2)		-	Redox (S5)				irie Redox (A16) (LRR F, G, H)
Black Hi	()			Matrix (Se				ace (S7) (LRR G)
	en Sulfide (A4) d Layers (A5) (LRR I	E)		Mucky Min Gleyed Ma			-	IS Depressions (F16)
	ick (A9) (LRR F, G,		-	d Matrix (F				Vertic (F18)
	d Below Dark Surfac			Dark Surfac	,			nt Material (TF2)
	ark Surface (A12)			d Dark Sur		1		ow Dark Surface (TF12)
	lucky Mineral (S1)			Depression	is (F8)			plain in Remarks)
	Mucky Peat or Peat (nydrophytic vegetation and
5 cm Mı	icky Peat or Peat (S	3) (LRR F)	(ML	RA 72 & 7	3 of LRR	H)	-	drology must be present,
Postrictivo	Layer (if present):						uniess ais	turbed or problematic.
Type:								
	ches):		_				Hydric Soil Pre	esent? Yes No 🖌
Remarks:								
NO INDIC	ators are me	et.						
	<u></u>							
HYDROLO								
-	drology Indicators:							
	cators (minimum of o	one required; c						ndicators (minimum of two required)
	Water (A1)		Salt Crust	` '				Soil Cracks (B6)
	ater Table (A2)		Aquatic Inv		` '			y Vegetated Concave Surface (B8)
Saturatio			Hydrogen		• •		-	je Patterns (B10)
	larks (B1)		Dry-Seaso		. ,			d Rhizospheres on Living Roots (C3)
	nt Deposits (B2)		Oxidized F	-	es on Liv	ing Roots	. , .	re tilled)
	posits (B3)			not tilled)				n Burrows (C8)
	at or Crust (B4)		Presence		•	•)		ion Visible on Aerial Imagery (C9)
	oosits (B5)		Thin Muck		,			rphic Position (D2)
	on Vis ble on Aerial	Imagery (B7)	Other (Exp	biain in Rer	narks)			eutral Test (D5)
Field Obser	tained Leaves (B9)							eave Hummocks (D7) (LRR F)
			✓ Depth (ind	aboa).				
Surface Wat								
Water Table			Depth (ind					
Saturation P (includes cap		res No	Depth (ind	ches):		vvet	land Hydrology Pi	resent? Yes No 🔽
	corded Data (stream	n gauge, monit	oring well, aerial p	ohotos, pre	evious ins	pections),	if available:	
Remarks:								
No india	ators are me	^ t						
		;ι.						

Project/Site: Ripley Energy Center		City/County	: Payne C	County	Sampling Date: 2023-06-21
Applicant/Owner: Associated Electric Cooperative,	Inc.			State: Oklahoma	Sampling Point: SP-3
Investigator(s): S. Stewart, R. Oltjenbruns		Section, To	wnship, Ra	nge: S20 T19N R4E	
				-	e Slope (%): 0
					Datum: NAD 83
Soil Map Unit Name: ZaHC - Zaneis-Huska complex					
Are climatic / hydrologic conditions on the site typical for th					
Are Vegetation, Soil, or Hydrology	-				resent? Yes No
Are Vegetation, Soil, or Hydrology			(lf ne	eeded, explain any answe	rs in Remarks.)
SUMMARY OF FINDINGS – Attach site map			g point l	ocations, transects	, important features, etc.
Hydrophytic Vegetation Present? Yes <u></u> Hydrophytic Soil Present? Yes <u></u> Hydric Soil Present?	No		e Samplec		
Wetland Hydrology Present? Yes	No	with	in a Wetla	nd? Yes	No
Remarks:					
Wetland sample plot within PEM W-4. The conditions three months prior to survey. Sa			•		
VEGETATION – Use scientific names of plan	nts.				
Tree Chesture (Distained 30 ft r		Dominant		Dominance Test work	sheet:
<u>Tree Stratum</u> (Plot size: <u>30 ft r</u>) 1. Populus deltoides	<u>% Cover</u> 10	Species?	FAC	Number of Dominant S	
		·		That Are OBL, FACW, of (excluding FAC-):	3 (A)
23				Total Number of Domin	ant
4		- <u> </u>		Species Across All Stra	<u> </u>
Sapling/Shrub Stratum (Plot size: 15 ft r)	<u>10%</u>	= Total Cov		Percent of Dominant Sp That Are OBL, FACW, o	
1 2				Prevalence Index wor	ksheet:
3.				Total % Cover of:	
4					x 1 = <u>30</u>
5				FACW species 20	
		= Total Cov	/er	FAC species 20	x 3 = <u>60</u>
Herb Stratum (Plot size: 5 ft r)	20			FACU species 0	
1. Eleocharis obtusa	30	<u> </u>		UPL species 0	x = 0
2. Eclipta prostrata 3. Echinochloa crus-galli	<u>20</u> 10	<u> </u>	FACW	Column Totals: 70	(A) <u>130</u> (B)
	10	·	FAC	Prevalence Index	= B/A = <u>1.86</u>
4		<u> </u>	······································	Hydrophytic Vegetatio	on Indicators:
5				1 - Rapid Test for H	hydrophytic Vegetation
7		·		2 - Dominance Tes	t is >50%
8		- <u> </u>		3 - Prevalence Inde	
9					daptations ¹ (Provide supporting
10.		·			s or on a separate sheet) phytic Vegetation ¹ (Explain)
	60%	= Total Cov	/er		
<u>Woody Vine Stratum</u> (Plot size: <u>30 ft r</u>)				¹ Indicators of hydric soi be present, unless distu	l and wetland hydrology must irbed or problematic.
1 2		<u> </u>		Hydrophytic	
 % Bare Ground in Herb Stratum 40.0 		= Total Cov	/er	Vegetation	s No
Remarks:				1	

Dominance test is passed. See Photo C-3.

Profile Desc	cription: (Describe to	the dept	h needed to docu	ument the	indicator	or confirn	n the absence	of indicators.)
Depth	Matrix			lox Feature		. 2		
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0 - 20	5YR 6/2 5	55	5YR 4/6	45	<u>C</u>	PL / M	Sandy Loam	
-								
-								
-	·							
-								
-								
-								
-								
			De duce e d Matrix (21	- tions DL Done Lining M Matrix
	oncentration, D=Depleti					ed Sand G		cation: PL=Pore Lining, M=Matrix.
-	Indicators: (Applicabl	e to all L						•
Histosol				Gleyed M Redox (S				Muck (A9) (LRR I, J) Prairie Redox (A16) (LRR F, G, H)
	pipedon (A2) istic (A3)		-	ed Matrix (Surface (S7) (LRR G)
	en Sulfide (A4)				lineral (F1)			Plains Depressions (F16)
	d Layers (A5) (LRR F)			-	Aatrix (F2)			RR H outside of MLRA 72 & 73)
	uck (A9) (LRR F, G, H)		V Deplet					ed Vertic (F18)
_ Deplete	d Below Dark Surface (A	411)	Redox	Dark Sur	face (F6)		Red P	arent Material (TF2)
_ Thick Da	ark Surface (A12)				Surface (F7))		Shallow Dark Surface (TF12)
-	Aucky Mineral (S1)			Depressi	. ,			(Explain in Remarks)
	Mucky Peat or Peat (S2)				ressions (F			of hydrophytic vegetation and
5 cm Mi	ucky Peat or Peat (S3) (LRR F)	(M	LRA 72 &	73 of LRR	(H)		d hydrology must be present,
Ostrictivo	Layer (if present):						uniess	disturbed or problematic.
	Layer (il present).							
Туре:								
	ches):		<u> </u>				Hydric Soil	Present? Yes 🖌 No
Remarks:								
ndicato	r F3 is met.							
YDROLO	GY							
	drology Indicators:							
	cators (minimum of one	required	check all that an				Second	ary Indicators (minimum of two require
	Water (A1)	<u>required</u> ,						face Soil Cracks (B6)
	ater Table (A2)		Salt Crus	nvertebrat	(P12)			arsely Vegetated Concave Surface (B8
-								
Saturation Vietor Materia				n Sulfide C				inage Patterns (B10) dized Bhizeenheree en Living Beete (
	farks (B1)				Table (C2) eres on Liv			dized Rhizospheres on Living Roots (
	nt Deposits (B2)			•		ing Roots	. , .	vhere tilled)
	posits (B3)			e not tilled	,			yfish Burrows (C8)
-	at or Crust (B4)				ced Iron (C4	+)		uration Visible on Aerial Imagery (C9)
	posits (B5)	(07		k Surface				pmorphic Position (D2)
Inundati	ion Vis ble on Aerial Ima	gery (B7) Other (E:	xplain in R	(emarks		<u>♥</u> FAC	C-Neutral Test (D5)

 AO-Neutral Test (DS)	
 Frost-Heave Hummocks (D7)	(LRR F)

Field Observations:			
Surface Water Present?	Yes 🖌 No 🔄	Depth (inches): .25	
Water Table Present?	Yes 🖌 No 🔜	Depth (inches): 0	
Saturation Present? (includes capillary fringe)	Yes 🖌 No 🔄	Depth (inches): 0	Wetland Hydrology Present? Yes <u></u> No
Describe Recorded Data (st	tream gauge, monitorinę	g well, aerial photos, previous	inspections), if available:

Remarks:

Indicators A1, A2, A3, C3, D2, and D5 are met.

____ Water-Stained Leaves (B9)

Project/Site: Ripley Energy Center	City/County: Pay	ne County	Sampling Date: 2023-06-21
Applicant/Owner: Associated Electric Cooperative, Inc.			Sampling Point: SP-4
Investigator(s): S. Stewart, R. Oltjenbruns	_ Section, Township	o, Range: S20 T19N R4E	
Landform (hillslope, terrace, etc.): Sideslope			Slope (%): 2
Subregion (LRR): H 80A Lat: 3	6.11563	Long: -96.905857	Datum: NAD 83
Soil Map Unit Name: ZaHC - Zaneis-Huska complex, 1 to 5 p	ercent slopes	NWI classific	ation: N/A
Are climatic / hydrologic conditions on the site typical for this time of y	/ear?Yes 🖌	No (If no, explain in R	emarks.)
Are Vegetation, Soil, or Hydrology significantl	y disturbed?	Are "Normal Circumstances" p	resent? Yes No _
Are Vegetation, Soil, or Hydrology naturally p	roblematic?	(If needed, explain any answe	rs in Remarks.)
SUMMARY OF FINDINGS – Attach site map showin	g sampling poi	nt locations, transects	, important features, etc.

Hydrophytic Vegetation Present?	Yes	No _	~	Is the Sampled Area			
Hydric Soil Present?	Yes	No _	 	within a Wetland?	Yes	No 🖌	
Wetland Hydrology Present?	Yes	No_	 		165	NO	
Remarks:							

Upland sample plot adjacent to PEM W-4. The USACE Antecedent Precipitation Tool indicates normal climatic conditions three months prior to survey.

VEGETATION – Use scientific names of plants.

20 ft -	Absolute	Dominant		Dominance Test worksheet:	
Tree Stratum (Plot size: <u>30 ft r</u>)	% Cover	Species?	Status	Number of Dominant Species	
1				That Are OBL, FACW, or FAC	
2				(excluding FAC-): 0 (A	.)
3				Total Number of Dominant	
4				Species Across All Strata: <u>1</u> (B))
		= Total Cov		Percent of Dominant Species	
Sapling/Shrub Stratum (Plot size: 15 ft r)				That Are OBL, FACW, or FAC: 0 (A/	/B)
1					
2				Prevalence Index worksheet:	
3				Total % Cover of: Multiply by:	
4				OBL species $0 x 1 = 0$	
				FACW species <u>0</u> x 2 = <u>0</u>	
5				FAC species $0 \times 3 = 0$	
Herb Stratum (Plot size: 5 ft r)		= Total Cov	/er	FACU species 15 x 4 = 60	
1. Bromus tectorum	60	~	UPL	UPL species 70 x 5 = 350	
2. Ambrosia artemisiifolia	10		FACU	Column Totals: 85 (A) 410 (E	R)
3. Asclepias viridis	10		UPL		,
4. Achillea millefolium	5		FACU	Prevalence Index = $B/A = 4.8$	
				Hydrophytic Vegetation Indicators:	
5				1 - Rapid Test for Hydrophytic Vegetation	
6				2 - Dominance Test is >50%	
7				$_$ 3 - Prevalence Index is ≤3.0 ¹	
8				4 - Morphological Adaptations ¹ (Provide supporti	ina
9				data in Remarks or on a separate sheet)	ing
10				Problematic Hydrophytic Vegetation ¹ (Explain)	
	85%	= Total Cov	/er		
Woody Vine Stratum (Plot size: 30 ft r)				¹ Indicators of hydric soil and wetland hydrology must	t
1				be present, unless disturbed or problematic.	
2				Hydrophytic	
		= Total Cov		Vegetation	
% Bare Ground in Herb Stratum 15.0				Present? Yes No V	
Remarks:					
No toot is passed Vegetation is dist	urbodo	lua ta b		ithin on active hav field	

No test is passed. Vegetation is disturbed due to being within an active hay field. See Photo C-4.

SOIL

	ription: (Describe	to the depth n				or confirm	n the absence of i	ndicators.)
Depth (inches)	Matrix Color (moist)	%	Color (moist)	<u>x Features</u> %	Type ¹	Loc ²	Texture	Remarks
0 - 15	5YR 3/2	100					Sandy Clay Loam	
15 - 20	5YR 4/4	100					Clay	
		· <u>· · · · · · · · · · · · · · · · · · </u>				·		
-							<u> </u>	
-						. <u> </u>	<u> </u>	
-								
-								
-								
¹ Type: C=Co	oncentration, D=Dep	letion, RM=Re	duced Matrix, CS	=Covered	or Coate	d Sand G	rains. ² Locatio	on: PL=Pore Lining, M=Matrix.
	ndicators: (Applic							Problematic Hydric Soils ³ :
Histosol	(A1)		Sandy G	Bleyed Mat	rix (S4)		1 cm Mucl	(A9) (LRR I, J)
-	ipedon (A2)			Redox (S5)				irie Redox (A16) (LRR F, G, H)
Black His	· · /			Matrix (Se				ace (S7) (LRR G)
	n Sulfide (A4)	-	-	Mucky Mine			-	s Depressions (F16)
	l Layers (A5) (LRR I ck (A9) (LRR F, G, I			Gleyed Mat d Matrix (F			•	I outside of MLRA 72 & 73) /ertic (F18)
	Below Dark Surfac			ark Surfac	,			nt Material (TF2)
-	irk Surface (A12)	• ()		d Dark Sur				ow Dark Surface (TF12)
Sandy M	lucky Mineral (S1)			Depression	. ,			blain in Remarks)
	lucky Peat or Peat () High Pla	ins Depres	ssions (F	16)	³ Indicators of h	ydrophytic vegetation and
5 cm Mu	cky Peat or Peat (S	3) (LRR F)	(ML	RA 72 & 73	3 of LRR	H)	-	drology must be present,
Destrictions I							unless dis	turbed or problematic.
_	ayer (if present):							
Type:	(h.c.c.).		-				Undria Cail Dra	
	ches):		_				Hydric Soil Pre	esent? Yes No
Remarks:								
No indica	ators are me	et.						
HYDROLO	GY							
Wetland Hyd	Irology Indicators:							
Primary Indic	ators (minimum of c	one required; ch	neck all that apply	()			Secondary I	ndicators (minimum of two required)
Surface	Water (A1)		Salt Crust	(B11)				Soil Cracks (B6)
High Wa	ter Table (A2)		Aquatic Inv		• •		Sparsel	y Vegetated Concave Surface (B8)
Saturatio	on (A3)		Hydrogen		• •		-	e Patterns (B10)
	arks (B1)		Dry-Seaso		. ,			d Rhizospheres on Living Roots (C3)
	t Deposits (B2)		Oxidized R	-	es on Livi	ing Roots	. , .	re tilled)
-	osits (B3)			not tilled)				n Burrows (C8)
	t or Crust (B4)		Presence of		•	.)		on Visible on Aerial Imagery (C9)
	osits (B5)	(D 7)	Thin Muck	•	,			rphic Position (D2)
	on Vis ble on Aerial	magery (B7)	Other (Exp	lain in Rer	narks)			eutral Test (D5)
	tained Leaves (B9)						Frost-H	eave Hummocks (D7) (LRR F)
Field Observ			V Donth (in	hee);				
Surface Wate			Depth (ind					
Water Table			Depth (ind				la mal I la sala a la avec Du	
Saturation Pr (includes cap		es No _	Depth (ind	cnes):		vveti	land Hydrology Pr	resent? Yes No
	corded Data (stream	gauge, monito	ring well, aerial p	photos, pre	vious ins	pections),	if available:	
Remarks:								
No indic	ators are me	et.						

Project/Site: Ripley Energy Center	City/County: Payne County	Sampling Date: 2023-06-22					
Applicant/Owner: Associated Electric Cooperative, Inc.	State: Oklahon	^{na} Sampling Point: SP-5					
Investigator(s): S. Stewart, R. Oltjenbruns	Section, Township, Range: S20 T19N R4E						
	_ Local relief (concave, convex, none): Conc						
Subregion (LRR): H80A Lat: 36							
Soil Map Unit Name: 46 - Renfrow silt loam, 3 to 5 percent s							
Are climatic / hydrologic conditions on the site typical for this time of year? Yes No (If no, explain in Remarks.)							
Are Vegetation, Soil, or Hydrology significantly	y disturbed? Are "Normal Circumstance	s" present? Yes 🖌 No					
Are Vegetation, Soil, or Hydrology naturally pr	problematic? (If needed, explain any answers in Remarks.)						
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.							
Hydrophytic Vegetation Present? Yes No Hydric Soil Present? Yes No Wetland Hydrology Present? Yes No Remarks: Yes No	is the Samplet Alea	No					

Upland confirmation sample plot. The USACE Antecedent Precipitation Tool indicates normal climatic conditions three months prior to survey.

VEGETATION – Use scientific names of plants.

	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: <u>30 ft r</u>)	% Cover	Species?	Status	Number of Dominant Species
1				That Are OBL, FACW, or FAC (A)
2				(excluding FAC-): $\underline{2}$ (A)
3				Total Number of Dominant
4				Species Across All Strata: <u>3</u> (B)
		= Total Cov		Percent of Dominant Species
Sapling/Shrub Stratum (Plot size: 15 ft r)				That Are OBL, FACW, or FAC: <u>66.7</u> (A/B)
_{1.} Cornus drummondii	15	 ✓ 	FAC	
2				Prevalence Index worksheet:
3				Total % Cover of: Multiply by:
				OBL species $0 x 1 = 0$
4				FACW species <u>0</u> x 2 = <u>0</u>
5	15%			FAC species 37 x 3 = 111
Herb Stratum (Plot size: 5 ft r)	1370	= Total Cov	/er	FACU species 30 x 4 = 120
1. Rubus argutus	20	~	FAC	UPL species 0 x 5 = 0
2. Symphoricarpos orbiculatus	15	~	FACU	Column Totals: 67 (A) 231 (B)
3. Andropogon gerardii	10		FACU	
4. Toxicodendron radicans	5		FACU	Prevalence Index = B/A = <u>3.45</u>
5. Juncus tenuis	2		FAC	Hydrophytic Vegetation Indicators:
6				1 - Rapid Test for Hydrophytic Vegetation
7				✓ 2 - Dominance Test is >50%
				3 - Prevalence Index is $\leq 3.0^1$
8				4 - Morphological Adaptations ¹ (Provide supporting
9				data in Remarks or on a separate sheet)
10	500/			Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size: 30 ft r)	52%	= Total Cov	/er	¹ Indicators of hydric soil and wetland hydrology must
				be present, unless disturbed or problematic.
1				
2				Hydrophytic Vegetation
% Bare Ground in Herb Stratum 50.0		= Total Cov	/er	Present? Yes No 🖌
Remarks:				1
No toot is passed				
No test is passed.				
See Photo C-5.				

Profile Desc	cription: (Describe	to the de	oth needed to docum	nent the	indicator	or confirm	n the absence o	f indicators.)		
Depth	Matrix		Redo	x Feature						
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks		
0 - 10	7.5YR 3/1	95	7.5YR 4/6	5	С	М	Clay Loam			
10 - 24	7.5YR 3/1	95	7.5YR 4/6	5	С	М	Sandy Clay Loam			
-										
				·	·					
							<u> </u>			
-										
-				<u></u>	·					
-										
-					·					
	oncontration D-Do	nlotion PM	=Reduced Matrix, CS		d or Coato	d Sand Cr		tion: PL=Pore Lining, M=Matrix.		
			I LRRs, unless other			u Sanu Gi		or Problematic Hydric Soils ³ :		
Histosol				Bleyed Ma				ick (A9) (LRR I, J)		
	pipedon (A2)			Redox (S5	. ,			rairie Redox (A16) (LRR F, G, H)		
	istic (A3)			Matrix (S				rface (S7) (LRR G)		
	en Sulfide (A4)				neral (F1)			ins Depressions (F16)		
	d Layers (A5) (LRR	F)			atrix (F2)		-	H outside of MLRA 72 & 73)		
1 cm Mu	uck (A9) (LRR F, G,	H)		d Matrix (,		Reduced	d Vertic (F18)		
-	d Below Dark Surfa	ce (A11)	🖌 Redox 🗹		()			ent Material (TF2)		
	ark Surface (A12)				urface (F7)			allow Dark Surface (TF12)		
-	Aucky Mineral (S1)			Depressio	• •	10)		Other (Explain in Remarks)		
	Mucky Peat or Peat ucky Peat or Peat (S				essions (F 73 of LRR			f hydrophytic vegetation and hydrology must be present,		
				KA / Z &	13 OF LRR	п)		isturbed or problematic.		
Restrictive	Layer (if present):									
Type:										
Depth (in	ches):						Hydric Soil P	resent? Yes 🖌 No		
Remarks:										
Indicato	r F6 is met.									
mulcato	i i o is met.									
HYDROLO	GY									
	drology Indicators									
•			ed; check all that apply	v)			Secondary	/ Indicators (minimum of two required)		
	Water (A1)		Salt Crust					ce Soil Cracks (B6)		
	ater Table (A2)		Aquatic Inv		es (B13)			ely Vegetated Concave Surface (B8)		
Saturatio			Hydrogen					age Patterns (B10)		
	1arks (B1)		Dry-Seaso					zed Rhizospheres on Living Roots (C3)		
	nt Deposits (B2)		Oxidized F		• •	ina Roots		ere tilled)		
	posits (B3)			not tilled)				sh Burrows (C8)		
	at or Crust (B4)		Presence			•)		ation Visible on Aerial Imagery (C9)		
	posits (B5)		Thin Muck			,		orphic Position (D2)		
	on Vis ble on Aerial	Imagery (E						Neutral Test (D5)		
	stained Leaves (B9)	0 , (, <u> </u>		,			Heave Hummocks (D7) (LRR F)		
Field Obser	vations:									
Surface Wat	er Present?	Yes	No Depth (ind	ches):						
Water Table			No <u>V</u> Depth (inc							
Saturation P	resent?	Yes	No 🖌 Depth (ind	ches):		Wetl	and Hydrology	Present? Yes 🖌 No		
Saturation P (includes cap	pillary fringe)		No <u>P</u> Depth (ind onitoring well, aerial p					Present? Yes 🥙 No		

Remarks:

Indicators B10 and D2 are met.

Project/Site: Ripley Energy Center	City/County: Payne County	Sampling Date: 2023-06-22				
Applicant/Owner: Associated Electric Cooperative, Inc.	State: Oklahoma Sampling Point: SP-6					
Investigator(s): S. Stewart, R. Oltjenbruns	_ Section, Township, Range: <u>S20 T19N R4E</u>					
Landform (hillslope, terrace, etc.): Depression	Local relief (concave, convex, none): Concave Slope (%)					
Subregion (LRR): H 80A Lat: 30	6.109539 Long: -96.903	028 Datum: NAD 83				
Soil Map Unit Name: GAMD - Grainola-Ashport frequently flooded-Mulhall complex, 0 to 8 percent slopes NWI classification: N/A						
Are climatic / hydrologic conditions on the site typical for this time of year? Yes <u>/</u> No (If no, explain in Remarks.)						
Are Vegetation, Soil, or Hydrology significantly Are Vegetation, Soil, or Hydrology naturally p	•					
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.						
Hydrophytic Vegetation Present? Yes No	- Is the Sampled Area					

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes V Yes V Yes V	No No No	Is the Sampled Area within a Wetland?	Yes 🖌	No
Remarks:					
	- · · ··				

Wetland sample plot within PSS W-5. The USACE Antecedent Precipitation Tool indicates normal climatic conditions three months prior to survey.

VEGETATION – Use scientific names of plants.

20.4	Absolute			Dominance Test worksheet:
Tree Stratum (Plot size: <u>30 ft r</u>)		Species?		Number of Dominant Species
1				That Are OBL, FACW, or FAC (excluding $FAC = 1$): 3 (A)
2				(excluding FAC-): <u>3</u> (A)
3			. <u> </u>	Total Number of Dominant
4				Species Across All Strata: <u>3</u> (B)
		= Total Cov	/er	Percent of Dominant Species
Sapling/Shrub Stratum (Plot size: 15 ft r)				That Are OBL, FACW, or FAC: 100 (A/B)
1. Fraxinus pennsylvanica	40	<u> </u>	FAC	Prevalence Index worksheet:
2			. <u> </u>	
3				Total % Cover of: Multiply by:
4				OBL species $\frac{20}{20}$ x 1 = $\frac{20}{10}$
5				FACW species 20 x 2 = 40
	40%	= Total Cov	/er	FAC species <u>40</u> x 3 = <u>120</u>
Herb Stratum (Plot size: 5 ft r)				FACU species <u>8</u> x 4 = <u>32</u>
_{1.} Eleocharis obtusa	20	~	OBL	UPL species $0 x 5 = 0$
2. Teucrium canadense	15	~	FACW	Column Totals: <u>88</u> (A) <u>212</u> (B)
3. Helianthus annuus	5		FACU	0.44
4. Phalaris arundinacea	5		FACW	Prevalence Index = B/A = 2.41
5. Ambrosia artemisiifolia	3		FACU	Hydrophytic Vegetation Indicators:
6				1 - Rapid Test for Hydrophytic Vegetation
				✓ 2 - Dominance Test is >50%
7				3 - Prevalence Index is ≤3.0 ¹
8				4 - Morphological Adaptations ¹ (Provide supporting
9		. <u> </u>		data in Remarks or on a separate sheet)
10	40%			Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size: 30 ft r)	48%	= Total Cov	/er	¹ Indicators of hydric soil and wetland hydrology must
				be present, unless disturbed or problematic.
1				
2				Hydrophytic Vegetation
% Bare Ground in Herb Stratum 50.0		= Total Cov	/er	Present? Yes V No
Remarks:				
Dominance test is passed.				
See Photo C-6.				

Depth	Matrix		Rede	ox Feature				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0 - 24	7.5YR 3/1	90	7.5YR 4/6	10	С	PL / M	Clay Loam	
-								
					·			
					·			
-								
-								
-								
					·			
					·			
	oncentration, D=Dep					ed Sand Gr		cation: PL=Pore Lining, M=Matrix.
lydric Soil	Indicators: (Applic	able to all L	RRs, unless othe	erwise not	ed.)		Indicators	for Problematic Hydric Soils ³ :
Histosol				Gleyed Ma				/luck (A9) (LRR I, J)
	pipedon (A2)			Redox (S5				Prairie Redox (A16) (LRR F, G, H)
	istic (A3)			ed Matrix (S				Surface (S7) (LRR G)
	en Sulfide (A4) d Layers (A5) (LRR I	=)		Mucky Mil Gleyed M			-	lains Depressions (F16)
	uck (A9) (LRR F, G,			ed Matrix (R H outside of MLRA 72 & 73) ed Vertic (F18)
	d Below Dark Surfac		✓ Redox		,			arent Material (TF2)
	ark Surface (A12)	- ()		ed Dark Su	• •)		hallow Dark Surface (TF12)
Sandy N	/ucky Mineral (S1)			Depressio				(Explain in Remarks)
2.5 cm I	Nucky Peat or Peat ((S2) (LRR G,	H) High P	lains Depre	essions (F	16)	³ Indicators	of hydrophytic vegetation and
5 cm Mi	ucky Peat or Peat (S	3) (LRR F)	(M I	LRA 72 &	73 of LRR	H)	wetland	d hydrology must be present,
							unless	disturbed or problematic.
Restrictive	Layer (if present):							
Туре:								
Depth (in	ches):						Hydric Soil	Present? Yes 🖌 No
Remarks:								
ndinata	r FG is mot							
naicato	r F6 is met.							
YDROLO	GY							
Vetland Hy	drology Indicators:		check all that app	lv)			Seconda	ary Indicators (minimum of two required
Vetland Hy Primary Indi	drology Indicators: cators (minimum of c							ary Indicators (minimum of two required
Vetland Hy Primary India Surface	drology Indicators: cators (minimum of c Water (A1)		Salt Crus	t (B11)	ae (B13)		Surf	ace Soil Cracks (B6)
Vetland Hy Primary Indie Surface High Wa	drology Indicators: cators (minimum of c Water (A1) ater Table (A2)		Salt Crus Aquatic Ir	t (B11) nvertebrate	. ,		Surf Spa	ace Soil Cracks (B6) rsely Vegetated Concave Surface (B8)
Vetland Hy Primary India Surface High Wa Saturati	drology Indicators: cators (minimum of c Water (A1) ater Table (A2) on (A3)		Salt Crus Aquatic Ir Hydroger	t (B11) nvertebrate n Sulfide O	dor (C1)		Surf Spa _∕ Drai	ace Soil Cracks (B6) rsely Vegetated Concave Surface (B8) nage Patterns (B10)
Vetland Hy Primary India Surface High Wa Saturati Water M	drology Indicators: cators (minimum of c Water (A1) ater Table (A2) on (A3) 1arks (B1)		Salt Crus Aquatic Ir Hydrogen Dry-Seas	t (B11) nvertebrate n Sulfide O on Water	dor (C1) Fable (C2)		Surf Spa _∕ Drai Oxic	ace Soil Cracks (B6) rsely Vegetated Concave Surface (B8) nage Patterns (B10) dized Rhizospheres on Living Roots (C3
Vetland Hy Primary Indi Surface High Wa Saturati Water M Sedime	drology Indicators: cators (minimum of c Water (A1) ater Table (A2) on (A3) 1arks (B1) nt Deposits (B2)		Salt Crus Aquatic Ir Hydroger Dry-Seas ✔ Oxidized	t (B11) nvertebrate n Sulfide O on Water ⊺ Rhizosphe	dor (C1) Fable (C2) eres on Liv		Surf Spa Drai Oxic (C3) (₩	ace Soil Cracks (B6) rsely Vegetated Concave Surface (B8) nage Patterns (B10) dized Rhizospheres on Living Roots (C3 r here tilled)
Vetland Hy Primary India Surface High Wa Saturati Sedimea Drift De	drology Indicators: cators (minimum of c Water (A1) ater Table (A2) on (A3) 1arks (B1) nt Deposits (B2) posits (B3)		Salt Crus Aquatic Ir Hydroger Dry-Seas V Oxidized (where	t (B11) nvertebrate n Sulfide O on Water T Rhizosphe not tilled)	dor (C1) Fable (C2) eres on Liv	ing Roots	Surf Spa Drai Oxic (C3) (w Cray	ace Soil Cracks (B6) rsely Vegetated Concave Surface (B8) nage Patterns (B10) dized Rhizospheres on Living Roots (C3 vhere tilled) vfish Burrows (C8)
Perimary India Perimary India Surface High Wa Saturati Water M Sedimea Perift Dea Algal Ma	drology Indicators: cators (minimum of c Water (A1) ater Table (A2) on (A3) 1arks (B1) nt Deposits (B2) posits (B3) at or Crust (B4)		Salt Crus Aquatic Ir Hydroger Dry-Seas V Oxidized (where Presence	t (B11) nvertebrate n Sulfide O on Water Rhizosphe not tilled) e of Reduce	dor (C1) Fable (C2) eres on Liv	ing Roots	Surf Spa Drai Oxic (C3) (₩ Cray Satu	ace Soil Cracks (B6) rsely Vegetated Concave Surface (B8) nage Patterns (B10) dized Rhizospheres on Living Roots (C3 /here tilled) yfish Burrows (C8) uration Visible on Aerial Imagery (C9)
Primary Indi Primary Indi Surface High Wa Saturati Water M Sedimel ✓ Drift De Algal Ma Iron De	drology Indicators: cators (minimum of c Water (A1) ater Table (A2) on (A3) flarks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5)	one required;	Salt Crus Aquatic Ir Hydroger Dry-Seas Oxidized (where Presence Thin Muc	t (B11) nvertebrate n Sulfide O on Water Rhizosphe not tilled) e of Reduce k Surface	dor (C1) Fable (C2) res on Liv ed Iron (C4 (C7)	ing Roots	(C3) (C3)	ace Soil Cracks (B6) rsely Vegetated Concave Surface (B8) nage Patterns (B10) dized Rhizospheres on Living Roots (C3 rhere tilled) yfish Burrows (C8) uration Visible on Aerial Imagery (C9) morphic Position (D2)
Vetland Hy Primary Indi Surface High Wa Saturati Water M Sedime Algal Ma Iron Deg Inundati	drology Indicators: cators (minimum of c Water (A1) ater Table (A2) on (A3) flarks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) on Vis ble on Aerial	one required;	Salt Crus Aquatic Ir Hydrogen Dry-Seas ✔ Oxidized (where Presence Thin Muc	t (B11) nvertebrate n Sulfide O on Water Rhizosphe not tilled) e of Reduce k Surface	dor (C1) Fable (C2) res on Liv ed Iron (C4 (C7)	ing Roots	Surf Spa Drai Oxic (C3) (w Cray Satu Geo FAC	ace Soil Cracks (B6) rsely Vegetated Concave Surface (B8) nage Patterns (B10) dized Rhizospheres on Living Roots (C3 there tilled) offish Burrows (C8) uration Visible on Aerial Imagery (C9) omorphic Position (D2) C-Neutral Test (D5)
Primary Indi Primary Indi Surface High Wa Saturati Water M Sedime ✓ Drift De Algal Ma Iron De Inundati Water-S	drology Indicators: cators (minimum of c Water (A1) ater Table (A2) on (A3) farks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) on Vis ble on Aerial stained Leaves (B9)	one required;	Salt Crus Aquatic Ir Hydroger Dry-Seas Oxidized (where Presence Thin Muc	t (B11) nvertebrate n Sulfide O on Water Rhizosphe not tilled) e of Reduce k Surface	dor (C1) Fable (C2) res on Liv ed Iron (C4 (C7)	ing Roots	Surf Spa Drai Oxic (C3) (w Cray Satu Geo FAC	ace Soil Cracks (B6) rsely Vegetated Concave Surface (B8) nage Patterns (B10) dized Rhizospheres on Living Roots (C3 rhere tilled) yfish Burrows (C8) uration Visible on Aerial Imagery (C9) morphic Position (D2)
Vetland Hy Primary Indi Surface High Wa Saturati Water M Sedimei Drift Dei Algal Ma Iron Dei Inundati Water-S iield Obser	drology Indicators: cators (minimum of c Water (A1) ater Table (A2) on (A3) farks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) on Vis ble on Aerial ctained Leaves (B9) vations:	one required; Imagery (B7)	Salt Crus Aquatic Ir Hydroger Dry-Seas Oxidized (where Presence Thin Muc Other (Ex	t (B11) nvertebrate n Sulfide O on Water T Rhizosphe not tilled) of Reduce k Surface of cplain in Re	dor (C1) Fable (C2) eres on Liv ed Iron (C4 (C7) emarks)	ing Roots	Surf Spa Drai Oxic (C3) (w Cray Satu Geo FAC	ace Soil Cracks (B6) rsely Vegetated Concave Surface (B8) nage Patterns (B10) dized Rhizospheres on Living Roots (C3 there tilled) offish Burrows (C8) uration Visible on Aerial Imagery (C9) omorphic Position (D2) 2-Neutral Test (D5)
Primary Indi Primary Indi Surface High Wa Saturati Water M Sedimel ✓ Drift De Algal Ma Iron De Inundati Water-S Field Obser Surface Wat	drology Indicators: cators (minimum of c Water (A1) ater Table (A2) on (A3) farks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) on Vis ble on Aerial stained Leaves (B9) vations: rer Present?	imagery (B7)	 Salt Crus Aquatic Ir Hydroger Dry-Seas Oxidized (where Presence Thin Muc Other (Ex 	t (B11) nvertebrate n Sulfide O on Water Rhizosphe not tilled) e of Reduce k Surface (xplain in Re	dor (C1) Fable (C2) res on Liv ed Iron (C4 (C7) emarks)	ing Roots	Surf Spa Drai Oxic (C3) (w Cray Satu Geo FAC	ace Soil Cracks (B6) rsely Vegetated Concave Surface (B8) nage Patterns (B10) dized Rhizospheres on Living Roots (C3 there tilled) offish Burrows (C8) uration Visible on Aerial Imagery (C9) omorphic Position (D2) 2-Neutral Test (D5)
Primary Indii Surface High Wa Saturati Water M Sedime Sedime Drift De Algal Ma Iron De Inundati Water-S Field Obser	drology Indicators: cators (minimum of c Water (A1) ater Table (A2) on (A3) farks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) on Vis ble on Aerial bitained Leaves (B9) vations: ter Present? Y	one required; Imagery (B7) /es N /es N	 Salt Crus Aquatic Ir Hydroger Dry-Seas Oxidized (where Presence Thin Muc Other (Ex 	t (B11) nvertebrate o Sulfide O on Water T Rhizosphe not tilled) of Reduce k Surface (splain in Re nches): nches):	dor (C1) Fable (C2) eres on Liv ed Iron (C4 (C7) emarks)	ing Roots	(C3) Surf ✓ Spa ✓ Drai → Oxic (C3) (w ← Cray ✓ Geo ✓ FAC ← Fros	ace Soil Cracks (B6) rsely Vegetated Concave Surface (B8) nage Patterns (B10) dized Rhizospheres on Living Roots (C3 there tilled) offish Burrows (C8) uration Visible on Aerial Imagery (C9) omorphic Position (D2) 2-Neutral Test (D5)

(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:

Indicators B3, C3, B10, D2, and D5 are met.

Project/Site: Ripley Energy Center	_ City/County:	Payne County	Sampling Date: 2023-06-22			
Applicant/Owner: Associated Electric Cooperative, Inc.		State: Oklahoma	Sampling Point: SP-7			
Investigator(s): S. Stewart, R. Oltjenbruns	_ Section, Tov	vnship, Range: S20 T19N R4E				
Landform (hillslope, terrace, etc.): Sideslope	Local relief	Slope (%): <u>3</u>				
Subregion (LRR): H 80A Lat: 30	6.109712	Long: -96.903081	Datum: NAD 83			
Soil Map Unit Name: GAMD - Grainola-Ashport frequently flooded-Mulhall complex, 0 to 8 percent slopes NWI classification: N/A						
Are climatic / hydrologic conditions on the site typical for this time of y	/ear?Yes 📕	No (If no, explain in R	emarks.)			
Are Vegetation, Soil, or Hydrology significantl	y disturbed?	Are "Normal Circumstances" p	oresent? Yes No			
Are Vegetation, Soil, or Hydrology naturally p	roblematic?	(If needed, explain any answe	rs in Remarks.)			
SUMMARY OF FINDINGS – Attach site map showin	g sampling	g point locations, transects	, important features, etc.			

Hydrophytic Vegetation Present?	Yes	No 🖌	Is the Sampled Area		
Hydric Soil Present?	Yes	No 🖌	within a Wetland?	Yes	No 🖌
Wetland Hydrology Present?	Yes	No 🔽		165	
Remarks:			•		

Upland sample plot adjacent to PSS W-5. The USACE Antecedent Precipitation Tool indicates normal climatic conditions three months prior to survey.

VEGETATION – Use scientific names of plants.

00 ft	Absolute	Dominant		Dominance Test worksheet:
Tree Stratum (Plot size: <u>30 ft r</u>)	% Cover	Species?	Status	Number of Dominant Species
1				That Are OBL, FACW, or FAC (avaluating $FAC = 1$ (A)
2				(excluding FAC-): $\frac{1}{(A)}$
3				Total Number of Dominant
4				Species Across All Strata: <u>3</u> (B)
		= Total Cov	/er	Demonst of Deminent Crossies
Sapling/Shrub Stratum (Plot size: 15 ft r)		10101 001		Percent of Dominant Species That Are OBL, FACW, or FAC: <u>33.3</u> (A/B)
1				
2				Prevalence Index worksheet:
				Total % Cover of: Multiply by:
3				OBL species $0 x 1 = 0$
4				FACW species 0 x 2 = 0
5				FAC species 30 x 3 = 90
Herb Stratum (Plot size: 5 ft r)		= Total Cov	/er	FACU species $65 \times 4 = 260$
1. Andropogon gerardii	30	V	FACU	$\frac{1}{1} \frac{1}{1} \frac{1}$
	30			· ·
2. Coelorachis cylindrica			FAC	Column Totals: <u>100</u> (A) <u>375</u> (B)
3. Desmanthus illinoensis	30	~	FACU	Prevalence Index = $B/A = \frac{3.75}{1000}$
4. Asclepias viridis	5		UPL	
_{5.} Solidago altissima	5		FACU	Hydrophytic Vegetation Indicators:
6				1 - Rapid Test for Hydrophytic Vegetation
7				2 - Dominance Test is >50%
8				3 - Prevalence Index is ≤3.0 ¹
9				4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
10				
	100%	= Total Cov	/er	Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size: 30 ft r)		- 10101 001		¹ Indicators of hydric soil and wetland hydrology must
1				be present, unless disturbed or problematic.
2				Hydrophytic
		= Total Cov		Vegetation
% Bare Ground in Herb Stratum 0.0				Present? Yes No V
Remarks:				1
No test is passed. Vegetation is dist	urbodo	luo to b		ithin an active hav field

No test is passed. Vegetation is disturbed due to being within an active hay field. See Photo C-7.

Profile Desc Depth	ription: (Describe Matrix	to the depth		nent the in x Features		or confirm	n the absence of ir	ndicators.)
(inches)	Color (moist)	%	Color (moist)	<u>%</u>	Type ¹	Loc ²	Texture	Remarks
0 - 8	7.5YR 4/4	100					Clay Loam	
8 - 24	2.5YR 4/6	100					Clay	
-								
				·				
				<u> </u>				
				<u> </u>	· <u> </u>		<u> </u>	
-								
	oncentration, D=Dep					d Sand G		n: PL=Pore Lining, M=Matrix.
	Indicators: (Applic	able to all LF						Problematic Hydric Soils ³ :
Histosol				Sleyed Ma	. ,			(A9) (LRR I, J)
	oipedon (A2)		-	Redox (S5)				ie Redox (A16) (LRR F, G, H)
Black Hi	en Sulfide (A4)			l Matrix (S Mucky Min				ce (S7) (LRR G) Depressions (F16)
	Layers (A5) (LRR	F)		Gleyed Ma	. ,			outside of MLRA 72 & 73)
	ick (A9) (LRR F, G,			d Matrix (F			Reduced V	,
	Below Dark Surfac		Redox [,			Material (TF2)
Thick Da	ark Surface (A12)		Deplete	d Dark Su	rface (F7)		Very Shallo	ow Dark Surface (TF12)
	lucky Mineral (S1)		Redox [•	. ,			lain in Remarks)
	lucky Peat or Peat							/drophytic vegetation and
5 cm Mu	icky Peat or Peat (S	3) (LRR F)	(ML	RA 72 & 7	'3 of LRR	H)		drology must be present, urbed or problematic.
Restrictive I	_ayer (if present):							arbed of problematic.
Type:								
	ches):						Hydric Soil Pres	sent? Yes No 🖌
Remarks:							riyane con rio	
No indic	ators are me	et.						
HYDROLO	GY							
Wetland Hyd	drology Indicators	:						
Primary Indic	cators (minimum of	one required; o	check all that apply	y)			Secondary Ir	dicators (minimum of two required)
Surface	Water (A1)		Salt Crust	(B11)			Surface	Soil Cracks (B6)
	iter Table (A2)		Aquatic Inv	vertebrates	s (B13)		Sparsely	Vegetated Concave Surface (B8)
Saturatio	on (A3)		Hydrogen	Sulfide Oc	lor (C1)			e Patterns (B10)
Water M	arks (B1)		Dry-Seaso	n Water T	able (C2)		Oxidized	Rhizospheres on Living Roots (C3)
Sedimer	nt Deposits (B2)		Oxidized F	Rhizospher	res on Livi	ing Roots	(C3) (where	e tilled)
Drift Dep	posits (B3)		(where r	not tilled)			Crayfish	Burrows (C8)
Algal Ma	at or Crust (B4)		Presence	of Reduce	d Iron (C4	+)	Saturatio	on Visible on Aerial Imagery (C9)
Iron Dep	oosits (B5)		Thin Muck	Surface (C7)		Geomor	ohic Position (D2)
Inundatio	on Vis ble on Aerial	Imagery (B7)	Other (Exp	lain in Re	marks)		FAC-Ne	utral Test (D5)
Water-S	tained Leaves (B9)						Frost-He	ave Hummocks (D7) (LRR F)
Field Observ	vations:							
Surface Wate	er Present?	/es No	Depth (ind	ches):				
Water Table	Present?	/es No	└ Depth (inc	ches):		_		
Saturation Pr			Depth (inc				and Hydrology Pre	esent? Yes No
(includes cap		-	toring well parial	abataa ar		nantiana)	if available:	
Describe Re	corded Data (stream	i gauge, moni	toning well, aerial p	unotos, pre	evious ins	pecuons),	ii available:	
Pomarka:								
Remarks:								
No indic	ators are me	et.						

Project/Site: Ripley Energy Center	Cit	y/County: Pa	ayne County		Sampling Date:	2023-06-22	
Applicant/Owner: Associated Electric Cooperative, In	nc.		State	. Oklahoma	Sampling Point:	SP-8	
Investigator(s): S. Stewart, R. Oltjenbruns	Se	Section, Township, Range: S20 T19N R4E					
Landform (hillslope, terrace, etc.): Sideslope					e Sic	ope (%): <u>3</u>	
Subregion (LRR): H80A							
Soil Map Unit Name: 46 - Renfrow silt loam, 3 to 5 pe							
Are climatic / hydrologic conditions on the site typical for this	time of year	? Yes 🖌	_ No (If no	, explain in R	emarks.)		
Are Vegetation, Soil, or Hydrology sig	ignificantly dis	sturbed?	Are "Normal Circ	umstances" p	present? Yes	No 🖌	
Are Vegetation, Soil, or Hydrology na	aturally proble	ematic?	(If needed, expla	in any answe	rs in Remarks.)		
SUMMARY OF FINDINGS – Attach site map s	showing s	ampling p	oint locations,	transects	, important fe	atures, etc.	
Hydrophytic Vegetation Present? Yes No Hydric Soil Present? Yes No	D	Is the Sa	ampled Area				
			Wetland?	Yes	No 🖌		
Wetland Hydrology Present? Yes No	o_ _					-	
Remarks:							

Upland confirmation sample plot. The USACE Antecedent Precipitation Tool indicates normal climatic conditions three months prior to survey.

VEGETATION – Use scientific names of plants.

Tree Stratum (Plot size: _30 ft r)	Absolute	Dominant		Dominance Test worksheet:	
		Species?		Number of Dominant Species	
1				That Are OBL, FACW, or FAC (excluding FAC-): 1	(A)
2					(~)
3		·		Total Number of Dominant	
4				Species Across All Strata: 2 ((B)
45.6		= Total Co	ver	Percent of Dominant Species	
Sapling/Shrub Stratum (Plot size: 15 ft r)				That Are OBL, FACW, or FAC: 50 ((A/B)
1		·		Prevalence Index worksheet:	
2					
3				Total % Cover of: Multiply by:	
4				OBL species $\frac{0}{2}$ x 1 = $\frac{0}{2}$	
5.				FACW species 0 x 2 = 0	
		= Total Co	ver	FAC species <u>40</u> x 3 = <u>120</u>	
Herb Stratum (Plot size: 5 ft r)		. otal oo		FACU species <u>60</u> x 4 = <u>240</u>	
_{1.} Andropogon gerardii	40	v	FACU	UPL species 0 x 5 = 0	
2. Coelorachis cylindrica	15	~	FAC	Column Totals: <u>100</u> (A) <u>360</u>	(B)
3. Castilleja indivisa	10		FAC		
4. Desmanthus illinoensis	10		FACU	Prevalence Index = $B/A = \frac{3.6}{1000}$	-
5. Panicum virgatum	10		FAC	Hydrophytic Vegetation Indicators:	
6. Sorghum halepense	10		FACU	1 - Rapid Test for Hydrophytic Vegetation	
7 Coreopsis tinctoria	5		FAC	2 - Dominance Test is >50%	
8				$_$ 3 - Prevalence Index is $\leq 3.0^1$	
9				4 - Morphological Adaptations ¹ (Provide suppo	orting
10				data in Remarks or on a separate sheet)	
10	100%	= Total Co		Problematic Hydrophytic Vegetation ¹ (Explain))
Woody Vine Stratum (Plot size: <u>30 ft r</u>)	100/0		ver	¹ Indicators of hydric soil and wetland hydrology mu	ust
1,				be present, unless disturbed or problematic.	
2				Hydrophytic	
		= Total Co		Vegetation	
% Bare Ground in Herb Stratum 0.0		- 10101 00		Present? Yes No V	
Remarks:					
No test is passed. Vegetation was d	isturbe	d due te	o being	within an active hay field.	

US Army Corps of Engineers

See Photo C-8.

SO	L
----	---

	cription: (Describe	e to the depth ne				or confirn	n the absence of	indicators.)
Depth (inches)	Matrix Color (moist)		Redo color (moist)	<u>x Feature</u> %	s Type ¹	Loc ²	Texture	Remarks
<u>(incries)</u> 0 - 8	7.5YR 3/2	<u>%</u> 0		/0	<u>iype</u>		Loam	i ciliai (S
	7.011(0/2				·	<u> </u>		
					·			
-							<u> </u>	
-								
-								
-								
1								
	oncentration, D=De Indicators: (Appli					ed Sand G		on: PL=Pore Lining, M=Matrix. r Problematic Hydric Soils ³ :
Histosol								-
	pipedon (A2)		Sandy Sandy	Redox (S5				xk (A9) (LRR I, J) airie Redox (A16) (LRR F, G, H)
	istic (A3)			d Matrix (S				face (S7) (LRR G)
	en Sulfide (A4)			Mucky Mir				ns Depressions (F16)
	d Layers (A5) (LRR	F)	-	Gleyed Ma			-	H outside of MLRA 72 & 73)
	uck (A9) (LRR F, G,	,		ed Matrix (,			Vertic (F18)
	d Below Dark Surfa	ce (A11)		Dark Surfa	()			nt Material (TF2)
	ark Surface (A12)			ed Dark Su	• • •)	-	llow Dark Surface (TF12)
	Mucky Mineral (S1) Mucky Peat or Peat	(S2) (I PP C U)		Depressio ains Depre	. ,	16)	·	plain in Remarks) hydrophytic vegetation and
	ucky Peat or Peat (S			.RA 72 & 3				ydrology must be present,
		(=::::)	(,		sturbed or problematic.
	Layer (if present):							
Type: C	ompact Soil							
Depth (in	ches): <u>8</u>						Hydric Soil Pr	esent? Yes No 🖌
Remarks:							1	
No indica	tors are met. E	xcavation be	low 8" was	preven	ted by	compac	t soil. Multiple	e locations attempted.
				-	-	-		
HYDROLO	GY							
Wetland Hv	drology Indicators							
-	cators (minimum of		eck all that app	lv)			Secondary	Indicators (minimum of two required)
	Water (A1)		Salt Crust					e Soil Cracks (B6)
	ater Table (A2)		Aquatic In		s (B13)			ely Vegetated Concave Surface (B8)
Saturati			Hydrogen		. ,			ge Patterns (B10)
Water M			Dry-Seaso			1		ed Rhizospheres on Living Roots (C3)
	nt Deposits (B2)		Oxidized I		• •			ere tilled)
	posits (B3)			not tilled)		U		h Burrows (C8)
Algal Ma	at or Crust (B4)		Presence	of Reduce	ed Iron (C4	4)	Satura	tion Visible on Aerial Imagery (C9)
Iron De	posits (B5)		Thin Mucł	surface ((C7)		🖌 Geomo	orphic Position (D2)
Inundati	ion Vis ble on Aerial	Imagery (B7)	Other (Ex	plain in Re	emarks)		FAC-N	eutral Test (D5)
Water-S	Stained Leaves (B9)						Frost-H	leave Hummocks (D7) (LRR F)
Field Obser	vations:							
Surface Wat	ter Present?	Yes No	 Depth (in 	ches):				
Water Table		Yes No						
Saturation P		Yes No					and Hydrology P	Present? Yes No
	pillary fringe)							
Describe Re	corded Data (strear	n gauge, monitor	ing well, aerial	pnotos, pr	evious ins	pections),	II available:	
Remarks:								
	501							
Indicato	or D2 is met.							

Project/Site: Ripley Energy Center	City/County: Payne County	/ Sampl	ing Date: 2023-06-22			
Applicant/Owner: Associated Electric Cooperative, Inc.		State: Oklahoma Sampli	ing Point: SP-9			
Investigator(s): S. Stewart, R. Oltjenbruns	Section, Township, Range: S	20 T19N R4E				
Landform (hillslope, terrace, etc.): Depression	Local relief (concave, convex		Slope (%): 0			
Subregion (LRR): H 80A Lat:						
Soil Map Unit Name: CoLC - Coyle-Lucien complex, 1 to 5	Soil Map Unit Name: CoLC - Coyle-Lucien complex, 1 to 5 percent slopes NWI classification: N/A					
Are climatic / hydrologic conditions on the site typical for this time	of year? Yes 🖌 No	(If no, explain in Remarks	.)			
Are Vegetation, Soil, or Hydrology significa	antly disturbed? Are "Norma	al Circumstances" present?	?Yes No 🖌			
Are Vegetation, Soil, or Hydrology natural	y problematic? (If needed,	explain any answers in Re	marks.)			
SUMMARY OF FINDINGS – Attach site map show	ring sampling point location	ons, transects, impo	ortant features, etc.			
Hydrophytic Vegetation Present? Yes V No Hydric Soil Present? Yes V No Wetland Hydrology Present? Yes V No	is the Sampleu Area	Yes 🖌 N	o			

Remarks:

Wetland sample plot within PEM W-7. The USACE Antecedent Precipitation Tool indicates normal climatic conditions three months prior to survey. Sample plot is disturbed due to gravel within the soil.

VEGETATION – Use scientific names of plants.

	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 30 ft r)		Species?		Number of Dominant Species
1				That Are OBL, FACW, or FAC
				(excluding FAC-): $\underline{1}$ (A)
2				
3				Total Number of Dominant Species Across All Strata: 2 (B)
4				$\frac{2}{D}$
Oralia a Obach Obach and Obach and 15 ft r		= Total Cov	/er	Percent of Dominant Species
Sapling/Shrub Stratum (Plot size: 15 ft r)				That Are OBL, FACW, or FAC: <u>50</u> (A/B)
1				Prevalence Index worksheet:
2				
3				
4				OBL species $\frac{60}{15}$ x 1 = $\frac{60}{20}$
5				FACW species <u>15</u> x 2 = <u>30</u>
		= Total Cov	/er	FAC species $0 x 3 = 0$
Herb Stratum (Plot size: 5 ft r)				FACU species 20 x 4 = 80
_{1.} Eleocharis obtusa	60	~	OBL	UPL species <u>5</u> x 5 = <u>25</u>
2. Schizachyrium scoparium	20	~	FACU	Column Totals: 100 (A) 195 (B)
3. Juncus marginatus	15		FACW	1.05
4. Melilotus albus	5		UPL	Prevalence Index = B/A = 1.95
5.				Hydrophytic Vegetation Indicators:
				1 - Rapid Test for Hydrophytic Vegetation
6				2 - Dominance Test is >50%
7				✓ 3 - Prevalence Index is $\leq 3.0^1$
8				4 - Morphological Adaptations ¹ (Provide supporting
9			·	data in Remarks or on a separate sheet)
10				Problematic Hydrophytic Vegetation ¹ (Explain)
20.4	100%	= Total Cov	/er	
Woody Vine Stratum (Plot size: 30 ft r)				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
1				be present, unless disturbed of problematic.
2				Hydrophytic
		= Total Cov	/er	Vegetation
% Bare Ground in Herb Stratum 0.0				Present? Yes <u>V</u> No
Remarks:				·

Prevalence Index is passed. Vegetation is deserved due to being within an active hay field. See Photo C-9.

Depth	Matrix	to the de	pth needed to docu	ox Feature				of indicators.)
(inches)	Color (moist)	%	Color (moist)	<u>%</u>	Type ¹	Loc ²	Texture	Remarks
0 - 6	5YR 3/3	100					Silty Clay Loam	
6 - 24	7.5YR 5/2	80	5YR 5/6	20	С	М	Silty Clay Loam	Gravel within soil layer
-								
-								
-								
-								
-								
-					_			
Type: C=C	oncentration, D=Dep	letion, RN	I=Reduced Matrix, C	S=Covere	ed or Coate	ed Sand G	Grains. ² Lo	cation: PL=Pore Lining, M=Matrix.
			I LRRs, unless othe					for Problematic Hydric Soils ³ :
Histosol	(A1)		Sandy	Gleyed M	atrix (S4)		1 cm I	Muck (A9) (LRR I, J)
Histic Ep	pipedon (A2)		Sandy	Redox (S	5)		Coast	Prairie Redox (A16) (LRR F, G, H)
Black Hi	istic (A3)		Strippe	d Matrix (S6)			Surface (S7) (LRR G)
	en Sulfide (A4)			-	ineral (F1)			Plains Depressions (F16)
	d Layers (A5) (LRR I				latrix (F2)			RR H outside of MLRA 72 & 73)
	uck (A9) (LRR F, G,	,	Deplete		. ,			ced Vertic (F18)
	d Below Dark Surfac	e (A11)		Dark Surf	• • •			Parent Material (TF2)
	ark Surface (A12)				urface (F7)		Shallow Dark Surface (TF12)
	Aucky Mineral (S1)			Depressio	· · ·	10)		(Explain in Remarks)
	Mucky Peat or Peat (ressions (F			of hydrophytic vegetation and d hydrology must be present,
5 CHI MU	ucky Peat or Peat (S	3) (LKK F) (1011	_RA / 2 &	73 of LRF	(п)		s disturbed or problematic.
Restrictive I	Layer (if present):							•
Туре:								
Depth (in	ches):						Hydric Soil	l Present? Yes 🖌 No
Remarks:								
ndicato	r F3 is met.							
YDROLO	GY							
Netland Hy	drology Indicators:							
Primary India	cators (minimum of c	one require	ed; check all that app	ly)			Seconda	ary Indicators (minimum of two required
Surface	Water (A1)		Salt Crus	t (B11)			Sur	face Soil Cracks (B6)
🖌 High Wa	ater Table (A2)		Aquatic Ir	vertebrat	es (B13)		Spa	arsely Vegetated Concave Surface (B8)
 Saturation 	on (A3)		Hydrogen	Sulfide C	dor (C1)		Dra	inage Patterns (B10)
Water M	larks (B1)		Dry-Seas	on Water	Table (C2)		Oxi	dized Rhizospheres on Living Roots (C3
Sedimer	nt Deposits (B2)				eres on Liv			vhere tilled)
	posits (B3)			not tilled		-		yfish Burrows (C8)
	at or Crust (B4)				, ed Iron (C	4)		uration Visible on Aerial Imagery (C9)
-	posits (B5)		Thin Muc		•			omorphic Position (D2)
	on Vis ble on Aerial	Imagerv (I						C-Neutral Test (D5)
	tained Leaves (B9)	5 7 ((,			st-Heave Hummocks (D7) (LRR F)

 Frost-Heave Hummocks	(D7)	(LRR F

Field Observations:						
Surface Water Present?	Yes N	No 🥂 Depth (inches): _				
Water Table Present?	Yes 🖌 N	No Depth (inches): C)			
Saturation Present? (includes capillary fringe)	Yes 🖌 N	No Depth (inches): <u>C</u>)	Wetland Hydrology Present?	Yes 🖌	No
Describe Recorded Data (s	tream gauge, moi	nitoring well, aerial photos,	previous inspec	tions), if available:		
Remarks:						

Indicators A2, A3, D2, and D5 are met. Surface water present within the wetland but not within the sample plot.

Project/Site: Ripley Energy Center	_ City/County: F	Payne County	Sampling Date: 2023-06-22
Applicant/Owner: Associated Electric Cooperative, Inc.		State: Oklahoma	Sampling Point: SP-10
Investigator(s): S. Stewart, R. Oltjenbruns	_ Section, Town	ship, Range: S20 T19N R4E	
Landform (hillslope, terrace, etc.): Sideslope		oncave, convex, none): None	Slope (%): 2
Subregion (LRR): H80A Lat: 3	6.115153	Long: -96.900629	Datum: NAD 83
Soil Map Unit Name: CoLC - Coyle-Lucien complex, 1 to 5 pe	ercent slopes	NWI classific	cation: N/A
Are climatic / hydrologic conditions on the site typical for this time of y	year?Yes 🔽	No (If no, explain in R	emarks.)
Are Vegetation, Soil, or Hydrology significantl	ly disturbed?	Are "Normal Circumstances" p	present? Yes No _
Are Vegetation, Soil, or Hydrology naturally p	oroblematic?	(If needed, explain any answe	rs in Remarks.)
SUMMARY OF FINDINGS – Attach site map showin	g sampling	point locations, transects	, important features, etc.
Hydrophytic Vagatation Present? Vag			

Hydrophytic Vegetation Present?	Yes	No _	~	Is the Sampled Area		
Hydric Soil Present?	Yes	No _	~	within a Wetland?	Yes	No 🖌
Wetland Hydrology Present?	Yes	No _	 		165	NO
Remarks:						

Upland sample plot adjacent to PEM W-7. The USACE Antecedent Precipitation Tool indicates normal climatic conditions three months prior to survey.

VEGETATION – Use scientific names of plants.

20.4 -	Absolute	Dominant		Dominance Test worksheet:
Tree Stratum (Plot size: <u>30 ft r</u>)		Species?		Number of Dominant Species
1				That Are OBL, FACW, or FAC (excluding FAC-): 0 (A)
2				(excluding FAC-): 0 (A)
3				Total Number of Dominant
4				Species Across All Strata: <u>1</u> (B)
		= Total Cov		Percent of Dominant Species
Sapling/Shrub Stratum (Plot size: 15 ft r)				That Are OBL, FACW, or FAC: 0 (A/B)
1				Prevalence Index worksheet:
2				
3				Total % Cover of: Multiply by:
4				OBL species $\frac{0}{2}$ x 1 = $\frac{0}{2}$
5				FACW species 0 x 2 = 0
		= Total Cov	/er	FAC species 20 x 3 = 60
Herb Stratum (Plot size: 5 ft r)				FACU species <u>60</u> x 4 = <u>240</u>
_{1.} Andropogon gerardii	60	~	FACU	UPL species 3 x 5 = 15
2. Panicum virgatum	15		FAC	Column Totals: <u>83</u> (A) <u>315</u> (B)
3. Coreopsis tinctoria	5		FAC	
4. Melilotus albus	3		UPL	Prevalence Index = B/A = <u>3.8</u>
5				Hydrophytic Vegetation Indicators:
				1 - Rapid Test for Hydrophytic Vegetation
67				2 - Dominance Test is >50%
7				3 - Prevalence Index is ≤3.0 ¹
8				4 - Morphological Adaptations ¹ (Provide supporting
9				data in Remarks or on a separate sheet)
10	000/			Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size: 30 ft r)	03/0	= Total Cov	/er	¹ Indicators of hydric soil and wetland hydrology must
· · · · · · · · · · · · · · · · · · ·				be present, unless disturbed or problematic.
1				
2				Hydrophytic Vegetation
% Bare Ground in Herb Stratum 20.0		= Total Cov	/er	Present? Yes No 🖌
Remarks:				1
No toot is passed Magatation is dist	المحامد		• i •• • • • • •	ithin on active have field

No test is passed. Vegetation is disturbed due to being within an active hay field. See Photo C-10.

Depth	Matrix	-		ox Feature	es			·
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0 - 12	7.5YR 3/3	100				<u></u>	Sandy Loam	
12 - 22	5YR 4/4	80	5YR 4/1	20	D	М	Sandy Clay Loam	
-								
-							·	
						·	·	
						<u> </u>	·	
-							·	
-						·	·	
-						<u> </u>	· ·	
			=Reduced Matrix, C			ed Sand G		on: PL=Pore Lining, M=Matrix.
Hydric Soil	Indicators: (Applic	cable to all	LRRs, unless othe	rwise no	ted.)		Indicators for	^r Problematic Hydric Soils ³ :
Histosol			Sandy	-				k (A9) (LRR I, J)
	pipedon (A2)		Sandy					iirie Redox (A16) (LRR F, G, H)
	stic (A3)			d Matrix (ace (S7) (LRR G)
	en Sulfide (A4)	-		-	ineral (F1)		-	ns Depressions (F16)
	d Layers (A5) (LRR				latrix (F2)		•	H outside of MLRA 72 & 73)
	uck (A9) (LRR F, G, d Below Dark Surfac		Deplete	Dark Surf	. ,			Vertic (F18) nt Material (TF2)
	ark Surface (A12)				urface (F7)		low Dark Surface (TF12)
	lucky Mineral (S1)			Depressio		/		plain in Remarks)
-	Mucky Peat or Peat	(S2) (LRR				-16)		hydrophytic vegetation and
5 cm Mi	ucky Peat or Peat (S	3) (LRR F)	(ML	.RA 72 &	73 of LRF	R H)	wetland h	ydrology must be present,
							unless dis	sturbed or problematic.
Restrictive	Layer (if present):							
Туре:								
Depth (in	ches):						Hydric Soil Pro	esent? Yes No _
Remarks:								
No indic	ators are me	h						
HYDROLO	GV							
-	drology Indicators			L-A			O a sea da se	
		one require	d; check all that app			<u> </u>	······	Indicators (minimum of two required)
	Water (A1)		Salt Crust	` '				e Soil Cracks (B6)
	ater Table (A2)		Aquatic In		. ,			ly Vegetated Concave Surface (B8)
Saturati			Hydrogen					ge Patterns (B10)
	larks (B1)		Dry-Sease			,		ed Rhizospheres on Living Roots (C3)
	nt Deposits (B2)		Oxidized I			ing Roots		re tilled)
	posits (B3)		•	not tilled	,			h Burrows (C8)
-	at or Crust (B4)		Presence		•	4)		ion Visible on Aerial Imagery (C9)
	oosits (B5)		Thin Mucl		. ,			prphic Position (D2)
	on Vis ble on Aerial	Imagery (B	(Ex Other (Ex	plain in R	emarks)			eutral Test (D5)
	tained Leaves (B9)						Frost-H	leave Hummocks (D7) (LRR F)
Field Obser								
Surface Wat			No <u>P</u> Depth (in					
Water Table			No 🦯 Depth (in					
Saturation P		res	No <u> </u>	ches):		Wet	land Hydrology P	resent? Yes No
(includes cap Describe Re		n naune m	onitoring well, aerial	nhotos n	revious in	spections)	if available:	
Decombe IVE		n guuge, m		μποτου, μ		-p-000013)	, ii available.	
Remarks:								
No indic	ators are me	et.						

I

Project/Site: Ripley Energy Center	City/County: Payne County Sampling Date: 2023-							
Applicant/Owner: Associated Electric Cooperative, Inc.	с.		State: Oklahoma	Sampling Point:	SP-11			
Investigator(s): S. Stewart, R. Oltjenbruns		Section, Township, Range: S20 T19N R4E						
Landform (hillslope, terrace, etc.): Plain				Slo	pe (%): 0			
Subregion (LRR): H80A L	Lat: 36.	.110670	Long: <u>-96.905405</u>	Datu	m: NAD 83			
Soil Map Unit Name: 70 - Zaneis Ioam, 3 to 5 percent s	slopes		NWI classif	ication: N/A				
Are climatic / hydrologic conditions on the site typical for this tin	ime of yea	ar?Yes 🖌 No	(If no, explain in I	Remarks.)				
Are Vegetation, Soil, or Hydrologysign	nificantly	disturbed? Are	e "Normal Circumstances"	present? Yes	No 🔽			
Are Vegetation, Soil, or Hydrology natu	turally pro	problematic? (If needed, explain any answers in Remarks.)						
SUMMARY OF FINDINGS – Attach site map sh	howing	sampling point	locations, transect	s, important fe	atures, etc.			
Hydrophytic Vegetation Present? Yes No Hydric Soil Present? Yes No	<u> </u>	Is the Sample	ed Area					
Hydric Soil Present? Yes No _	<u> </u>	within a Wetl	and? Yes	No 🖌				
Wetland Hydrology Present? Yes No _	<u> </u>				-			
Remarks:								

Upland confirmation sample plot. The USACE Antecedent Precipitation Tool indicates normal climatic conditions three months prior to survey.

VEGETATION – Use scientific names of plants.

/	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: <u>30 ft r</u>)	% Cover	Species?	Status	Number of Dominant Species
1				That Are OBL, FACW, or FAC (Δ)
2				(excluding FAC-): <u>1</u> (A)
3				Total Number of Dominant
4				Species Across All Strata: <u>2</u> (B)
		= Total Cov	ver	Percent of Dominant Species
Sapling/Shrub Stratum (Plot size: 15 ft r)				That Are OBL, FACW, or FAC: <u>50</u> (A/B)
1				Prevalence Index worksheet:
2				
3				Total % Cover of: Multiply by:
4				OBL species $\frac{0}{2}$ x 1 = $\frac{0}{2}$
5				FACW species $\frac{0}{22}$ x 2 = $\frac{0}{22}$
		= Total Cov	ver	FAC species 20 x 3 = 60
Herb Stratum (Plot size: 5 ft r)				FACU species 50 x 4 = 200
_{1.} Andropogon gerardii	30	~	FACU	UPL species <u>8</u> x 5 = <u>40</u>
2. Coelorachis cylindrica	20	~	FAC	Column Totals: <u>78</u> (A) <u>300</u> (B)
_{3.} Achillea millefolium	10		FACU	
4. Solidago altissima	10		FACU	Prevalence Index = B/A = <u>3.85</u>
_{5.} Asclepias viridis	5		UPL	Hydrophytic Vegetation Indicators:
6. Amorpha canescens	3		UPL	1 - Rapid Test for Hydrophytic Vegetation
7				2 - Dominance Test is >50%
8				$_$ 3 - Prevalence Index is $\leq 3.0^1$
9				4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
10.				Problematic Hydrophytic Vegetation ¹ (Explain)
	700/	= Total Cov	ver	
Woody Vine Stratum (Plot size: 30 ft r)				¹ Indicators of hydric soil and wetland hydrology must
1				be present, unless disturbed or problematic.
2				Hydrophytic
% Bare Ground in Herb Stratum 25.0		= Total Cov	ver	Vegetation Present? Yes No V
Remarks:				
No tost is passed Vegetation is dist	urboda	luo to b	oinaw	ithin an active hav field

No test is passed. Vegetation is disturbed due to being within an active hay field. See Photo C-11.

Depth	Matrix	0/		x Features		12	Territory	
(inches)	Color (moist)		Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0 - 22	7.5YR 3/3	100					Clay Loam	
-								
-								
-								
		·					·	
-							. <u> </u>	
-								
-								
-								
	ncentration, D=Dep		Reduced Matrix C		Lor Coato	d Sand C		ation: DI-Doro Lining M-Matrix
21	ndicators: (Applic					a sana G		ation: PL=Pore Lining, M=Matrix.
-								•
Histosol Histic En	ipedon (A2)			Gleyed Ma Redox (S5)				uck (A9) (LRR I, J) Prairie Redox (A16) (LRR F, G, H)
Black His				d Matrix (S				urface (S7) (LRR G)
	n Sulfide (A4)			Mucky Min				ains Depressions (F16)
	Layers (A5) (LRR	F)	·	Gleyed Ma	. ,			R H outside of MLRA 72 & 73)
	ck (A9) (LRR F, G,			d Matrix (F	. ,		Reduce	d Vertic (F18)
Depleted	Below Dark Surface	ce (A11)	Redox	Dark Surfa	ce (F6)		Red Pa	rent Material (TF2)
	rk Surface (A12)			d Dark Su			-	nallow Dark Surface (TF12)
	ucky Mineral (S1)		Redox	•	· · /		· ·	Explain in Remarks)
	lucky Peat or Peat							of hydrophytic vegetation and
5 cm Mu	cky Peat or Peat (S	·3) (LRR F)	(ML	.RA 72 & 7	3 OF LRR	H)		hydrology must be present, disturbed or problematic.
Restrictive I	ayer (if present):						uniess (disturbed of problematic.
	ayer (in present).							
Type								
•••	hoc):						Hydric Soil (Prosont? Vos No V
Depth (inc	hes):						Hydric Soil I	Present? Yes No
•••							Hydric Soil I	Present? Yes No
Depth (inc Remarks:			_				Hydric Soil I	Present? Yes No
Depth (inc Remarks:	hes):		<u> </u>				Hydric Soil I	Present? Yes No
Depth (inc Remarks: No indic	^{hes):}						Hydric Soil I	Present? Yes No
Depth (inc Remarks: No indic	^{hes):} ators are me GY	et.					Hydric Soil I	Present? Yes No
Depth (inc Remarks: No indic IYDROLO Wetland Hyd	hes): ators are me GY Irology Indicators	et.						
Depth (inc Remarks: No indic IYDROLO Wetland Hyd Primary Indic	hes): ators are me GY Irology Indicators ators (minimum of (et.	; check all that app				Secondar	y Indicators (minimum of two require
Depth (inc Remarks: No indic IYDROLO Wetland Hyc Primary Indic Surface	hes): ators are me GY Irology Indicators ators (minimum of a Water (A1)	et.	<u>; check all that app</u>	(B11)			<u>Secondar</u> Surfa	y Indicators (minimum of two require ace Soil Cracks (B6)
Depth (inc Remarks: No indic IYDROLO Wetland Hyc Primary Indic Surface V High Wa	ators are me GY Irology Indicators ators (minimum of e Water (A1) ter Table (A2)	et.	<u>; check all that app</u> Salt Crust Aquatic In	(B11) vertebrates	,		<u>Secondar</u> Surfa Spars	<u>y Indicators (minimum of two require</u> ace Soil Cracks (B6) sely Vegetated Concave Surface (B8
Depth (inc Remarks: No indic HYDROLO Wetland Hyd Primary Indic Surface High Wa Saturatic	ators are me GY Irology Indicators ators (minimum of e Water (A1) ter Table (A2) n (A3)	et.	<u>; check all that app</u> Salt Crust Aquatic In Hydrogen	(B11) vertebrates Sulfide Od	lor (C1)		Secondar Surfa Spara Drain	y Indicators (minimum of two require ace Soil Cracks (B6) sely Vegetated Concave Surface (B8 age Patterns (B10)
Depth (inc Remarks: No indic IYDROLO Wetland Hyd Primary Indic Surface High Wa Saturatic Water M	ators are me GY Irology Indicators ators (minimum of e Water (A1) ter Table (A2) n (A3) arks (B1)	et.	<u>; check all that app</u> Salt Crust Aquatic In Hydrogen Dry-Seaso	(B11) vertebrates Sulfide Od on Water T	lor (C1) able (C2)		Secondar Surfa Spara Drain Oxidi	y Indicators (minimum of two require ace Soil Cracks (B6) sely Vegetated Concave Surface (B8 nage Patterns (B10) zed Rhizospheres on Living Roots (C
Depth (inc Remarks: No indic IYDROLO Wetland Hyc Primary Indic Surface High Wa Saturatic Water M Sedimen	hes): ators are me GY Irology Indicators ators (minimum of e Water (A1) ter Table (A2) n (A3) arks (B1) t Deposits (B2)	et.	<u>; check all that app</u> Salt Crust Aquatic In Hydrogen Dry-Seaso Oxidized I	(B11) vertebrates Sulfide Od on Water T Rhizospher	lor (C1) able (C2)	ing Roots	Secondar Surfa Spara Drain Oxidi (C3) (wt	y Indicators (minimum of two require ace Soil Cracks (B6) sely Vegetated Concave Surface (B8 age Patterns (B10) zed Rhizospheres on Living Roots (C nere tilled)
Depth (inc Remarks: No indica IYDROLO Wetland Hyc Primary Indic Surface High Wa Saturatic Water M Sedimen Drift Dep	hes): ators are me GY Irology Indicators ators (minimum of a Water (A1) ter Table (A2) n (A3) arks (B1) t Deposits (B2) osits (B3)	et.	<u>; check all that app</u> Salt Crust Aquatic In Hydrogen Dry-Seaso Oxidized I (where	(B11) vertebrates Sulfide Oc on Water T Rhizospher not tilled)	dor (C1) able (C2) res on Livi	-	Secondar Surfa Spars Drain Oxidi (C3) (wl Crayt	<u>y Indicators (minimum of two require</u> ace Soil Cracks (B6) sely Vegetated Concave Surface (B8 age Patterns (B10) zed Rhizospheres on Living Roots (C here tilled) fish Burrows (C8)
Depth (inc Remarks: No indic HYDROLO Wetland Hyc Primary Indic Surface High Wa Saturatic Water M Sedimen Drift Dep Algal Ma	ators are me ators are me GY Irology Indicators ators (minimum of e Water (A1) ter Table (A2) n (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4)	et.	<u>; check all that app</u> Salt Crust Aquatic In Hydrogen Dry-Seaso Oxidized I (where Presence	(B11) vertebrates Sulfide Oc on Water T Rhizospher not tilled) of Reduce	dor (C1) Table (C2) res on Livi d Iron (C4	-	Secondar Surfa Spars Drain Oxidi (C3) (wf Crayt Satu	y Indicators (minimum of two require ace Soil Cracks (B6) sely Vegetated Concave Surface (B8 age Patterns (B10) zed Rhizospheres on Living Roots (C nere tilled) fish Burrows (C8) ration Visible on Aerial Imagery (C9)
Depth (ind Remarks: No indica IYDROLO Wetland Hyd Primary Indic Surface High Wa Saturatic Water M Sedimen Drift Dep Algal Ma Iron Dep	hes): ators are me GY Irology Indicators ators (minimum of e Water (A1) ter Table (A2) n (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5)	et. : one required	<u>; check all that app</u> Salt Crust Aquatic In Hydrogen Dry-Seaso Oxidized I (where Presence Thin Muck	(B11) vertebrates Sulfide Oc on Water T Rhizospher not tilled) of Reduce s Surface (f	dor (C1) Table (C2) res on Livi d Iron (C4 C7)	-	Secondar Surfa Spars Drain Oxidi (C3) (wl Crayt Satur Geor	y Indicators (minimum of two require ace Soil Cracks (B6) sely Vegetated Concave Surface (B8 hage Patterns (B10) zed Rhizospheres on Living Roots (C here tilled) fish Burrows (C8) ration Visible on Aerial Imagery (C9) norphic Position (D2)
Depth (inc Remarks: No indic IYDROLO Wetland Hyd Primary Indic Surface High Wa Surface Water M Sedimen Drift Dep Algal Ma Iron Dep Inundatio	hes):	et. : one required	<u>; check all that app</u> Salt Crust Aquatic In Hydrogen Dry-Seaso Oxidized I (where Presence Thin Muck	(B11) vertebrates Sulfide Oc on Water T Rhizospher not tilled) of Reduce s Surface (f	dor (C1) Table (C2) res on Livi d Iron (C4 C7)	-	Secondar Spars Spars Drain Oxidi (C3) (wf Crayi Satur Geor FAC-	ry Indicators (minimum of two require ace Soil Cracks (B6) sely Vegetated Concave Surface (B8 hage Patterns (B10) ized Rhizospheres on Living Roots (C here tilled) fish Burrows (C8) ration Visible on Aerial Imagery (C9) norphic Position (D2) -Neutral Test (D5)
Depth (inc Remarks: No indic IYDROLOO Wetland Hyd Primary Indic Surface High Wa Saturatic Water M Sedimen Drift Dep Algal Ma Iron Dep Inundatic Water-St	ators are me ators are me GY Irology Indicators ators (minimum of e Water (A1) ter Table (A2) n (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) on Vis ble on Aerial ained Leaves (B9)	et. : one required	<u>; check all that app</u> Salt Crust Aquatic In Hydrogen Dry-Seaso Oxidized I (where Presence Thin Muck	(B11) vertebrates Sulfide Oc on Water T Rhizospher not tilled) of Reduce s Surface (f	dor (C1) Table (C2) res on Livi d Iron (C4 C7)	-	Secondar Spars Spars Drain Oxidi (C3) (wf Crayi Satur Geor FAC-	y Indicators (minimum of two require ace Soil Cracks (B6) sely Vegetated Concave Surface (B8 hage Patterns (B10) zed Rhizospheres on Living Roots (C here tilled) fish Burrows (C8) ration Visible on Aerial Imagery (C9) norphic Position (D2)
Depth (inc Remarks: No indic IYDROLO Wetland Hyd Primary Indic Surface High Wa Saturatic Water M Sedimen Drift Dep Algal Ma Iron Dep Inundatic Water-St Field Observ	hes): ators are me GY Irology Indicators ators (minimum of of Water (A1) ter Table (A2) n (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) on Vis ble on Aerial ained Leaves (B9) vations:	et. : one required Imagery (B7	<u>; check all that app</u> Salt Crust Aquatic In Hydrogen Dry-Seaso Oxidized I Oxidized I Presence Thin Muck) Other (Ex	(B11) vertebrates Sulfide Oc on Water T Rhizospher not tilled) of Reduce s Surface (olain in Re	dor (C1) fable (C2) res on Liv d Iron (C4 C7) marks)	•)	Secondar Spars Spars Drain Oxidi (C3) (wf Crayi Satur Geor FAC-	ry Indicators (minimum of two require ace Soil Cracks (B6) sely Vegetated Concave Surface (B8 hage Patterns (B10) ized Rhizospheres on Living Roots (C here tilled) fish Burrows (C8) ration Visible on Aerial Imagery (C9) norphic Position (D2) -Neutral Test (D5)
Depth (ind Remarks: No indica IYDROLO Wetland Hyd Primary Indic Surface High Wa Saturatic Water M Sedimen Drift Dep Algal Ma Iron Dep Inundatic Water-St Field Observ	ators are me ators are me GY Irology Indicators ators (minimum of e Water (A1) ter Table (A2) n (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) on Vis ble on Aerial ained Leaves (B9) vations: er Present?	et. : one required Imagery (B7 Yes N	<u>; check all that app</u> Salt Crust Aquatic In Hydrogen Dry-Seaso Oxidized I (where Presence Thin Muck) Other (Ex	(B11) vertebrates Sulfide Oc on Water T Rhizospher not tilled) of Reduces Surface (f blain in Ref	dor (C1) rable (C2) res on Livi d Iron (C4 C7) marks)	•)	Secondar Spars Spars Drain Oxidi (C3) (wf Crayi Satur Geor FAC-	ry Indicators (minimum of two require ace Soil Cracks (B6) sely Vegetated Concave Surface (B8 hage Patterns (B10) ized Rhizospheres on Living Roots (C here tilled) fish Burrows (C8) ration Visible on Aerial Imagery (C9) norphic Position (D2) -Neutral Test (D5)
Depth (ind Remarks: No indica IYDROLO Wetland Hyd Primary Indic Surface High Wa Saturatic Water M Sedimen Drift Dep Algal Ma Iron Dep Inundatic Water-St Field Observ	ators are me GY Irology Indicators ators (minimum of e Water (A1) ter Table (A2) in (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) on Vis ble on Aerial ained Leaves (B9) Vations: er Present?	et. : one required Imagery (B7 Yes N Yes N	; check all that app Salt Crust Aquatic In Hydrogen Dry-Seaso Oxidized I (where Presence Thin Muck) Other (Ex Io Depth (in Io Depth (in	(B11) vertebrates Sulfide Oc on Water T Rhizospher not tilled) of Reduces Surface ((blain in Rei ches): ches):	dor (C1) rable (C2) res on Livi d Iron (C4 C7) marks)	•)	Secondar Spars Spars Drain Oxidi (C3) (wf Crayi Satur Geor FAC- Frost	ry Indicators (minimum of two require ace Soil Cracks (B6) sely Vegetated Concave Surface (B8 hage Patterns (B10) ized Rhizospheres on Living Roots (C here tilled) fish Burrows (C8) ration Visible on Aerial Imagery (C9) norphic Position (D2) -Neutral Test (D5) -Heave Hummocks (D7) (LRR F)
Depth (inc Remarks: No indic HYDROLO Wetland Hyd Primary Indic Surface High Wa Saturatic Water M Sedimen Drift Dep Algal Ma Iron Dep Inundatic Water-St Field Observ Surface Wate Saturation Pr	ators are me GY Irology Indicators ators (minimum of e Water (A1) ter Table (A2) in (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) on Vis ble on Aerial ained Leaves (B9) Vations: er Present?	et. : one required Imagery (B7 Yes N Yes N	<u>; check all that app</u> Salt Crust Aquatic In Hydrogen Dry-Seaso Oxidized I (where Presence Thin Muck) Other (Ex	(B11) vertebrates Sulfide Oc on Water T Rhizospher not tilled) of Reduces Surface ((blain in Rei ches): ches):	dor (C1) rable (C2) res on Livi d Iron (C4 C7) marks)	•)	Secondar Spars Spars Drain Oxidi (C3) (wf Crayi Satur Geor FAC- Frost	ry Indicators (minimum of two require ace Soil Cracks (B6) sely Vegetated Concave Surface (B8 hage Patterns (B10) ized Rhizospheres on Living Roots (C here tilled) fish Burrows (C8) ration Visible on Aerial Imagery (C9) norphic Position (D2) -Neutral Test (D5)
Depth (inc Remarks: No indic IYDROLO Wetland Hyd Primary Indic Surface High Wa Saturatic Water M Sedimen Drift Dep Algal Ma Iron Dep Inundatic Water-St Field Observ Surface Wate Saturation Pr (includes cap	ators are me GY Irology Indicators ators (minimum of of Water (A1) ter Table (A2) n (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) on Vis ble on Aerial ained Leaves (B9) Vations: er Present? Present? esent? illary fringe)	et. : one required Imagery (B7 Yes N Yes N	; check all that app Salt Crust Aquatic In Hydrogen Dry-Sease Oxidized I (where Presence Thin Much) Other (Ex Io V Depth (in Io V Depth (in	(B11) vertebrates Sulfide Oc on Water T Rhizospher not tilled) of Reduces Surface ((blain in Rei ches): ches): ches):	dor (C1) rable (C2) res on Livi d Iron (C4 C7) marks)	.) 	Secondar Surfa Spars Drain Oxidi (C3) (wł Crayt Satur Satur Geor FAC- Frost	ry Indicators (minimum of two require ace Soil Cracks (B6) sely Vegetated Concave Surface (B8 hage Patterns (B10) ized Rhizospheres on Living Roots (C here tilled) fish Burrows (C8) ration Visible on Aerial Imagery (C9) norphic Position (D2) -Neutral Test (D5) -Heave Hummocks (D7) (LRR F)
Depth (inc Remarks: No indic IYDROLO Wetland Hyd Primary Indic Surface High Wa Saturatic Water M Sedimen Drift Dep Algal Ma Iron Dep Inundatic Water-St Field Observ Surface Wate Saturation Pr (includes cap	ators are me GY Irology Indicators ators (minimum of e Water (A1) ter Table (A2) in (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) on Vis ble on Aerial ained Leaves (B9) Vations: er Present?	et. : one required Imagery (B7 Yes N Yes N	; check all that app Salt Crust Aquatic In Hydrogen Dry-Sease Oxidized I (where Presence Thin Much) Other (Ex Io V Depth (in Io V Depth (in	(B11) vertebrates Sulfide Oc on Water T Rhizospher not tilled) of Reduces Surface ((blain in Rei ches): ches): ches):	dor (C1) rable (C2) res on Livi d Iron (C4 C7) marks)	.) 	Secondar Surfa Spars Drain Oxidi (C3) (wł Crayt Satur Satur Geor FAC- Frost	ry Indicators (minimum of two require ace Soil Cracks (B6) sely Vegetated Concave Surface (B8 hage Patterns (B10) ized Rhizospheres on Living Roots (C here tilled) fish Burrows (C8) ration Visible on Aerial Imagery (C9) norphic Position (D2) -Neutral Test (D5) -Heave Hummocks (D7) (LRR F)
Depth (inc Remarks: No indic Wetland Hyd Primary Indic Surface High Wa Saturatic Water M Sedimen Drift Dep Algal Ma Iron Dep Inundatic Water-St Field Observ Surface Wate Saturation Pr (includes cap Describe Rec	ators are me GY Irology Indicators ators (minimum of of Water (A1) ter Table (A2) n (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) on Vis ble on Aerial ained Leaves (B9) Vations: er Present? Present? esent? illary fringe)	et. : one required Imagery (B7 Yes N Yes N	; check all that app Salt Crust Aquatic In Hydrogen Dry-Sease Oxidized I (where Presence Thin Much) Other (Ex Io V Depth (in Io V Depth (in	(B11) vertebrates Sulfide Oc on Water T Rhizospher not tilled) of Reduces Surface ((blain in Rei ches): ches): ches):	dor (C1) rable (C2) res on Livi d Iron (C4 C7) marks)	.) 	Secondar Surfa Spars Drain Oxidi (C3) (wł Crayt Satur Satur Geor FAC- Frost	ry Indicators (minimum of two require ace Soil Cracks (B6) sely Vegetated Concave Surface (B8 hage Patterns (B10) ized Rhizospheres on Living Roots (C here tilled) fish Burrows (C8) ration Visible on Aerial Imagery (C9) norphic Position (D2) -Neutral Test (D5) -Heave Hummocks (D7) (LRR F)
Depth (ind Remarks: No indic IYDROLO Wetland Hyd Primary Indic Surface High Wa Saturatic Water M Sedimen Drift Dep Algal Ma Iron Dep Inundatic Water-St Field Observ Surface Wate Saturation Pr (includes cap	ators are me GY Irology Indicators ators (minimum of of Water (A1) ter Table (A2) n (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) on Vis ble on Aerial ained Leaves (B9) Vations: er Present? Present? esent? illary fringe)	et. : one required Imagery (B7 Yes N Yes N	; check all that app Salt Crust Aquatic In Hydrogen Dry-Sease Oxidized I (where Presence Thin Much) Other (Ex Io V Depth (in Io V Depth (in	(B11) vertebrates Sulfide Oc on Water T Rhizospher not tilled) of Reduces Surface ((blain in Rei ches): ches): ches):	dor (C1) rable (C2) res on Livi d Iron (C4 C7) marks)	.) 	Secondar Surfa Spars Drain Oxidi (C3) (wł Crayt Satur Satur Geor FAC- Frost	ry Indicators (minimum of two require ace Soil Cracks (B6) sely Vegetated Concave Surface (B8 hage Patterns (B10) ized Rhizospheres on Living Roots (C here tilled) fish Burrows (C8) ration Visible on Aerial Imagery (C9) norphic Position (D2) -Neutral Test (D5) -Heave Hummocks (D7) (LRR F)

Project/Site: Ripley Energy Center	ayne County Sa	ampling Date: 2023-07-25	
Applicant/Owner: Associated Electric Cooperative, Inc.			ampling Point: SP-12
Investigator(s): S. Stewart, C. Rogers	Section, Towns	ship, Range: S20 T19N R4E	
Landform (hillslope, terrace, etc.): Depression		oncave, convex, none): Concave	Slope (%): 0
Subregion (LRR): H 80A L	.at: 36.107733	Long: -96.901427	Datum: NAD 83
Soil Map Unit Name: 47 - Renfrow loam, 3 to 5 percent	slopes, eroded	NWI classification	on: N/A
Are climatic / hydrologic conditions on the site typical for this tim Are Vegetation, Soil, or Hydrologysigni	ficantly disturbed?	Are "Normal Circumstances" pres	sent? Yes 🖌 No
Are Vegetation, Soil, or Hydrology natul SUMMARY OF FINDINGS – Attach site map sho		(If needed, explain any answers i point locations, transects, ii	,
Hydrophytic Vegetation Present? Yes ✓ No Hydric Soil Present? Yes ✓ No Wetland Hydrology Present? Yes ✓ No	is the S	ampled Area a Wetland? Yes	_ No

Wetland sample plot within PEM W-8. The USACE Antecedent Precipitation Tool indicates wetter than normal climatic conditions three months prior to survey.

VEGETATION – Use scientific names of plants.

Remarks:

00 (1	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: <u>30 ft r</u>)		Species?		Number of Dominant Species
1. Salix nigra	5	 ✓ 	FACW	That Are OBL, FACW, or FAC (excluding $FAC = 1$) 3 (A)
2				(excluding FAC-): $\underline{3}$ (A)
3				Total Number of Dominant
4				Species Across All Strata: <u>3</u> (B)
		= Total Cov		Percent of Dominant Species
Sapling/Shrub Stratum (Plot size: 15 ft r)				That Are OBL, FACW, or FAC: <u>100</u> (A/B)
1				
2				Prevalence Index worksheet:
3				Total % Cover of: Multiply by:
4				OBL species 0 $x = 0$
5				FACW species <u>35</u> x 2 = <u>70</u>
		= Total Cov	/er	FAC species 50 x 3 = 150
Herb Stratum (Plot size: 5 ft r)		10101 001		FACU species $0 x 4 = 0$
1. Juncus marginatus	30	~	FACW	UPL species <u>5</u> x 5 = <u>25</u>
2. Paspalum dilatatum	20	~	FAC	Column Totals: 90 (A) 245 (B)
3. Coreopsis tinctoria	15		FAC	0.70
4 Cyperus echinatus	15		FAC	Prevalence Index = B/A = 2.72
5. Setaria viridis	5		UPL	Hydrophytic Vegetation Indicators:
6				1 - Rapid Test for Hydrophytic Vegetation
7				✓ 2 - Dominance Test is >50%
				3 - Prevalence Index is $≤3.0^1$
8				4 - Morphological Adaptations ¹ (Provide supporting
9				data in Remarks or on a separate sheet)
10	0.50/	<u> </u>		Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size: 30 ft r)	03/0	= Total Cov	/er	¹ Indicators of hydric soil and wetland hydrology must
				be present, unless disturbed or problematic.
1				
2				Hydrophytic Vegetation
% Bare Ground in Herb Stratum 15.0		= Total Cov	/er	Present? Yes <u>V</u> No
Remarks:				
Dominance Test is passed.				
•				
See Photo C-12.				

Profile Desc	ription: (Describe	to the depth	needed to docun	nent the	indicator	or confirm	n the absence of	indicators.)
Depth	Matrix		Redo	x Feature	s			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0 - 24	10YR 3/2	90 7.	.5YR 4/4	10	С	PL	Clay Loam	
-								
								-
-				·				
-								
-								
_	-							
				·				
-								
-								
¹ Type: C=Co	oncentration, D=Dep	pletion, RM=Re	educed Matrix, CS	=Covere	d or Coate	d Sand G	rains. ² Locat	ion: PL=Pore Lining, M=Matrix.
Hydric Soil I	ndicators: (Applic	able to all LR	Rs, unless other	wise not	ed.)		Indicators fo	r Problematic Hydric Soils ³ :
<u> </u>	(A1)		Sandy G	Bleyed Ma	atrix (S4)		1 cm Mu	ck (A9) (LRR I, J)
Histic Ep	ipedon (A2)		Sandy F	Redox (S5	5)		Coast Pr	airie Redox (A16) (LRR F, G, H)
Black Hi	stic (A3)		Stripped	Matrix (S	56)		Dark Sur	face (S7) (LRR G)
Hydroge	n Sulfide (A4)		Loamy M	Mucky Mi	neral (F1)		High Plai	ns Depressions (F16)
Stratified	Layers (A5) (LRR	F)	Loamy (Gleyed M	atrix (F2)		(LRR	H outside of MLRA 72 & 73)
	ck (A9) (LRR F, G ,			d Matrix (,			Vertic (F18)
	Below Dark Surfac	e (A11)	Kedox E		()			ent Material (TF2)
	rk Surface (A12)				urface (F7)			Illow Dark Surface (TF12)
	lucky Mineral (S1)			Depressio		4.0.		xplain in Remarks)
	lucky Peat or Peat				essions (F			hydrophytic vegetation and
5 cm Mu	cky Peat or Peat (S	3) (LRR F)		KA / 2 &	73 of LRR	H)		nydrology must be present, sturbed or problematic.
Restrictive L	ayer (if present):							stubed of problematic.
Type:								
Depth (inc	thes):		_				Hydric Soil Pi	resent? Yes 🖌 No
Remarks:								
Indicato	r F6 is met.							
HYDROLO	GY							
Wetland Hyd	drology Indicators:	:						
Primary Indic	ators (minimum of o	one required: c	heck all that apply	v)			Secondarv	Indicators (minimum of two required)
-	Water (A1)		Salt Crust					e Soil Cracks (B6)
	ter Table (A2)		Aquatic Inv		e (B13)			ely Vegetated Concave Surface (B8)
Saturatio			Hydrogen					ige Patterns (B10)
	arks (B1)		Dry-Seaso					ed Rhizospheres on Living Roots (C3)
	. ,		✓ Oxidized R					,
	t Deposits (B2)		(where r	•		ing Roots	. , .	ere tilled)
	oosits (B3)		· ·	,				sh Burrows (C8)
-	t or Crust (B4)		Presence of This Music			•)		ition Visible on Aerial Imagery (C9)
	osits (B5)	. (53)	Thin Muck					orphic Position (D2)
	on Vis ble on Aerial	Imagery (B7)	Other (Exp	lain in Re	emarks)			leutral Test (D5)
	tained Leaves (B9)						Frost-I	Heave Hummocks (D7) (LRR F)
Field Observ								
Surface Wate			Depth (inc					
Water Table			✓ Depth (ind					
Saturation Pr		/es No	Depth (ind	ches):		Wet	land Hydrology F	Present? Yes 🖌 No
(includes cap	oillary fringe) corded Data (stream		oring woll porial r	botco or		noctions)	if available:	
Describe Rec	Jorded Data (Stream	r yauye, monto	onny wen, aenal p	notos, pr	evious ins	pections),	n avaliable.	
Remarks:								

Indicators C3, D2, and D5 are met.

Project/Site: Ripley Energy Center	Ripley Energy Center City/County: Payne County						
Applicant/Owner: Associated Electric Cooperative, Inc.	City/County: Payne County Sampling Date: 2023-0 State: Oklahoma Sampling Point: SP-13						
Investigator(s): S. Stewart, C. Rogers	_ Section, Townsh	Section, Township, Range: S20 T19N R4E					
Landform (hillslope, terrace, etc.): Plain		cave, convex, none): None	Slope (%): 0				
Subregion (LRR): H 80A Lat: 3	6.107509	Long: -96.901697	Datum: NAD 83				
Soil Map Unit Name: 47 - Renfrow loam, 3 to 5 percent slop	es, eroded	NWI classific	ation: N/A				
Are climatic / hydrologic conditions on the site typical for this time of	year?Yes 🔽	No (If no, explain in R	emarks.)				
Are Vegetation, Soil, or Hydrology significant	ly disturbed?	Are "Normal Circumstances" p	present? Yes 🖌 No				
Are Vegetation, Soil, or Hydrology naturally p	problematic?	(If needed, explain any answe	rs in Remarks.)				
SUMMARY OF FINDINGS – Attach site map showin	ng sampling po	oint locations, transects	, important features, etc.				
Hydrophytic Vegetation Present? Yes No	- Is the Sa	mpled Area					

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes Yes Yes	No No No	Is the Sampled Area within a Wetland?	Yes	No
Remarks:					

Upland sample plot adjacent to PEM W-8. The USACE Antecedent Precipitation Tool indicates wetter than normal climatic conditions three months prior to survey.

VEGETATION – Use scientific names of plants.

20.4 -	Absolute	Dominant		Dominance Test worksheet:
Tree Stratum (Plot size: <u>30 ft r</u>)		Species?		Number of Dominant Species
1				That Are OBL, FACW, or FAC (α, β)
2				(excluding FAC-): (A)
3				Total Number of Dominant
4				Species Across All Strata: <u>2</u> (B)
		= Total Cov		Percent of Dominant Species
Sapling/Shrub Stratum (Plot size: 15 ft r)				That Are OBL, FACW, or FAC: 50 (A/B)
1				Prevalence Index worksheet:
2				
3				Total % Cover of: Multiply by:
4				OBL species $\frac{0}{2}$ x 1 = $\frac{0}{2}$
5				FACW species 0 $x 2 = 0$
		= Total Cov	/er	FAC species 20 x 3 = 60
Herb Stratum (Plot size: 5 ft r)				FACU species 70 x 4 = 280
_{1.} Andropogon gerardii	60	~	FACU	UPL species $0 \times 5 = 0$
2. Coelorachis cylindrica	20	~	FAC	Column Totals: <u>90</u> (A) <u>340</u> (B)
3. Achillea millefolium	10		FACU	2.70
4				Prevalence Index = B/A = <u>3.78</u>
5				Hydrophytic Vegetation Indicators:
6				1 - Rapid Test for Hydrophytic Vegetation
				2 - Dominance Test is >50%
7				3 - Prevalence Index is $≤3.0^1$
8				4 - Morphological Adaptations ¹ (Provide supporting
9				data in Remarks or on a separate sheet)
10				Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size: 30 ft r)	90%	= Total Cov	/er	¹ Indicators of hydric soil and wetland hydrology must
				be present, unless disturbed or problematic.
1				
2				Hydrophytic Vegetation
% Bare Ground in Herb Stratum 10.0		= Total Cov	/er	Present? Yes No V
Remarks:				1
No test is passed.				
•				
See Photo C-13.				

		to the depth	needed to document the		or confirm	n the absence o	f indicators.)
Depth (inches)	<u>Matrix</u> Color (moist)	%	Redox Feature Color (moist) %	Tvpe ¹	Loc ²	Texture	Remarks
0 - 20	10YR 3/3	100				Loam	
					·		
						<u> </u>	
-						<u> </u>	
-						<u></u>	
-							
-							
			Reduced Matrix, CS=Cover	ad or Coot	ad Sand C	raina ² 1 aoa	tion: DI = Doro Liping M=Motrix
21			RRs, unless otherwise no				tion: PL=Pore Lining, M=Matrix. or Problematic Hydric Soils ³ :
Histosol			Sandy Gleyed N				ick (A9) (LRR I, J)
	pipedon (A2)		Sandy Redox (S				rairie Redox (A16) (LRR F, G, H)
Black Hi			Stripped Matrix				rface (S7) (LRR G)
Hydroge	n Sulfide (A4)		Loamy Mucky N	/lineral (F1)		High Pla	ins Depressions (F16)
	Layers (A5) (LRR		Loamy Gleyed I			•	Houtside of MLRA 72 & 73)
	ick (A9) (LRR F, G,		Depleted Matrix Redox Dark Sur				d Vertic (F18)
	d Below Dark Surfac ark Surface (A12)	e (ATT)	Depleted Dark S	. ,)		ent Material (TF2) allow Dark Surface (TF12)
	lucky Mineral (S1)		Redox Depress		/		Explain in Remarks)
	/lucky Peat or Peat ((S2) (LRR G ,			16)	³ Indicators o	f hydrophytic vegetation and
5 cm Mu	icky Peat or Peat (S	3) (LRR F)	(MLRA 72 8	& 73 of LRF	R H)		hydrology must be present,
						unless d	listurbed or problematic.
	_ayer (if present):						
Туре:							
	ches):		_			Hydric Soil P	Present? Yes No V
Remarks:							
No indic	ators are me	et.					
IYDROLO	GY						
Wetland Hy	drology Indicators:						
Primary Indic	ators (minimum of o	one required;	check all that apply)			Secondary	y Indicators (minimum of two required)
Surface	Water (A1)		Salt Crust (B11)			Surfa	ce Soil Cracks (B6)
High Wa	iter Table (A2)		Aquatic Invertebra	tes (B13)		Spars	ely Vegetated Concave Surface (B8)
Saturatio	on (A3)		Hydrogen Sulfide	Odor (C1)		Draina	age Patterns (B10)
Water M	arks (B1)		Dry-Season Water	r Table (C2))	Oxidiz	zed Rhizospheres on Living Roots (C3)
	nt Deposits (B2)		Oxidized Rhizosph		ing Roots		ere tilled)
	posits (B3)		(where not tille	,			ish Burrows (C8)
	at or Crust (B4)		Presence of Redu	•	4)		ation Visible on Aerial Imagery (C9)
·	oosits (B5)		Thin Muck Surface				norphic Position (D2)
	on Vis ble on Aerial tained Leaves (B9)	Imagery (B7)	Other (Explain in F	Remarks)			Neutral Test (D5) Heave Hummocks (D7) (LRR F)
Field Obser	()					FI0SI-	
Surface Wate			Depth (inches): _				
			Depth (inches): _				
Water Table							
Saturation Pl (includes cap			Depth (inches):		vveti	iand Hydrology	Present? Yes No V
		n gauge, moni	itoring well, aerial photos,	previous ins	spections),	if available:	
Remarks:							
No india	ators are me	. +					
		;ι.					

Project/Site: Ripley Energy Center	City/County: Payne County Sampling Date: 2023-07-								
Applicant/Owner: Associated Electric Cooperative, In	c. State: Oklahoma Sampling Point: SP-14								
Investigator(s): S. Stewart, C. Rogers	Section, Township, Range: S20 T19N R4E								
	Local relief (concave, convex, none): Concave Slope (%): 3								
	Lat: 36.105210 Long: -96.902468 Datum: NAD 8								
Soil Map Unit Name: 49 - Renfrow and Grainola soils, 3 to 8 percent slopes, severely eroded NWI classification: N/A									
Are climatic / hydrologic conditions on the site typical for this	Are climatic / hydrologic conditions on the site typical for this time of year? Yes <u>v</u> No (If no, explain in Remarks.)								
Are Vegetation, Soil, or Hydrology sig	nificantly disturbed? Are "Normal Circumstances" present? Yes 🖌 No								
Are Vegetation, Soil, or Hydrology na	turally problematic? (If needed, explain any answers in Remarks.)								
SUMMARY OF FINDINGS – Attach site map s	howing sampling point locations, transects, important features, e								
Hydrophytic Vegetation Present? Yes V No Hydric Soil Present? Yes V No Wetland Hydrology Present? Yes V No Remarks: No No No	within a Wetland? Yes V No								

Wetland sample plot within PEM W-9. The USACE Antecedent Precipitation Tool indicates normal climatic conditions three months prior to survey.

VEGETATION – Use scientific names of plants.

00 # -	Absolute	Dominant		Dominance Test worksheet:
Tree Stratum (Plot size: <u>30 ft r</u>)		Species?		Number of Dominant Species
1				That Are OBL, FACW, or FAC (excluding FAC-): 2 (A)
2		. <u> </u>		(excluding FAC-): <u>2</u> (A)
3				Total Number of Dominant
4				Species Across All Strata: <u>2</u> (B)
15 th -		= Total Cov	ver	Percent of Dominant Species
Sapling/Shrub Stratum (Plot size: 15 ft r)				That Are OBL, FACW, or FAC: <u>100</u> (A/B)
1				Prevalence Index worksheet:
2		. <u> </u>		Total % Cover of: Multiply by:
3				
4				
5				FACW species $\frac{20}{25}$ x 2 = $\frac{40}{105}$
		= Total Cov	ver	FAC species $\frac{35}{2}$ x 3 = $\frac{105}{2}$
Herb Stratum (Plot size: 5 ft r)		_		FACU species $\frac{0}{2}$ x 4 = $\frac{0}{2}$
1. Paspalum dilatatum	30	 ✓ 	FAC	UPL species <u>0</u> x 5 = <u>0</u>
2. Juncus marginatus	20	 ✓ 	FACW	Column Totals: <u>55</u> (A) <u>145</u> (B)
3. Coreopsis tinctoria	5		FAC	Developed Index D/A 264
4				Prevalence Index = B/A = 2.64
5				Hydrophytic Vegetation Indicators:
6				1 - Rapid Test for Hydrophytic Vegetation
7				✓ 2 - Dominance Test is >50%
8				$_$ 3 - Prevalence Index is $\leq 3.0^1$
9				4 - Morphological Adaptations ¹ (Provide supporting
10				data in Remarks or on a separate sheet)
10		= Total Co		Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size: <u>30 ft r</u>)	00/0		ver	¹ Indicators of hydric soil and wetland hydrology must
1				be present, unless disturbed or problematic.
				Hydrophytic
2		= Total Co		Vegetation
% Bare Ground in Herb Stratum 45.0		- 10181 00		Present? Yes V No
Remarks:				1
Dominanaa Taat is passad				
Dominance Test is passed.				
See Photo C-14.				

Profile Desc	ription: (Describe	to the dept	h needed to docum	ent the	indicator	or confirn	n the absence	of indicators.)
Depth	Matrix		Redox	Feature	s			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0 - 8	10YR 4/1	95	10YR 5/8	5	С	PL	Clay	
8 - 24	7.5YR 4/6	100					Sand	
_		· ·						
		· ·					- <u></u> .	
		· ·						
-								
-		. <u> </u>			<u> </u>			
-								
-								
¹ Type: C=Co	oncentration, D=Dep	letion, RM=	Reduced Matrix, CS	=Covere	d or Coate	d Sand Gi	rains. ² Loc	ation: PL=Pore Lining, M=Matrix.
	ndicators: (Applic							for Problematic Hydric Soils ³ :
Histosol			Sandy G				1 cm M	luck (A9) (LRR I, J)
	pipedon (A2)		Sandy R		. ,			Prairie Redox (A16) (LRR F, G, H)
Black Hi			Stripped					urface (S7) (LRR G)
	n Sulfide (A4)				neral (F1)			lains Depressions (F16)
Stratified	Layers (A5) (LRR I	=)	Loamy C	Bleyed M	atrix (F2)		(LR	R H outside of MLRA 72 & 73)
1 cm Mu	ck (A9) (LRR F, G , I	H)	Depleted	d Matrix (F3)		Reduce	ed Vertic (F18)
·	Below Dark Surfac	e (A11)	Redox D		· · ·			arent Material (TF2)
	ark Surface (A12)				urface (F7)			hallow Dark Surface (TF12)
	lucky Mineral (S1)		Redox D	•	· · ·			Explain in Remarks)
	Aucky Peat or Peat (of hydrophytic vegetation and
5 cm Mu	cky Peat or Peat (S	3) (LRR F)		KA 72 &	73 of LRR	H)		l hydrology must be present, disturbed or problematic.
Restrictive L	_ayer (if present):							
Type:								
Depth (inc	ches):						Hydric Soil	Present? Yes 🖌 No
Remarks:								
Indicato	r F3 is met.							
maicato	1 1 0 13 met.							
HYDROLO	GY							
Wetland Hvo	drology Indicators:							
-	ators (minimum of o		check all that apply	()			Seconda	ry Indicators (minimum of two required)
-	Water (A1)		Salt Crust (ace Soil Cracks (B6)
	iter Table (A2)		Aquatic Inv		e (B13)			rsely Vegetated Concave Surface (B8)
Saturatio	. ,		Hydrogen S				·	nage Patterns (B10)
	arks (B1)		Dry-Seaso		• •			lized Rhizospheres on Living Roots (C3)
	nt Deposits (B2)		✓ Oxidized R		· ,	ing Poots		here tilled)
	oosits (B3)		(where n			ing roots		rfish Burrows (C8)
	it or Crust (B4)		Presence c)		iration Visible on Aerial Imagery (C9)
-	osits (B5)		Thin Muck			·)		morphic Position (D2)
	on Vis ble on Aerial I	magany (P7						-Neutral Test (D5)
	tained Leaves (B9)	magery (Br			enars)			t-Heave Hummocks (D7) (LRR F)
Field Observ								
			lo 🔽 Depth (inc	hae).				
Surface Wate			lo <u> </u>					
Water Table								
Saturation Pr (includes cap		es N	Io 🔽 Depth (inc	nes):		_ Wetl	and Hydrology	/ Present? Yes 🦯 No
	corded Data (stream	gauge. mo	nitoring well, aerial n	hotos. pi	revious ins	pections).	if available:	
	(5 5-,	с ,р					
Remarks:								

Indicators C3, C8, D2, and D5 are met.

Project/Site: Ripley Energy Center	City/County: Payne C	ounty	Sampling Date: 2023-07-25					
Applicant/Owner: Associated Electric Cooperative, Inc.		State: Oklahoma	Sampling Point: SP-15					
Investigator(s): S. Stewart, C. Rogers	Section, Township, Ra	nge: S20 T19N R4E						
Landform (hillslope, terrace, etc.): Plateau			Slope (%): 2					
Subregion (LRR): H80A Lat: 3	6.105192	Long: -96.902468	Datum: NAD 83					
Soil Map Unit Name: 49 - Renfrow and Grainola soils, 3 to 8 percent slopes, severely eroded NWI classification: N/A								
Are climatic / hydrologic conditions on the site typical for this time of year? Yes <u>V</u> No (If no, explain in Remarks.)								
Are Vegetation, Soil, or Hydrology significantl	y disturbed? Are "	Normal Circumstances" p	present? Yes 🖌 No					
Are Vegetation, Soil, or Hydrology naturally p	oblematic? (If ne	eded, explain any answe	rs in Remarks.)					
SUMMARY OF FINDINGS – Attach site map showin	g sampling point le	ocations, transects	, important features, etc.					

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes Yes Yes	No <u> </u>	Is the Sampled Area within a Wetland?	Yes	No
Remarks:					

Upland sample plot adjacent to PEM W-9. The USACE Antecedent Precipitation Tool indicates wetter than normal climatic conditions three months prior to survey.

VEGETATION – Use scientific names of plants.

20.4 -	Absolute	Dominant		Dominance Test worksheet:
Tree Stratum (Plot size: <u>30 ft r</u>)		Species?		Number of Dominant Species
1				That Are OBL, FACW, or FAC (excluding FAC-): (A)
2				(excluding FAC-). (A)
3				Total Number of Dominant
4				Species Across All Strata: <u>2</u> (B)
15 ft r		= Total Cov	/er	Percent of Dominant Species
Sapling/Shrub Stratum (Plot size: 15 ft r)				That Are OBL, FACW, or FAC: 0 (A/B)
1				Prevalence Index worksheet:
2				
3				
4				
5	<u> </u>			FACW species $\frac{0}{10}$ x 2 = $\frac{0}{20}$
		= Total Cov	/er	FAC species $\frac{10}{22}$ x 3 = $\frac{30}{212}$
Herb Stratum (Plot size: 5 ft r)				FACU species <u>60</u> x 4 = <u>240</u>
1. Ambrosia artemisiifolia	30	 ✓ 	FACU	UPL species $0 x 5 = 0$
2. Andropogon gerardii	30	~	FACU	Column Totals: <u>70</u> (A) <u>270</u> (B)
3. Coelorachis cylindrica	5		FAC	2.96
4. Coreopsis tinctoria	5		FAC	Prevalence Index = B/A = <u>3.86</u>
5				Hydrophytic Vegetation Indicators:
6				1 - Rapid Test for Hydrophytic Vegetation
7				2 - Dominance Test is >50%
				3 - Prevalence Index is ≤3.0 ¹
8				4 - Morphological Adaptations ¹ (Provide supporting
9				data in Remarks or on a separate sheet)
10	700/			Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size: 30 ft r)	70%	= Total Cov	/er	¹ Indicators of hydric soil and wetland hydrology must
				be present, unless disturbed or problematic.
1				
2				Hydrophytic Vegetation
% Bare Ground in Herb Stratum 30.0		= Total Cov	/er	Present? Yes <u>No</u>
Remarks:				1
No tost is passed				
No test is passed.				
See Photo C-15.				

	ription: (Describe	to the depth n				or confirr	n the absence of	indicators.)	
Depth (inches)	<u>Matrix</u> Color (moist)	% (Color (moist)	<u>x Features</u> %	<u>Type¹</u>	Loc ²	Texture	Remarks	
0 - 20	7.5YR 3/3	100		/0			Loam	Remarks	
0 20	7.511 5/5						Loan		—
-				·					
-									
_				·					
				·					
				·			<u> </u>		
				·					
-									
-				·					
		lation DM-Dog	luced Metrix CC			d Cand C		on: DI-Doro Lining M-Matrix	—
21	ncentration, D=Dep ndicators: (Applic	-				a Sana G		on: PL=Pore Lining, M=Matrix. r Problematic Hydric Soils ³ :	
-								•	
Histosol	(A1) bipedon (A2)		Sandy G	Bleyed Ma				k (A9) (LRR I, J) airie Redox (A16) (LRR F, G, H)	
Black Hi			-	Matrix (S				ane (S7) (LRR G)	
	n Sulfide (A4)			Mucky Min				ns Depressions (F16)	
	Layers (A5) (LRR	F)	Loamy (-			-	H outside of MLRA 72 & 73)	
	ck (A9) (LRR F, G ,		-	d Matrix (F				Vertic (F18)	
	Below Dark Surfac		Redox D) Dark Surfa	, ce (F6)			nt Material (TF2)	
Thick Da	ark Surface (A12)		Deplete	d Dark Su	rface (F7)		Very Sha	llow Dark Surface (TF12)	
Sandy M	lucky Mineral (S1)		Redox I	Depressior	ns (F8)		Other (Ex	plain in Remarks)	
	lucky Peat or Peat		-					hydrophytic vegetation and	
5 cm Mu	cky Peat or Peat (S	3) (LRR F)	(ML	RA 72 & 7	'3 of LRR	H)		ydrology must be present,	
							unless dis	sturbed or problematic.	
Restrictive I	_ayer (if present):								
Туре:									,
Depth (ind	ches):		-				Hydric Soil Pr	esent? Yes No 🔽	
Remarks:									
No indic	ators are me	h t							
		<i>,</i>							
	CV.								
HYDROLO									
Wetland Hye	drology Indicators	:							
Primary Indic	ators (minimum of	one required; ch	eck all that apply	y)			Secondary	Indicators (minimum of two requir	red)
Surface	Water (A1)		Salt Crust	(B11)			Surfac	e Soil Cracks (B6)	
High Wa	ter Table (A2)		Aquatic Inv	/ertebrate	s (B13)		Sparse	ly Vegetated Concave Surface (B	38)
<u> </u>	on (A3)		Hydrogen	Sulfide Oc	lor (C1)		Draina	ge Patterns (B10)	
Water M	arks (B1)		Dry-Seaso	n Water T	able (C2)		Oxidize	ed Rhizospheres on Living Roots	(C3)
Sedimer	nt Deposits (B2)		Oxidized R	Rhizosphei	res on Liv	ing Roots	(C3) (whe	re tilled)	
Drift Dep	oosits (B3)		(where r	not tilled)			Crayfis	h Burrows (C8)	
Algal Ma	it or Crust (B4)		Presence	of Reduce	d Iron (C4	ł)	Satura	tion Visible on Aerial Imagery (C9	<i>i</i>)
Iron Dep	osits (B5)		Thin Muck	Surface (C7)		Geomo	orphic Position (D2)	
Inundatio	on Vis ble on Aerial	Imagery (B7)	Other (Exp	lain in Re	marks)		FAC-N	eutral Test (D5)	
Water-S	tained Leaves (B9)						Frost-H	leave Hummocks (D7) (LRR F)	
Field Obser	vations:								
Surface Wate	er Present?	res No	✓ Depth (ind	ches):		_			
Water Table			 Depth (ind 						
Saturation P			✓ Depth (ind				land Hydrology P	resent? Yes No	/
(includes cap	oillary fringe)							NO	
	corded Data (stream	n gauge, monito	ring well, aerial p	photos, pre	evious ins	pections),	, if available:		
Remarks:									
No :	atore are me								
	ators are me	÷l.							

Project/Site: Ripley Energy Center	_ City/County:	Payne County	Sampling Date:	2023-07-26
Applicant/Owner: Associated Electric Cooperative, Inc.		State: Oklahoma	Sampling Point:	SP-16
Investigator(s): S. Stewart, C. Rogers	_ Section, Tow	nship, Range: S23 T19N R3E		
Landform (hillslope, terrace, etc.): Depression		concave, convex, none): Concave	e Slo	ope (%): 0
Subregion (LRR): H80A Lat: 3	6.105569	Long: -96.944525	Datu	Im: NAD 83
Soil Map Unit Name: 62 - Mulhall Ioam, 3 to 5 percent slope:	s, gullied	NWI classifica	ation: N/A	
Are climatic / hydrologic conditions on the site typical for this time of y	/ear?Yes 🛃	, No (If no, explain in Re	emarks.)	
Are Vegetation, Soil, or Hydrology significant	y disturbed?	Are "Normal Circumstances" p	resent?Yes	/ No
Are Vegetation, Soil, or Hydrology naturally p	roblematic?	(If needed, explain any answer	s in Remarks.)	
SUMMARY OF FINDINGS – Attach site map showin	g sampling	point locations, transects,	, important fe	atures, etc.

Hydrophytic Vegetation Present?	Yes 🖌	No	Is the Sampled Area		
Hydric Soil Present?	Yes 🖌	No	within a Wetland?	Yes 🗸	No
Wetland Hydrology Present?	Yes 🖌	No		163	
Remarks:					

Wetland sample plot within PEM W-15. The USACE Antecedent Precipitation Tool indicates wetter than normal climatic conditions three months prior to survey.

VEGETATION – Use scientific names of plants.

00 th n	Absolute	Dominant		Dominance Test worksheet:
Tree Stratum (Plot size: <u>30 ft r</u>)		Species?		Number of Dominant Species
1				That Are OBL, FACW, or FAC (A)
2				(excluding FAC-): 2 (A)
3				Total Number of Dominant
4				Species Across All Strata: <u>2</u> (B)
		= Total Co		Percent of Dominant Species
Sapling/Shrub Stratum (Plot size: 15 ft r)				That Are OBL, FACW, or FAC: <u>100</u> (A/B)
1				
2				Prevalence Index worksheet:
3				Total % Cover of:Multiply by:
4				OBL species 0 $x = 0$
				FACW species 25 x 2 = 50
5				FAC species <u>60</u> x 3 = <u>180</u>
Herb Stratum (Plot size: 5 ft r)		= Total Co	ver	FACU species 0 x 4 = 0
1. Cyperus echinatus	60	~	FAC	UPL species 0 x 5 = 0
2. Eleocharis compressa	20	~	FACW	Column Totals: 85 (A) 230 (B)
- Juncus marginatus	5		FACW	(-)
4				Prevalence Index = B/A = 2.71
				Hydrophytic Vegetation Indicators:
5				1 - Rapid Test for Hydrophytic Vegetation
6				✓ 2 - Dominance Test is >50%
7				3 - Prevalence Index is ≤3.0 ¹
8				4 - Morphological Adaptations ¹ (Provide supporting
9				data in Remarks or on a separate sheet)
10				Problematic Hydrophytic Vegetation ¹ (Explain)
20 ft r	85%	= Total Cov	ver	
Woody Vine Stratum (Plot size: 30 ft r)				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
1				
2				Hydrophytic
% Bare Ground in Herb Stratum 15.0		= Total Co	ver	Vegetation Present? Yes <u>V</u> No
Remarks:				•
Dominance Test is passed.				
-				
See Photo C-16.				

Profile Desc	ription: (Describ	e to the dep				or confirr	n the absence of i	ndicators.)	
Depth (inches)	Matrix Color (moist)	%	Rec Color (moist)	lox Feature %	es Type ¹	Loc ²	Texture	Remarks	
<u>(incries)</u> 0 - 20	10YR 3/2	<u>%</u> 60	7.5YR 4/4	40	C	<u> </u>	Sandy Clay Loam	NGIIIAINƏ	
-	10111012			<u></u>					
						·			
-					<u> </u>				
-						<u> </u>			
-									
-									
-									
-									
¹ Type: C=Co	oncentration, D=De	epletion, RM	=Reduced Matrix, (CS=Covere	d or Coat	ed Sand G	rains. ² Locatio	n: PL=Pore Lining, M=Matrix.	
			LRRs, unless oth					Problematic Hydric Soils ³ :	
Histosol	· /		Sandy	Gleyed Ma	atrix (S4)		1 cm Muck	(A9) (LRR I, J)	
	oipedon (A2)			Redox (S				rie Redox (A16) (LRR F, G, H)	
Black Hi	()			ed Matrix (ce (S7) (LRR G)	
	n Sulfide (A4) Layers (A5) (LRF	7 F		y Mucky Mi y Gleyed M				s Depressions (F16) outside of MLRA 72 & 73)	
	ick (A9) (LRR F, G			ted Matrix (• •		Reduced V	,	
	Below Dark Surfa			Dark Surf				t Material (TF2)	
	ark Surface (A12)			ted Dark Si)		ow Dark Surface (TF12)	
	lucky Mineral (S1)				· · ·	- 4 0)	Other (Explain in Remarks)		
	/lucky Peat or Pea icky Peat or Peat (Plains Depr ILRA 72 &	•			ydrophytic vegetation and drology must be present,	
5 cm Mc	icky i eat of i eat (55) (ERR I)	(14			、 11)	-	urbed or problematic.	
Restrictive I	_ayer (if present):								
Туре:									
Depth (ind	ches):						Hydric Soil Pre	sent? Yes 🖌 No	
Remarks:									
Indicato	r F6 is met.								
maioato									
HYDROLO	GY								
Wetland Hy	drology Indicator	s:							
Primary Indic	cators (minimum of	one require	d; check all that ap	ply)			Secondary Ir	ndicators (minimum of two required)	
Surface	Water (A1)		Salt Crus	st (B11)			Surface	Soil Cracks (B6)	
High Wa	iter Table (A2)		Aquatic	nvertebrate	es (B13)		Sparsely	y Vegetated Concave Surface (B8)	
Saturatio			Hydroge	n Sulfide O	dor (C1)		Drainage	e Patterns (B10)	
	arks (B1)		-	son Water				d Rhizospheres on Living Roots (C3)	
	nt Deposits (B2)			Rhizosphe		ing Roots		e tilled)	
-	posits (B3)			e not tilled			-	Burrows (C8)	
	at or Crust (B4)			e of Reduc		4)		on Visible on Aerial Imagery (C9)	
	oosits (B5) on Vis ble on Aeria	l Imagony (P		ck Surface xplain in Re				phic Position (D2) utral Test (D5)	
	tained Leaves (B9				entarks)			eave Hummocks (D7) (LRR F)	
Field Obser)							
Surface Wate		Yes	No <u> </u>	inches):					
Water Table			No <u>V</u> Depth (
Saturation P			No <u>V</u> Depth (land Hydrology Pr	esent? Yes 🖌 No	
(includes cap	oillary fringe)								
Describe Re	corded Data (strea	m gauge, mo	onitoring well, aeria	li pnotos, p	revious in	spections),	it available:		
Pomorka									
Remarks:									

Indicators C8, D2, and D5 are met.

Project/Site: Ripley Energy Center	City/County:	Payne County	Sampling Date: 2023-07-26					
Applicant/Owner: Associated Electric Cooperative, Inc.		State: Oklahoma	Sampling Point: SP-17					
Investigator(s): S. Stewart, C. Rogers	Section, Tov	vnship, Range: S23 T19N R3E						
Landform (hillslope, terrace, etc.): Sideslope		(concave, convex, none): None	Slope (%): <u>5</u>					
Subregion (LRR): H80A Lat: 3	6.105546	Long: -96.944583	Datum: NAD 83					
Soil Map Unit Name: 62 - Mulhall Ioam, 3 to 5 percent slopes	s, gullied	NWI classific	ation: N/A					
Are climatic / hydrologic conditions on the site typical for this time of y	/ear?Yes	No (If no, explain in R	emarks.)					
Are Vegetation, Soil, or Hydrology significantl	y disturbed?	Are "Normal Circumstances" p	oresent? Yes 🖌 No					
Are Vegetation, Soil, or Hydrology naturally p	roblematic?	(If needed, explain any answe	rs in Remarks.)					
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.								
Hydronhytic Vegetation Present? Yes No 🗸								

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes Yes Yes	No No No	, ,	Is the Sampled Area within a Wetland?	Yes	No 🖌
Remarks:						

Upland sample plot adjacent to PEM W-15. The USACE Antecedent Precipitation Tool indicates wetter than normal climatic conditions three months prior to survey.

VEGETATION – Use scientific names of plants.

00 th r	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: <u>30 ft r</u>)	<u>% Cover</u>	Species?	Status	Number of Dominant Species
1				That Are OBL, FACW, or FAC (A)
2				(excluding FAC-): 0 (A)
3				Total Number of Dominant
4				Species Across All Strata: 1 (B)
		= Total Cov		Percent of Dominant Species
Sapling/Shrub Stratum (Plot size: 15 ft r)				That Are OBL, FACW, or FAC: 0 (A/B)
1				
2				Prevalence Index worksheet:
3				Total % Cover of:Multiply by:
4				OBL species 0 $x = 0$
5				FACW species 0 x 2 = 0
· · · · · · · · · · · · · · · · · · ·		= Total Cov		FAC species 0 x 3 = 0
Herb Stratum (Plot size: 5 ft r)				FACU species <u>10</u> x 4 = <u>40</u>
1. Hexasepalum teres	60	~	UPL	UPL species 63 x 5 = 315
2 Andropogon gerardii	10		FACU	Column Totals: 73 (A) 355 (B)
3 Juniperus virginiana	3		UPL	
4				Prevalence Index = $B/A = 4.86$
				Hydrophytic Vegetation Indicators:
5				1 - Rapid Test for Hydrophytic Vegetation
6				2 - Dominance Test is >50%
7				3 - Prevalence Index is $\leq 3.0^{1}$
8				4 - Morphological Adaptations ¹ (Provide supporting
9				data in Remarks or on a separate sheet)
10				Problematic Hydrophytic Vegetation ¹ (Explain)
\mathbf{x}_{i}	73%	= Total Cov	/er	
Woody Vine Stratum (Plot size: 30 ft r)				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
1				
2				Hydrophytic
% Bare Ground in Herb Stratum 27.0		= Total Cov	ver	Vegetation Present? Yes <u>No</u>
Remarks:				<u> </u>
No test is passed.				
See Photo C-17.				

Profile Desc	cription: (Describe	to the depth n	eeded to docur	nent the i	ndicator	or confirn	n the absence of i	ndicators.)
Depth	Matrix			x Feature	1			
(inches)	Color (moist)		Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0 - 5	10YR 4/4	100					Sandy Loam	
-								
-								
-								
_								
							<u> </u>	
-								
-								
	oncentration, D=De					ed Sand Gi		n: PL=Pore Lining, M=Matrix.
Hydric Soil	Indicators: (Applie	cable to all LRR	s, unless othe	rwise not	ed.)		Indicators for	Problematic Hydric Soils ³ :
Histosol	()		Sandy (-				a (A9) (LRR I, J)
	pipedon (A2)		Sandy F					rie Redox (A16) (LRR F, G, H)
	istic (A3) en Sulfide (A4)			d Matrix (S Mucky Mir	,			ce (S7) (LRR G) s Depressions (F16)
	d Layers (A5) (LRR	F)	-	Gleyed Ma			-	outside of MLRA 72 & 73)
	uck (A9) (LRR F, G,			d Matrix (I			Reduced V	,
	d Below Dark Surfa			Dark Surfa	,		Red Paren	t Material (TF2)
Thick Da	ark Surface (A12)			d Dark Su	• • •)		ow Dark Surface (TF12)
	/lucky Mineral (S1)			Depressio	```			lain in Remarks)
	Mucky Peat or Peat		-	ains Depre				ydrophytic vegetation and
5 CM IVIL	ucky Peat or Peat (S	53) (LRR F)		RA 72 & 7	3 OF LRR	H)	-	drology must be present, urbed or problematic.
Restrictive	Layer (if present):							dibed of problematic.
	ompact Soil							
Depth (in							Hydric Soil Pre	sent? Yes No 🖌
Remarks:			-					
	toro oro mot F	voovotion h		nrovon	tod by		t aail Multipla	locations attempted
NO INDICA	lors are met. E	xcavation be	elow 5 was	preven	ted by	compac	t soll. Multiple	locations attempted.
HYDROLO	GY							
Wetland Hy	drology Indicators	:						
Primary India	cators (minimum of	one required; ch	eck all that appl	y)			Secondary Ir	ndicators (minimum of two required)
Surface	Water (A1)		Salt Crust	(B11)			Surface	Soil Cracks (B6)
v	ater Table (A2)		Aquatic In		. ,		Sparsely	Vegetated Concave Surface (B8)
Saturatio			Hydrogen					e Patterns (B10)
Water N			Dry-Seaso					d Rhizospheres on Living Roots (C3)
	nt Deposits (B2)		Oxidized F			ing Roots		e tilled)
-	posits (B3)		· ·	not tilled)			-	Burrows (C8)
-	at or Crust (B4)		Presence			1)		on Visible on Aerial Imagery (C9)
Iron Dep			Thin Muck	`	,			phic Position (D2)
	on Vis ble on Aerial	Imagery (B7)	Other (Exp	plain in Re	marks)			utral Test (D5)
	tained Leaves (B9)						Frost-He	eave Hummocks (D7) (LRR F)
Field Obser				-1				
Surface Wat		Yes No _						
Water Table		Yes No _						
Saturation P (includes cap	resent?	Yes No _	Depth (in	ches):		Wetl	and Hydrology Pr	esent? Yes No
Describe Re	corded Data (stream	n gauge, monito	ring well, aerial	photos, pr	evious ins	pections),	if available:	
Remarks:								
No indi-	atora ara ma	` +						
	ators are me	Ξ ι.						

Project/Site: Ripley Energy Center	City/County: Payne	County	Sampling Date: 2023-07-26
Applicant/Owner: Associated Electric Cooperative, Inc.		State: Oklahoma	Sampling Point: SP-18
Investigator(s): S. Stewart, C. Rogers	Section, Township, R	ange: S23 T19N R3E	
Landform (hillslope, terrace, etc.): Depression		e, convex, none): Concave	Slope (%): 0
Subregion (LRR): H80A Lat: 36	3.105504	Long: <u>-96.954414</u>	Datum: NAD 83
Soil Map Unit Name: GAMD - Grainola-Ashport frequently flooded-Mu	Ihall complex, 0 to 8 pe	ercent slopes NWI classifica	ation: PUSAh
Are climatic / hydrologic conditions on the site typical for this time of ye	ear?Yes 🖌 No	(If no, explain in Re	emarks.)
Are Vegetation, Soil, or Hydrology significantly	disturbed? Are	e "Normal Circumstances" p	resent? Yes 🖌 No
Are Vegetation, Soil, or Hydrology naturally pr	oblematic? (If	needed, explain any answer	s in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing	y sampling point	locations, transects,	important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes <u> Ves No</u> Yes No Yes No	Is the Sampled Area within a Wetland?	Yes 🖌	No
Remarks:				

Wetland sample plot within PEM W-16. The USACE Antecedent Precipitation Tool indicates wetter than normal climatic conditions three months prior to survey.

VEGETATION – Use scientific names of plants.

00 th n	Absolute			Dominance Test worksheet:
Tree Stratum (Plot size: <u>30 ft r</u>)	% Cover	Species?	Status	Number of Dominant Species
1				That Are OBL, FACW, or FAC (A) (A)
2				(excluding FAC-): $\underline{2}$ (A)
3				Total Number of Dominant
4				Species Across All Strata: <u>2</u> (B)
		= Total Cov	/er	Percent of Dominant Species
Sapling/Shrub Stratum (Plot size: 15 ft r)				That Are OBL, FACW, or FAC: <u>100</u> (A/B)
1				
2				Prevalence Index worksheet:
3				Total % Cover of: Multiply by:
4				OBL species <u>80</u> x 1 = <u>80</u>
5				FACW species 0 x 2 = 0
···		= Total Cov	/er	FAC species $0 \times 3 = 0$
Herb Stratum (Plot size: 5 ft r		- 10101 001		FACU species $0 x 4 = 0$
1. Typha angustifolia	60	~	OBL	UPL species $0 \times 5 = 0$
2. Schoenoplectus acutus	20	~	OBL	Column Totals: 80 (A) 80 (B)
3.				
4				Prevalence Index = B/A = 1.0
5				Hydrophytic Vegetation Indicators:
				1 - Rapid Test for Hydrophytic Vegetation
6				2 - Dominance Test is >50%
7				3 - Prevalence Index is $≤3.0^{1}$
8				4 - Morphological Adaptations ¹ (Provide supporting
9				data in Remarks or on a separate sheet)
10				Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size: 30 ft r)	80%	= Total Cov	/er	¹ Indicators of hydric soil and wetland hydrology must
				be present, unless disturbed or problematic.
1				
2				Hydrophytic Vegetation
% Bare Ground in Herb Stratum 20.0		= Total Cov	/er	Present? Yes <u>V</u> No
Remarks:				
Rapid Test is passed.				
See Photo C-18.				

Profile Desc	ription: (Descril	be to the de	pth needed to doc	ument the	indicator	or confirm	m the absence of ir	ndicators.)
Depth	Matrix	(Re	dox Feature	es			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0 - 22	10YR 6/1	60	5YR 4/4	40	C	М	Clay	
-								
-								
							·	
							·	
			<u> </u>				·	
-							· ·	
-								
-							· <u> </u>	
1 T urney 0-0		anlation D					21	e. D Deve Lining M-Metric
			M=Reduced Matrix, II LRRs, unless oth			ed Sand G		n: PL=Pore Lining, M=Matrix. Problematic Hydric Soils ³ :
-		ilicable to a						•
<u> </u>	pipedon (A2)			y Gleyed M y Redox (S				(A9) (LRR I, J) ie Redox (A16) (LRR F, G, H)
-	stic (A3)			bed Matrix (ce (S7) (LRR G)
	en Sulfide (A4)			y Mucky Mi				Depressions (F16)
•	d Layers (A5) (LR	RF)		y Gleyed M				outside of MLRA 72 & 73)
1 cm Mu	ick (A9) (LRR F, 0	G, H)		eted Matrix (Reduced V	ertic (F18)
·	d Below Dark Surf	. ,	Redo	x Dark Surf	ace (F6)			t Material (TF2)
	ark Surface (A12)			eted Dark S)		ow Dark Surface (TF12)
	lucky Mineral (S1	,		x Depressio	• •	10		lain in Remarks)
	Aucky Peat or Pea			Plains Depr				vdrophytic vegetation and
5 CM ML	icky Peat or Peat	(53) (LRR F	·) (n	/ILRA 72 &	73 OF LRF	(н)		drology must be present, urbed or problematic.
Restrictive	Layer (if present)							
	ches):						Hydric Soil Bro	sent? Yes 🖌 No
Remarks:							Tryunc Son Fres	
Indicato	r F3 is met.							
HYDROLO	GY							
	drology Indicato	rs:						
-			ed; check all that ap	volv)			Secondary Ir	dicators (minimum of two required)
<u>✓</u> Surface	-	<u>n one requir</u>	Salt Cru					Soil Cracks (B6)
	iter Table (A2)			Invertebrate	oc (P13)			Vegetated Concave Surface (B8)
Saturatio			Aqualic Hydroge					e Patterns (B10)
	larks (B1)		Dry-Sea					Rhizospheres on Living Roots (C3)
	nt Deposits (B2)		Oxidized		. ,			e tilled)
	posits (B3)			e not tilled		ing Roots		Burrows (C8)
-	at or Crust (B4)			e of Reduc		1)		on Visible on Aerial Imagery (C9)
	osits (B5)		Thin Mu			+)		phic Position (D2)
-	on Vis ble on Aeri	al Imagery (utral Test (D5)
	tained Leaves (B							ave Hummocks (D7) (LRR F)
Field Obser		- /						
Surface Wat		Yes 🗸	No Depth	(inches) 3				
Water Table			No Depth			_		
Saturation P			No Depth			Wet	land Hydrology Pr	esent? Yes 🖌 No
(includes cap	oillary fringe)							
Deceribe De	corded Data (stre	am gauge, r	nonitoring well, aeria	al photos, p	revious ins	spections)	, if available:	

Remarks:

Indicators A1, A2, A3, B10, D2, and D5 are met.

SUMMARY OF FINDINGS – Attach site map showing	g sampling point locat	ions, transects, impo	ortant features, etc.
Are Vegetation, Soil, or Hydrology naturally pr	oblematic? (If needed,	, explain any answers in Re	emarks.)
Are Vegetation, Soil, or Hydrology significantly	y disturbed? Are "Norm	al Circumstances" present?	?Yes 🖌 No
Are climatic / hydrologic conditions on the site typical for this time of y	ear? Yes 🖌 No	(If no, explain in Remarks	.)
Soil Map Unit Name: GAMD - Grainola-Ashport frequently flooded-Mu	Ihall complex, 0 to 8 percent s	lopes NWI classification:	N/A
Subregion (LRR): H80A Lat: 36	6.105416 Long	_{g:} -96.954777	Datum: NAD 83
Landform (hillslope, terrace, etc.): Sideslope	_ Local relief (concave, conve		Slope (%): <u>5</u>
Investigator(s): S. Stewart, C. Rogers	Section, Township, Range:	S23 T19N R3E	-
Applicant/Owner: Associated Electric Cooperative, Inc.		State: Oklahoma Sampli	
Project/Site: Ripley Energy Center	City/County: Payne Count	y Sampl	ing Date: 2023-07-26

Hydrophytic Vegetation Present?	Yes	No 🖌	Is the Sampled Area		
Hydric Soil Present?	Yes	No 🖌	within a Wetland?	Yes	No 🖌
Wetland Hydrology Present?	Yes	No 🖌		163	
Remarks:					

Upland sample plot adjacent to PEM W-16. The USACE Antecedent Precipitation Tool indicates wetter than normal climatic conditions three months prior to survey.

VEGETATION – Use scientific names of plants.

20.4 -	Absolute	Dominant		Dominance Test worksheet:
Tree Stratum (Plot size: <u>30 ft r</u>)		Species?		Number of Dominant Species
1				That Are OBL, FACW, or FAC (A)
2				(excluding FAC-): 0 (A)
3				Total Number of Dominant
4				Species Across All Strata: <u>2</u> (B)
		= Total Cov	/er	Percent of Dominant Species
Sapling/Shrub Stratum (Plot size: 15 ft r)				That Are OBL, FACW, or FAC: 0 (A/B)
1				Describer on the description of the set
2				Prevalence Index worksheet:
3				Total % Cover of: Multiply by:
4				OBL species 0 x 1 = 0
5				FACW species <u>0</u> x 2 = <u>0</u>
		= Total Cov	/er	FAC species $0 x 3 = 0$
Herb Stratum (Plot size: 5 ft r)				FACU species 80 x 4 = 320
1. Andropogon gerardii	60	~	FACU	UPL species <u>0</u> x 5 = <u>0</u>
2. Ambrosia artemisiifolia	20	~	FACU	Column Totals: 80 (A) 320 (B)
3.				
4				Prevalence Index = B/A = 4.0
5				Hydrophytic Vegetation Indicators:
6				1 - Rapid Test for Hydrophytic Vegetation
				2 - Dominance Test is >50%
7				3 - Prevalence Index is $≤3.0^{1}$
8				4 - Morphological Adaptations ¹ (Provide supporting
9				data in Remarks or on a separate sheet)
10	0.00/			Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size: 30 ft r)	80%	= Total Cov	/er	¹ Indicators of hydric soil and wetland hydrology must
				be present, unless disturbed or problematic.
1				
2				Hydrophytic Vegetation
% Bare Ground in Herb Stratum 20.0		= Total Cov	/er	Present? Yes No 🖌
Remarks:				1
No toot is passed				
No test is passed.				
See Photo C-19.				

SO	L
----	---

	cription: (Describe	to the depth ne				or confirm	n the absence of i	ndicators.)
Depth (inch ac)	Matrix	% Co		x Features	1	Loc ²	Tautura	Demerke
(inches)	Color (moist)		olor (moist)	%	Type'	LOC	Texture	Remarks
0 - 10	7.5YR 3/4	100					Sandy Loam	
-								
-								
-								
-								
						<u> </u>		
-							·	
	oncentration, D=Dep					d Sand G		n: PL=Pore Lining, M=Matrix.
-	Indicators: (Applic	able to all LRRs						Problematic Hydric Soils ³ :
Histosol	(A1) pipedon (A2)		Sandy (Redox (S5				: (A9) (LRR I, J) rie Redox (A16) (LRR F, G, H)
-	istic (A3)			d Matrix (S				ce (S7) (LRR G)
	en Sulfide (A4)			Mucky Mir	,			s Depressions (F16)
	d Layers (A5) (LRR	F)		Gleyed Ma	. ,		-	outside of MLRA 72 & 73)
	uck (A9) (LRR F, G,			d Matrix (I	,		Reduced V	
	d Below Dark Surfac	e (A11)		Dark Surfa	. ,			t Material (TF2)
	ark Surface (A12) /lucky Mineral (S1)			d Dark Su Depressior	• • •			ow Dark Surface (TF12) Iain in Remarks)
	Mucky Peat or Peat ((S2) (L RR G. H)		ains Depre	()	16)		ydrophytic vegetation and
	icky Peat or Peat (S		-	RA 72 & 7				drology must be present,
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						urbed or problematic.
	Layer (if present):							
<u> </u>	ompact Soil							
Depth (in	ches): <u>10</u>						Hydric Soil Pre	sent? Yes No
Remarks:								
No indica	tors are met. E>	cavation bel	ow 10" wa	s prevei	nted by	compa	ct soil. Multiple	e locations attempted.
HYDROLO	GY							
Wetland Hy	drology Indicators:							
-	cators (minimum of o		ck all that appl	y)			Secondary Ir	ndicators (minimum of two required)
Surface	Water (A1)		Salt Crust	(B11)			Surface	Soil Cracks (B6)
	ater Table (A2)		Aquatic In		s (B13)			Vegetated Concave Surface (B8)
Saturatio	on (A3)		Hydrogen	Sulfide Od	dor (C1)		Drainag	e Patterns (B10)
Water M	larks (B1)		Dry-Seaso	on Water T	able (C2)		Oxidized	Rhizospheres on Living Roots (C3)
Sedimer	nt Deposits (B2)		Oxidized F	Rhizosphe	res on Liv	ing Roots	(C3) (where	e tilled)
Drift Dep	posits (B3)		(where	not tilled)			Crayfish	Burrows (C8)
	at or Crust (B4)		Presence			+)		on Visible on Aerial Imagery (C9)
Iron Dep			Thin Muck					phic Position (D2)
	on Vis ble on Aerial	Imagery (B7)	Other (Exp	plain in Re	marks)			utral Test (D5)
	tained Leaves (B9)						Frost-He	eave Hummocks (D7) (LRR F)
Field Obser		x						
Surface Wat		′es No						
Water Table		′es No						
Saturation P (includes cap		′es No	Depth (in	ches):		Wetl	land Hydrology Pr	esent? Yes No
	corded Data (stream	gauge, monitori	ng well, aerial	photos, pr	evious ins	pections),	if available:	
Remarks:								
No india	atora ara ma	.						
	ators are me	ε.						

Project/Site: Ripley Energy Center	City/County: Payn	e County	Sampling Date: 2023-07-26			
Applicant/Owner: Associated Electric Cooperative, Inc.		State: Oklahoma	Sampling Point: SP-20			
Investigator(s): S. Stewart, C. Rogers	Section, Township,	Range: S16 T19N R3E				
Landform (hillslope, terrace, etc.): Depression		ve, convex, none): Concave	e Slope (%): 0			
Subregion (LRR): H 80A Lat: 30	6.117725	Long: -96.989751	Datum: NAD 83			
Soil Map Unit Name: MulC - Mulhall Ioam, 3 to 5 percent slop	bes	NWI classific	ation: N/A			
Are climatic / hydrologic conditions on the site typical for this time of year? Yes <u>V</u> No (If no, explain in Remarks.)						
Are Vegetation, Soil, or Hydrology significantly	y disturbed?	Are "Normal Circumstances" p	resent? Yes 🖌 No			
Are Vegetation, Soil, or Hydrology naturally p	roblematic? (lf needed, explain any answei	rs in Remarks.)			
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.						
Hydrophytic Vegetation Present? Yes <u>V</u> No	Is the Sam	bled Area				

Hydric Soil Present?	Yes 🔽 No	within a Wetland?	Yes 🖌	No
Wetland Hydrology Present?	Yes 🦯 No		103	
Remarks:		·		

Wetland sample plot within PEM W-19. The USACE Antecedent Precipitation Tool indicates wetter than normal climatic conditions three months prior to survey.

VEGETATION – Use scientific names of plants.

00 th n	Absolute	Dominant		Dominance Test worksheet:
Tree Stratum (Plot size: <u>30 ft r</u>)		Species?		Number of Dominant Species
1				That Are OBL, FACW, or FAC (excluding $FAC = 1$): 2 (A)
2				(excluding FAC-): $\underline{2}$ (A)
3				Total Number of Dominant
4				Species Across All Strata: <u>2</u> (B)
		= Total Cov		Percent of Dominant Species
Sapling/Shrub Stratum (Plot size: 15 ft r)				That Are OBL, FACW, or FAC: <u>100</u> (A/B)
1				
2				Prevalence Index worksheet:
3				Total % Cover of:Multiply by:
4				OBL species 20 x 1 = 20
				FACW species <u>60</u> x 2 = <u>120</u>
5		- Total Ca		FAC species $0 x 3 = 0$
Herb Stratum (Plot size: 5 ft r)		= Total Cov	/er	FACU species $5 x 4 = 20$
1. Mecardonia acuminata	60	~	FACW	UPL species $0 \times 5 = 0$
2. Eleocharis obtusa	20	 ✓ 	OBL	Column Totals: <u>85</u> (A) <u>160</u> (B)
3. Andropogon gerardii	5		FACU	
4				Prevalence Index = B/A = 1.88
				Hydrophytic Vegetation Indicators:
5				 1 - Rapid Test for Hydrophytic Vegetation
6				2 - Dominance Test is >50%
7				3 - Prevalence Index is $≤3.0^1$
8				4 - Morphological Adaptations ¹ (Provide supporting
9			<u> </u>	data in Remarks or on a separate sheet)
10				Problematic Hydrophytic Vegetation ¹ (Explain)
20 ft r	85%	= Total Cov	/er	The discharge of the data and the data data to see as well
Woody Vine Stratum (Plot size: 30 ft r)				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
1			<u> </u>	
2				Hydrophytic
% Bare Ground in Herb Stratum 15.0		= Total Cov	/er	Vegetation Present? Yes <u>Ves</u> No
Remarks:				
Rapid Test is passed.				
See Photo C-20.				

US Army Corps of Engineers

SOIL

Depth	Matrix			ox Featur	es		n the absence o	n multators.
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0 - 6	5YR 5/2	60	2.5YR 4/8	40	С	М	Clay	
6 - 22	2.5YR 4/6	90	10YR 8/2	10	D	Μ	Clay	
-								
-								
							. <u> </u>	
							·	
							. <u> </u>	
-							. <u></u>	
			Reduced Matrix, C			ed Sand G		tion: PL=Pore Lining, M=Matrix.
-		cable to all	LRRs, unless othe					or Problematic Hydric Soils ³ :
Histosol	(A1) pipedon (A2)		Sandy	Gleyed N Redox (S				ıck (A9) (LRR I, J) rairie Redox (A16) (LRR F, G, H)
	istic (A3)			ed Matrix (rface (S7) (LRR G)
	en Sulfide (A4)				ineral (F1)		nins Depressions (F16)
	d Layers (A5) (LRR	F)		•	latrix (F2)		-	Houtside of MLRA 72 & 73)
	uck (A9) (LRR F, G		Deplete		. ,			d Vertic (F18)
	d Below Dark Surfa	ce (A11)		Dark Sur				ent Material (TF2)
	ark Surface (A12) /lucky Mineral (S1)		Depleti		urface (F7	()	·	allow Dark Surface (TF12) Explain in Remarks)
	Mucky Peat or Peat	(S2) (LRR (F16)	· · ·	f hydrophytic vegetation and
	ucky Peat or Peat (73 of LR			hydrology must be present,
							unless d	listurbed or problematic.
Restrictive	Layer (if present):							
Туре:								.4
Depth (in	ches):						Hydric Soil P	Present? Yes 🥙 No
Remarks:								
Indicators	s F3 and TF2 a	re met. P	robable source	e of red	parent	materia	l is red Permi	an sandstones or shales
found in N	/LRA 80A - Ce	entral Rol	ling Red Prairie	es.				
HYDROLO	GY							
Wetland Hy	drology Indicators	:						
Primary Indi	cators (minimum of	one require	d; check all that app	oly)			Secondary	y Indicators (minimum of two required)
Surface	Water (A1)		Salt Crus	t (B11)			Surfa	ce Soil Cracks (B6)
High Wa	ater Table (A2)		Aquatic Ir		. ,		Spars	ely Vegetated Concave Surface (B8)
Saturati	. ,		Hydroger					age Patterns (B10)
Water N			Dry-Seas					zed Rhizospheres on Living Roots (C3)
	nt Deposits (B2)		Oxidized			ving Roots		ere tilled)
	posits (B3)			not tilled			-	ish Burrows (C8)
-	at or Crust (B4)		Presence			,4)		ation Visible on Aerial Imagery (C9) norphic Position (D2)
	oosits (B5) on Vis ble on Aerial	Imagery (B	Thin Muc 7) Other (Ex					Neutral Test (D5)
	itained Leaves (B9)				emarks)			Heave Hummocks (D7) (LRR F)
Field Obser	()							
Surface Wat		Yes	No 🔽 Depth (ir	nches):				
Water Table			No 🔽 Depth (ir					
Saturation P			No <u> </u>				land Hydrology	Present? Yes 🖌 No
(includes ca	oillary fringe)							
Describe Re	corded Data (strear	m gauge, mo	onitoring well, aerial	photos, p	previous in	spections),	, it available:	
Dama								
Remarks:								
Indicato	rs C8, D2, a	nd D5 a	re met.					
	-							

Project/Site: Ripley Energy Center	_ City/County: Payne County Sampling Date: 2023-07-26					
Applicant/Owner: Associated Electric Cooperative, Inc.	State: Oklahoma Sampling Point: SP-21					
Investigator(s): S. Stewart, C. Rogers	_ Section, Township, Range: S16 T19N R3E					
Landform (hillslope, terrace, etc.): Sideslope	Local relief (concave, convex, none): <u>None</u> Slope (%): <u>3</u>					
Subregion (LRR): H 80A Lat: 30	86.117781 Long: -96.989772 Datum: NAD 83					
Soil Map Unit Name: MulC - Mulhall Ioam, 3 to 5 percent slop	ppes NWI classification: N/A					
Are climatic / hydrologic conditions on the site typical for this time of y	year? Yes 🗹 No (If no, explain in Remarks.)					
Are Vegetation, Soil, or Hydrology significantl	tly disturbed? Are "Normal Circumstances" present? Yes <u>/</u> No					
Are Vegetation, Soil, or Hydrology naturally p	problematic? (If needed, explain any answers in Remarks.)					
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.						
Hydrophytic Vegetation Present? Yes No Hydric Soil Present? Yes No	 Is the Sampled Area within a Wetland? Yes No 					

Wetland Hydrology Present?	Yes	No	
Remarks:			
Upland sample plot adjacent	to PEM W-	-19. The USACE	Antecedent Precipitation Tool indicates wetter than

normal climatic conditions three months prior to survey.

VEGETATION – Use scientific names of plants.

20.1	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: <u>30 ft r</u>)	% Cover	Species?	Status	Number of Dominant Species
1				That Are OBL, FACW, or FAC
2				(excluding FAC-): 0 (A)
3				Total Number of Dominant
4				Species Across All Strata: <u>2</u> (B)
		= Total Cov		Percent of Dominant Species
Sapling/Shrub Stratum (Plot size: 15 ft r)				That Are OBL, FACW, or FAC: 0.00 (A/B)
1				
2				Prevalence Index worksheet:
3				Total % Cover of: Multiply by:
4				OBL species 0 x 1 = 0
5				FACW species 0 x 2 = 0
0		= Total Cov		FAC species $0 x 3 = 0$
Herb Stratum (Plot size: 5 ft r)	<u> </u>			FACU species <u>15</u> x 4 = <u>60</u>
1. Bouteloua gracilis	20	~	UPL	UPL species 20 x 5 = 100
2 Digitaria sanguinalis	15	~	FACU	Column Totals: 35 (A) 160 (B)
3				Prevalence Index = B/A =
5				Hydrophytic Vegetation Indicators:
				1 - Rapid Test for Hydrophytic Vegetation
6				2 - Dominance Test is >50%
7				3 - Prevalence Index is $≤3.0^1$
8				4 - Morphological Adaptations ¹ (Provide supporting
9				data in Remarks or on a separate sheet)
10	0.5			Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size: 30 ft r)	35	= Total Cov	/er	¹ Indicators of hydric soil and wetland hydrology must
				be present, unless disturbed or problematic.
1				
2	~			Hydrophytic
% Bare Ground in Herb Stratum 65.0	0	= Total Cov	/er	Vegetation Present? Yes No 🖌
Remarks:				
No test is passed.				
See Photo C-21.				

US Army Corps of Engineers

Depth	Matrix		Red	dox Feature	s		n the absence o	
	r (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0 - 5 10YR	4/4	100					Clay Loam	
-								
					·			
						. <u> </u>		
		·					·	
-								
-								
-								
1 T							21	tions DL Doug Lining M Mateix
Type: C=Concentrat Hydric Soil Indicator						d Sand G		tion: PL=Pore Lining, M=Matrix.
-	5. (Applica							•
Histosol (A1) Histic Epipedon (A)	A2)			y Gleyed Ma y Redox (S5				ıck (A9) (LRR I, J) rairie Redox (A16) (LRR F, G, H)
Black Histic (A3)	~ <u>~</u>)		-	ed Matrix (rface (S7) (LRR G)
Hydrogen Sulfide	(A4)			y Mucky Mi				ins Depressions (F16)
Stratified Layers ()		y Gleyed M			-	H outside of MLRA 72 & 73)
1 cm Muck (A9) (. , .	,		ted Matrix (Reduced	d Vertic (F18)
Depleted Below I		e (A11)		x Dark Surfa	• •			ent Material (TF2)
Thick Dark Surfac				ted Dark Su				allow Dark Surface (TF12)
Sandy Mucky Mir	· · ·			x Depressio	• •	10)		xplain in Remarks)
2.5 cm Mucky Pe 5 cm Mucky Peat	•			Plains Depr ILRA 72 &				f hydrophytic vegetation and hydrology must be present,
	UI Feat (St		(1			п)		isturbed or problematic.
Restrictive Layer (if	present):							
Type: Compact	0011							
Type: Compact Depth (inches): 5							Hydric Soil P	resent? Yes No 🗸
Depth (inches): <u>5</u> Remarks:		cavation			ated by		Hydric Soil P	
Depth (inches): <u>5</u> Remarks: No indicators are		cavation b	 Delow 5" wa	s preven	ited by	compac		resent? Yes <u>No</u> <u>v</u> le locations attempted.
Depth (inches): <u>5</u> Remarks: Io indicators are	e met. Ex	cavation b	 Delow 5" wa	s preven	ited by	compac		
Depth (inches): 5 Remarks: No indicators are YDROLOGY	e met. Ex ndicators:				ited by	compac	t soil. Multip	le locations attempted.
Depth (inches): 5 Remarks: Io indicators are YDROLOGY Vetland Hydrology I Primary Indicators (mi	e met. Ex ndicators:		check all that ap	pply)	ited by	compac	t soil. Multip	le locations attempted.
Depth (inches): <u>5</u> Remarks: Io indicators are YDROLOGY Vetland Hydrology I Primary Indicators (mi Surface Water (A	e met. Ex ndicators: inimum of o 1)		check all that ap Salt Cru	<u>pply)</u> st (B11)		compac	t soil. Multip <u>Secondar</u>	le locations attempted. / Indicators (minimum of two required ce Soil Cracks (B6)
Depth (inches): <u>5</u> Remarks: Io indicators are YDROLOGY Vetland Hydrology I Primary Indicators (mi Surface Water (A High Water Table	e met. Ex ndicators: inimum of o 1)		<u>check all that ap</u> Salt Cru Aquatic	ply) st (B11) Invertebrate	es (B13)	compac	t soil. Multip <u>Secondary</u> Surfac Spars	le locations attempted. / Indicators (minimum of two required ce Soil Cracks (B6) ely Vegetated Concave Surface (B8)
Depth (inches): <u>5</u> Remarks: Io indicators are YDROLOGY Vetland Hydrology I Primary Indicators (mi Surface Water (A High Water Table Saturation (A3)	e met. Ex ndicators: inimum of o 1) (A2)		<u>check all that ap</u> Salt Cru Aquatic Hydroge	ply) st (B11) Invertebrate en Sulfide O	es (B13) dor (C1)		t soil. Multip <u>Secondary</u> Surfac Spars Draina	le locations attempted. <u>/ Indicators (minimum of two required</u> ce Soil Cracks (B6) ely Vegetated Concave Surface (B8) age Patterns (B10)
Depth (inches): <u>5</u> Remarks: Io indicators are YDROLOGY Vetland Hydrology I Primary Indicators (mi 	e met. Ex ndicators: inimum of o 1) (A2)		<u>check all that ap</u> Salt Cru Aquatic Hydroge Dry-Sea	ply) st (B11) Invertebrate on Sulfide O son Water	es (B13) dor (C1) Table (C2)		t soil. Multip <u>Secondary</u> <u>Surfac</u> Spars Draina <u>O</u> xidiz	le locations attempted. <u>/ Indicators (minimum of two required</u> ce Soil Cracks (B6) ely Vegetated Concave Surface (B8) age Patterns (B10)
Depth (inches): <u>5</u> Remarks: Io indicators are YDROLOGY Vetland Hydrology I Primary Indicators (mi Surface Water (A High Water Table Saturation (A3)	e met. Ex ndicators: inimum of o 1) (A2) ts (B2)		<u>check all that ap</u> Salt Cru Aquatic Hydroge Dry-Sea Oxidized	ply) st (B11) Invertebrate en Sulfide O son Water	es (B13) dor (C1) Table (C2) eres on Liv		t soil. Multip <u>Secondary</u> <u>Surfac</u> <u>Spars</u> <u>Draina</u> <u>Oxidiz</u> (C3) (wh	le locations attempted. / Indicators (minimum of two required ce Soil Cracks (B6) ely Vegetated Concave Surface (B8) age Patterns (B10) red Rhizospheres on Living Roots (Ca ere tilled)
Depth (inches): 5 Remarks: Io indicators are YDROLOGY Vetland Hydrology I Primary Indicators (mi Surface Water (A High Water Table Saturation (A3) Water Marks (B1) Sediment Deposi	e met. Ex ndicators: inimum of o 1) : (A2)) ts (B2) 3)		check all that ap Salt Cru Aquatic Hydroge Dry-Sea Oxidizeo (where	ply) st (B11) Invertebrate on Sulfide O son Water	es (B13) dor (C1) Table (C2) eres on Liv	ing Roots	t soil. Multip <u>Secondary</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Craina</u> <u>Crayfi</u>	le locations attempted. / Indicators (minimum of two required ce Soil Cracks (B6) ely Vegetated Concave Surface (B8) age Patterns (B10) red Rhizospheres on Living Roots (C:
Depth (inches): 5 Remarks: Io indicators are YDROLOGY Vetland Hydrology I Primary Indicators (mi Surface Water (A High Water Table Saturation (A3) Water Marks (B1) Sediment Deposits (B3)	e met. Ex ndicators: inimum of o 1) : (A2)) ts (B2) 3) t (B4)		check all that ap Salt Cru Aquatic Hydroge Dry-Sea Oxidized Oxidized Presenc	ply) st (B11) Invertebrate en Sulfide O son Water d Rhizosphe e not tilled)	es (B13) dor (C1) Table (C2) eres on Liv ed Iron (C4	ing Roots	Secondary <u>Secondary</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>Surfac</u> <u>S</u>	le locations attempted. / Indicators (minimum of two required ce Soil Cracks (B6) ely Vegetated Concave Surface (B8) age Patterns (B10) red Rhizospheres on Living Roots (C3 ere tilled) sh Burrows (C8)
Depth (inches): 5 Remarks: Io indicators are YDROLOGY Vetland Hydrology I Primary Indicators (mi 	e met. Ex ndicators: inimum of o 1) (A2) its (B2) its (B2) it (B4))	ne required; c	check all that ap Salt Cru Aquatic Hydroge Dry-Sea Oxidized Oxidized Presenc	st (B11) Invertebrate en Sulfide O son Water d Rhizosphe e not tilled) e of Reduce ck Surface	es (B13) dor (C1) Table (C2) eres on Liv ed Iron (C4 (C7)	ing Roots	t soil. Multip	le locations attempted. <u>/ Indicators (minimum of two required</u> ce Soil Cracks (B6) ely Vegetated Concave Surface (B8) age Patterns (B10) ced Rhizospheres on Living Roots (C3 ere tilled) sh Burrows (C8) ation Visible on Aerial Imagery (C9)
Depth (inches): 5 Remarks: Io indicators are YDROLOGY Vetland Hydrology I Primary Indicators (mi Surface Water (A High Water Table Saturation (A3) Water Marks (B1) Sediment Deposit Drift Deposits (B3 Algal Mat or Crus Iron Deposits (B5	e met. Ex ndicators: inimum of o 1) (A2) its (B2) 3) t (B4)) e on Aerial I	ne required; c	<u>check all that ap</u> <u>Salt Cru</u> Aquatic <u>Hydroge</u> Dry-Sea <u>C</u> Oxidizeo (where <u>Presenc</u> <u>Thin Mu</u>	st (B11) Invertebrate en Sulfide O son Water d Rhizosphe e not tilled) e of Reduce ck Surface	es (B13) dor (C1) Table (C2) eres on Liv ed Iron (C4 (C7)	ing Roots	Secondary <u>Secondary</u> <u>Surfar</u> Surfar Spars <u>Draina</u> (C3) (wh <u>Crayfi</u> Satura <u>Geom</u> <u>FAC-1</u>	le locations attempted.
Depth (inches): 5 Remarks: Io indicators are YDROLOGY Vetland Hydrology I Primary Indicators (mi Surface Water (A High Water Table Saturation (A3) Water Marks (B1) Sediment Deposits Drift Deposits (B3 Algal Mat or Crus Iron Deposits (B5 Inundation Vis ble Water-Stained Le	e met. Ex ndicators: inimum of o 1) (A2) its (B2) 3) t (B4)) e on Aerial I	ne required; c	<u>check all that ap</u> <u>Salt Cru</u> Aquatic <u>Hydroge</u> Dry-Sea <u>C</u> Oxidizeo (where <u>Presenc</u> <u>Thin Mu</u>	st (B11) Invertebrate en Sulfide O son Water d Rhizosphe e not tilled) e of Reduce ck Surface	es (B13) dor (C1) Table (C2) eres on Liv ed Iron (C4 (C7)	ing Roots	Secondary <u>Secondary</u> <u>Surfar</u> Surfar Spars <u>Draina</u> (C3) (wh <u>Crayfi</u> Satura <u>Geom</u> <u>FAC-1</u>	le locations attempted.
Depth (inches): 5 Remarks: Jo indicators are YDROLOGY Vetland Hydrology I Primary Indicators (mi Surface Water (A High Water Table Saturation (A3) Water Marks (B1) Sediment Deposi Drift Deposits (B3 Algal Mat or Crus Iron Deposits (B5 Inundation Vis ble Water-Stained Le Field Observations:	e met. Ex ndicators: inimum of o 1) (A2) ts (B2) ts (B2) t (B4)) e on Aerial I vaves (B9)	ne required; o	<u>check all that ap</u> <u>Salt Cru</u> Aquatic <u>Hydroge</u> Dry-Sea <u>C</u> Oxidizeo (where <u>Presenc</u> <u>Thin Mu</u>	st (B11) Invertebrate Invertebrate Son Water d Rhizosphe e not tilled) e of Reduce ck Surface ixplain in Re	es (B13) dor (C1) Table (C2) eres on Liv ed Iron (C4 (C7) emarks)	ing Roots	Secondary <u>Secondary</u> <u>Surfar</u> Surfar Spars <u>Draina</u> (C3) (wh <u>Crayfi</u> Satura <u>Geom</u> <u>FAC-1</u>	le locations attempted.
Depth (inches): 5 Remarks: No indicators are YDROLOGY Netland Hydrology I Primary Indicators (mi Surface Water (A High Water Table Saturation (A3) Water Marks (B1) Sediment Deposit Drift Deposits (B3 Algal Mat or Crus Iron Deposits (B5 Inundation Vis ble Water-Stained Le Field Observations: Surface Water Preser	e met. Ex ndicators: inimum of o 1) (A2) ts (B2) t (B4)) t (B4)) e on Aerial I eaves (B9)	ne required; o magery (B7) es No	<u>check all that ap</u> Salt Cru Aquatic Hydroge Dry-Sea Oxidized (where Presenc Thin Mu Other (E	pply) st (B11) Invertebrate en Sulfide O son Water d Rhizosphe e of Reduce ck Surface ck Surface ixplain in Re	es (B13) dor (C1) Table (C2) eres on Liv ed Iron (C4 (C7) emarks)	ing Roots	Secondary <u>Secondary</u> <u>Surfar</u> Surfar Spars <u>Draina</u> (C3) (wh <u>Crayfi</u> Satura <u>Geom</u> <u>FAC-1</u>	le locations attempted.
Depth (inches): 5 Remarks: No indicators are YDROLOGY Vetland Hydrology I Primary Indicators (mi Surface Water (A High Water Table Saturation (A3) Water Marks (B1) Sediment Deposit Drift Deposits (B3 Algal Mat or Crus Iron Deposits (B5 Inundation Vis ble Water-Stained Le Field Observations: Surface Water Presert Vater Table Present? Saturation Present?	e met. Ex ndicators: inimum of o 1) (A2) its (B2) its (B2) its (B2) on Aerial I vaves (B9) nt? Y y ge)	ne required; o magery (B7) es No es No es No	Check all that ap Salt Cru Aquatic Hydroge Dry-Sea Oxidized Presenc Thin Mu Other (E Depth (Depth (inches): inches): inches):	es (B13) dor (C1) Table (C2) eres on Liv ed Iron (C4 (C7) emarks)	ing Roots	t soil. Multip	le locations attempted.
Depth (inches): 5 Remarks: No indicators are YDROLOGY Wetland Hydrology I Primary Indicators (mi Surface Water (A High Water Table Saturation (A3) Water Marks (B1) Sediment Deposit Drift Deposits (B3 Algal Mat or Crus Iron Deposits (B5 Inundation Vis ble	e met. Ex ndicators: inimum of o 1) (A2) its (B2) its (B2) its (B2) on Aerial I vaves (B9) nt? Y y ge)	ne required; o magery (B7) es No es No es No	Check all that ap Salt Cru Aquatic Hydroge Dry-Sea Oxidized Presenc Thin Mu Other (E Depth (Depth (inches): inches): inches):	es (B13) dor (C1) Table (C2) eres on Liv ed Iron (C4 (C7) emarks)	ing Roots	t soil. Multip	le locations attempted.
Depth (inches): 5 Remarks: No indicators are YDROLOGY Netland Hydrology I Primary Indicators (mi Surface Water (A High Water Table Saturation (A3) Water Marks (B1) Sediment Deposit Drift Deposits (B3 Algal Mat or Crus Iron Deposits (B5 Inundation Vis ble Water-Stained Le Field Observations: Surface Water Presert Nater Table Present? Saturation Present?	e met. Ex ndicators: inimum of o 1) (A2) its (B2) its (B2) its (B2) on Aerial I vaves (B9) nt? Y y ge)	ne required; o magery (B7) es No es No es No	Check all that ap Salt Cru Aquatic Hydroge Dry-Sea Oxidized Presenc Thin Mu Other (E Depth (Depth (inches): inches): inches):	es (B13) dor (C1) Table (C2) eres on Liv ed Iron (C4 (C7) emarks)	ing Roots	t soil. Multip	le locations attempted.
Depth (inches): 5 Remarks: Io indicators are YDROLOGY Vetland Hydrology I Primary Indicators (mi 	e met. Ex ndicators: inimum of o 1) 4 (A2) b ts (B2) b) t (B4) c) e on Aerial I aves (B9) t (B4) c) e on Aerial I aves (B9) ft? Y y ge) ata (stream	ne required; o magery (B7) es No es No es No gauge, monif	Check all that ap Salt Cru Aquatic Hydroge Dry-Sea Oxidized Presenc Thin Mu Other (E Depth (Depth (inches): inches): inches):	es (B13) dor (C1) Table (C2) eres on Liv ed Iron (C4 (C7) emarks)	ing Roots	t soil. Multip	le locations attempted.

Project/Site: Ripley Energy Center	_ City/County: P	ayne County	Sampling Date: 2023-10-23			
Applicant/Owner: Associated Electric Cooperative, Inc.		State: Oklahoma	Sampling Point: SP-22			
Investigator(s): R. Oltjenbruns, J. Ramirez	_ Section, Towns	Section, Township, Range: S20 T19N R4E				
Landform (hillslope, terrace, etc.): Side Slope		ncave, convex, none): None	Slope (%): <u>3</u>			
Subregion (LRR): H80A Lat: 3	6.11579	Long: -96.907847	Datum: NAD 83			
Soil Map Unit Name: 47 - Renfrow loam, 3 to 5 percent slop	es, eroded	NWI classifica	ation: N/A			
Are climatic / hydrologic conditions on the site typical for this time of y	/ear? Yes	_ No (If no, explain in Re	emarks.)			
Are Vegetation, Soil, or Hydrology significant	ly disturbed?	Are "Normal Circumstances" p	resent? Yes No _			
Are Vegetation, Soil, or Hydrology naturally p	oroblematic?	(If needed, explain any answer	s in Remarks.)			
SUMMARY OF FINDINGS – Attach site map showin	g sampling p	ooint locations, transects,	important features, etc.			
Hydrophytic Vagatation Present? Yas No Y						

Hydrophytic Vegetation Present?	Yes	No	Is the Sampled Area		
Hydric Soil Present?	Yes	No 🖌	within a Wetland?	Yes	No 🖌
Wetland Hydrology Present?	Yes	_ No 🖌		165	NO
Remarks:			•		

Upland confirmation sample plot. The USACE Antecedent Precipitation Tool indicates drier than normal climatic conditions three months prior to survey. Sample plot was disturbed due to being within a mowed ditch.

VEGETATION – Use scientific names of plants.

20 th -	Absolute			Dominance Test worksheet:
Tree Stratum (Plot size: <u>30 ft r</u>)		Species?		Number of Dominant Species
1				That Are OBL, FACW, or FAC (Δ)
2				(excluding FAC-): <u>1</u> (A)
3				Total Number of Dominant
4				Species Across All Strata: <u>3</u> (B)
	-	= Total Cov	/er	Percent of Dominant Species
Sapling/Shrub Stratum (Plot size: 15 ft r)				That Are OBL, FACW, or FAC: <u>33.33</u> (A/B)
1. Diospyros virginiana	25	~	FAC	
2				Prevalence Index worksheet:
3				Total % Cover of: Multiply by:
4				OBL species $0 x 1 = 0$
				FACW species 0 x 2 = 0
5		Tatal Oa		FAC species 25 x 3 = 75
Herb Stratum (Plot size: 5 ft r)	23	= Total Cov	/er	FACU species 10 x 4 = 40
1 Bromus arvensis	10	~	FACU	UPL species $5 \times 5 = 25$
2. Artemisia ludoviciana	5	~	UPL	Column Totals: 40 (A) 140 (B)
3				Prevalence Index = $B/A = 3.50$
4				Hydrophytic Vegetation Indicators:
5				1 - Rapid Test for Hydrophytic Vegetation
6				2 - Dominance Test is >50%
7				3 - Prevalence Index is $\leq 3.0^{1}$
8				
9				4 - Morphological Adaptations' (Provide supporting data in Remarks or on a separate sheet)
10				Problematic Hydrophytic Vegetation ¹ (Explain)
	45	= Total Cov	/er	
Woody Vine Stratum (Plot size: 30 ft r)				¹ Indicators of hydric soil and wetland hydrology must
1				be present, unless disturbed or problematic.
2.				Hydrophytic
	0	= Total Cov	/er	Vegetation
% Bare Ground in Herb Stratum 5.0				Present? Yes No V
Remarks:				
No test is passed. Vegetation was d	isturbe	d due to	b being	within a mowed ditch.

See Photo C-22. US Army Corps of Engineers

SO	L
----	---

Profile Des	cription: (Describe	to the depth ne	eded to docu	ment the i	ndicator	or confirn	n the absence of i	ndicators.)
Depth	Matrix			ox Features	4	. 2	- /	
(inches)	Color (moist)		Color (moist)	%	Type'	Loc ²	Texture	Remarks
0 - 8	7.5YR 4/3	100					Clay Loam	
-		<u> </u>						
-								
·						<u> </u>	·	
-								
-								
-								
-								
1							. 2	
	Concentration, D=Dep					ed Sand Gi		n: PL=Pore Lining, M=Matrix.
-	Indicators: (Applic	able to all LKK						Problematic Hydric Soils ³ :
Histoso	()		Sandy	-				(A9) (LRR I, J)
	pipedon (A2) listic (A3)		-	Redox (S5 d Matrix (S				rie Redox (A16) (LRR F, G, H) ice (S7) (LRR G)
	en Sulfide (A4)			Mucky Mir	,			s Depressions (F16)
	d Layers (A5) (LRR	F)	-	Gleyed Ma				outside of MLRA 72 & 73)
	uck (A9) (LRR F, G ,	,		ed Matrix (F			Reduced V	,
	d Below Dark Surfac			Dark Surfa	,			t Material (TF2)
Thick D	ark Surface (A12)		Deplete	ed Dark Su	rface (F7)	1	Very Shall	ow Dark Surface (TF12)
	Mucky Mineral (S1)			Depressio	· ,			lain in Remarks)
	Mucky Peat or Peat (ains Depre		,		ydrophytic vegetation and
5 cm M	ucky Peat or Peat (S	3) (LRR F)	(ML	.RA 72 & 7	73 of LRR	: H)	-	drology must be present,
							unless dist	urbed or problematic.
	Layer (if present):							
<u> </u>	ompact Soil							
Depth (in	iches): 8						Hydric Soil Pre	sent? Yes No 🔽
Remarks:								
No indica	tors are met. Ex	cavation be	elow 8" was	preven	ted by o	compac	t soil. Multiple	locations attempted.
HYDROLC)GY							
	vdrology Indicators:							
-	cators (minimum of c		ade all that ann	6.0			Casandan I	adiaatara (minimum of two requires
-		one requirea; chi						ndicators (minimum of two required
	Water (A1)		Salt Crust	. ,	- (D40)			Soil Cracks (B6)
	ater Table (A2)		Aquatic In		• •			y Vegetated Concave Surface (B8)
Saturati			Hydrogen				-	e Patterns (B10)
	Marks (B1)		Dry-Seaso		• •			d Rhizospheres on Living Roots (C
	nt Deposits (B2)		Oxidized I	•		ing Roots	. , .	e tilled)
	posits (B3)			not tilled)				Burrows (C8)
	at or Crust (B4)		Presence			1)		on Visible on Aerial Imagery (C9)
	posits (B5)		Thin Mucł					phic Position (D2)
	ion Vis ble on Aerial	Imagery (B7)	Other (Ex	plain in Re	marks)			utral Test (D5)
	Stained Leaves (B9)						Frost-He	eave Hummocks (D7) (LRR F)
Field Obser								
		′es No						
Water Table		′es No						
Saturation F		′es No _	Depth (in	ches):		Wetl	and Hydrology Pr	esent? Yes No 🔽
	pillary fringe) ecorded Data (stream		ing well serial	nhotos pr	evioue ine	nections)	if available.	
Describe 1/6		. gaage, monitor	ing men, aerial	priotos, pri	511003 115	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Domortica								
Remarks:								
No indic	cators are me	et.						

Project/Site: Ripley Energy Center	City/County: _	Payne County	Sampling Date: 2023-10-23			
Applicant/Owner: Associated Electric Cooperative, Inc.		State: Oklahoma	Sampling Point: SP-23			
Investigator(s): R. Oltjenbruns, J. Ramirez	Section, Towr	Section, Township, Range: S20 T19N R4E				
Landform (hillslope, terrace, etc.): Plain		Local relief (concave, convex, none): None Slope (%): 0				
Subregion (LRR): H 80A La	at: <u>36.107793</u>	Long: -96.908285	Datum: NAD 83			
Soil Map Unit Name: GAMD - Grainola-Ashport frequently floode	ed-Mulhall complex, 0	to 8 percent slopes NWI classific	ation: R5UBF			
Are climatic / hydrologic conditions on the site typical for this time Are Vegetation <u>'</u> , Soil <u>'</u> , or Hydrology <u>'</u> signifi	-		emarks.) resent? Yes No			
Are Vegetation, Soil, or Hydrology natura	ally problematic?	problematic? (If needed, explain any answers in Remarks.)				
SUMMARY OF FINDINGS – Attach site map sho	wing sampling	point locations, transects	, important features, etc.			
Hydrophytic Vegetation Present? Yes No	 					

Hydric Soil Present? Wetland Hydrology Present?	Yes Yes	No <u>v</u> No <u>v</u>	Is the Sampled Area within a Wetland?	Yes	No
Remarks:					

Upland confirmation sample plot. The USACE Antecedent Precipitation Tool indicates drier than normal climatic conditions three months prior to survey. Sample plot was disturbed due to being within a mowed ditch.

VEGETATION – Use scientific names of plants.

00.4	Absolute	Dominant		Dominance Test worksheet:	
Tree Stratum (Plot size: <u>30 ft r</u>)	% Cover	Species?	Status	Number of Dominant Species	
1				That Are OBL, FACW, or FAC	
2				(excluding FAC-):	(A)
3				Total Number of Dominant	
4				Species Across All Strata: 1	(B)
	-	= Total Cov	/er	Demonstrat Demoissant On a size	
Sapling/Shrub Stratum (Plot size: 15 ft r)				Percent of Dominant Species That Are OBL, FACW, or FAC: 0.00	(A/B)
1					(,,,,,,)
2				Prevalence Index worksheet:	
				Total % Cover of: Multiply by:	_
3				OBL species 0 x 1 = 0	_
4				FACW species 0 x 2 = 0	
5	-			FAC species 0 x 3 = 0	•
Userb Otrature (Distring) 5 ft r	0	= Total Cov	/er	FACU species 27 $x = 108$	
<u>Herb Stratum</u> (Plot size: <u>5 ft r</u>) 1. Sorghum halepense	25	~	FACU		•
				UPL species $5 \times 5 = 25$	•
2. Cirsium altissimum	5		UPL	Column Totals: <u>32</u> (A) <u>133</u>	(B)
3. Desmanthus illinoensis	2		FACU	Prevalence Index = $B/A = 4.16$	
4					
5				Hydrophytic Vegetation Indicators:	
6				1 - Rapid Test for Hydrophytic Vegetation	
7				2 - Dominance Test is >50%	
				$_$ 3 - Prevalence Index is $\leq 3.0^1$	
8				4 - Morphological Adaptations ¹ (Provide support	orting
9				data in Remarks or on a separate sheet)	
10	~~		<u> </u>	Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size: 30 ft r)	32	= Total Cov	/er	¹ Indicators of hydric soil and wetland hydrology mu	uet
· · · · · · · · · · · · · · · · · · ·				be present, unless disturbed or problematic.	นอเ
1					
2	•			Hydrophytic	
15 O	0	= Total Cov	/er	Vegetation Present? Yes No Ves	
% Bare Ground in Herb Stratum 15.0					
Remarks:					
No toot is personal Meantation was a		بلا منتام ام	- I :		

No test is passed. Vegetation was disturbed due to being within a mowed ditch. See Photo C-23.

Profile Desc	ription: (Describe	to the depth ne	eded to docur	nent the i	ndicator	or confirm	n the absence of ir	ndicators.)
Depth	Matrix			x Features				
(inches)	Color (moist)		olor (moist)	%	Type ¹	Loc ²	Texture	Remarks
0 - 12	5YR 4/4	100					Clay Loam	
-								
-								
-				·				
_				·				
				·			·	
				·	<u> </u>		·	
-				·			·	
-								
	oncentration, D=De					d Sand Gr		n: PL=Pore Lining, M=Matrix.
Hydric Soil	Indicators: (Applie	cable to all LRRs	s, unless other	wise note	ed.)		Indicators for	Problematic Hydric Soils ³ :
Histosol	()		Sandy C	-				(A9) (LRR I, J)
-	pipedon (A2)		Sandy F					rie Redox (A16) (LRR F, G, H)
	stic (A3)			l Matrix (S Mucky Mir				ce (S7) (LRR G) s Depressions (F16)
	n Sulfide (A4) Layers (A5) (LRR	F)		Gleyed Ma			-	outside of MLRA 72 & 73)
	ick (A9) (LRR F, G,	,		d Matrix (F	• •		Reduced V	,
	d Below Dark Surfa			Dark Surfa	,			t Material (TF2)
Thick Da	ark Surface (A12)		Deplete	d Dark Su	rface (F7)	1		ow Dark Surface (TF12)
-	lucky Mineral (S1)			Depressio	· · /			lain in Remarks)
	Aucky Peat or Peat			ains Depre				ydrophytic vegetation and
	icky Peat or Peat (S	53) (LRR F)	(ML	RA 72 & 7	3 OF LRR	H)		drology must be present, urbed or problematic.
Restrictive	Layer (if present):							urbed of problematic.
Type: Ro								
	_{ches):} <u>12</u>						Hydric Soil Pres	sent? Yes No
Remarks:								
		F	h . l 101					
NO INDICA	ators are met.	Excavation	below 12	was p	revent	ea by r	оск. миітіріе	locations attempted.
HYDROLO	GV							
-	drology Indicators		ok all that analy				Cocondon dr	diasters (minimum of two required)
	cators (minimum of	one required; che						ndicators (minimum of two required)
	Water (A1)		Salt Crust		o (D12)			Soil Cracks (B6)
Figh wa	ater Table (A2)		Aquatic Inv Hydrogen		. ,			Vegetated Concave Surface (B8)
Water M			Dry-Seaso					e Patterns (B10) I Rhizospheres on Living Roots (C3)
	nt Deposits (B2)		Oxidized F					e tilled)
	posits (B3)			not tilled)		ing roots		Burrows (C8)
-	at or Crust (B4)		Presence (,	d Iron (C4	L)	-	on Visible on Aerial Imagery (C9)
Iron Dep			Thin Muck			• /		phic Position (D2)
-	on Vis ble on Aerial	Imagery (B7)	Other (Exp	`	,			utral Test (D5)
	tained Leaves (B9)				,			eave Hummocks (D7) (LRR F)
Field Obser								
Surface Wat	er Present?	Yes No	 Depth (inc 	ches):				
Water Table		Yes No						
Saturation P		Yes No					and Hydrology Pre	esent? Yes No
(includes cap	oillary fringe)							
Describe Re	corded Data (strear	n gauge, monitori	ng well, aerial p	onotos, pro	evious ins	pections),	IT available:	
Remarks:								
No indic	ators are me	et.						

Project/Site: Ripley Energy Center	City/County: Pa	_ City/County: Payne County Sampling Date: 2023							
Applicant/Owner: Associated Electric Cooperation	ve, Inc.	State: Oklahoma	Sampling Point: <u>SP-24</u>						
Investigator(s): J. Jorgensen	Section, Townsh	Section, Township, Range: S20 T19N R4E							
Landform (hillslope, terrace, etc.): Hillslope	Local relief (cor	ncave, convex, none): <u>Convex</u>	Slope (%): 5						
Subregion (LRR): H80A	Lat: 36.114886	Long: -96.907717	Datum: NAD 83						
Soil Map Unit Name: ZaHC - Zaneis-Huska comp	Soil Map Unit Name: ZaHC - Zaneis-Huska complex, 1 to 5 percent slopes NWI classification: N/A								
Are climatic / hydrologic conditions on the site typical for	or this time of year? Yes	No (If no, explain in Re	marks.)						
Are Vegetation, Soil, or Hydrology	significantly disturbed?	tly disturbed? Are "Normal Circumstances" present? Yes 🔽 No							
Are Vegetation, Soil, or Hydrology	naturally problematic?	(If needed, explain any answers	s in Remarks.)						
SUMMARY OF FINDINGS – Attach site m	nap showing sampling p	oint locations, transects,	important features, etc.						
Hydrophytic Vegetation Present? Yes Hydric Soil Present? Yes	No 🖌	Impled Area							
Wetland Hydrology Present? Yes	, within a	Wetland? Yes	No						
Remarks:									

Upland confirmation sample plot. The USACE Antecedent Precipitation Tool indicates normal climatic conditions three months prior to survey.

VEGETATION – Use scientific names of plants.

	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 30 ft r)	% Cover	Species?	Status	Number of Dominant Species
1				That Are OBL, FACW, or FAC
2				(excluding FAC-): <u>1</u> (A)
3				Total Number of Dominant
4				Species Across All Strata: <u>3</u> (B)
··		= Total Cov		
Sapling/Shrub Stratum (Plot size: 15 ft r)	<u> </u>			Percent of Dominant Species That Are OBL, FACW, or FAC: 33.33 (A/B)
1,				
2				Prevalence Index worksheet:
				Total % Cover of: Multiply by:
3				OBL species $0 x 1 = 0$
4			·	FACW species $0 x 2 = 0$
5			·	FAC species 25 $x_3 = 75$
Userb Obserburg (Distribute 5 ft r	0	= Total Cov	/er	FACU species 55 $x 4 = 220$
Herb Stratum (Plot size: 5 ft r)	55	~	FACU	
1. Sorghastrum nutans				
2. Coleataenia anceps	25	 ✓ 	FAC	Column Totals: <u>100</u> (A) <u>395</u> (B)
3. Bothriochloa ischaemum	20	 ✓ 	UPL	Prevalence Index = $B/A = 3.95$
4				
5				Hydrophytic Vegetation Indicators:
6				1 - Rapid Test for Hydrophytic Vegetation
7				2 - Dominance Test is >50%
				3 - Prevalence Index is ≤3.0 ¹
8				4 - Morphological Adaptations ¹ (Provide supporting
9				data in Remarks or on a separate sheet)
10	100			Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size: 30 ft r)	100	= Total Cov	/er	¹ Indicators of hydric soil and wetland hydrology must
				be present, unless disturbed or problematic.
1			·	
2			·	Hydrophytic
	0	= Total Cov	/er	Vegetation Present? Yes No V
% Bare Ground in Herb Stratum				
Remarks:				
No test is passed.				
See Photo C-24.				
566 F HOLO C-24.				

	cription: (Describ	e to the depth r				or confirn	n the absence of	indicators.)			
Depth (inches)	Matrix Color (moist)	%	Redo Color (moist)	<u>ox Feature</u> %	s Type ¹	Loc ²	Texture	Remarks			
<u>(incries)</u> 0 - 12	10YR 3/3	<u></u> 100		70	туре		Sandy Clay Loam	Remains			
0 12	1011 (5/5	100									
-					·		·				
-											
-											
-											
-					·						
					·		·				
							<u> </u>				
-					·		<u> </u>				
	oncentration, D=De					ed Sand Gi		on: PL=Pore Lining, M=Matrix.			
-	Indicators: (Appl	cable to all LR						r Problematic Hydric Soils ³ :			
Histosol	()		Sandy	-				ck (A9) (LRR I, J)			
	pipedon (A2)			Redox (S5				airie Redox (A16) (LRR F, G, H)			
	istic (A3) en Sulfide (A4)			d Matrix (S Mucky Mi	,			ace (S7) (LRR G) ns Depressions (F16)			
	d Layers (A5) (LRR	F)	-	Gleyed M			-	H outside of MLRA 72 & 73)			
	uck (A9) (LRR F, G			ed Matrix (Vertic (F18)			
	d Below Dark Surfa			Dark Surfa	,			nt Material (TF2)			
Thick Da	ark Surface (A12)			ed Dark Su)	-	llow Dark Surface (TF12)			
	Aucky Mineral (S1)			Depressio	• •		Other (Explain in Remarks)				
	Mucky Peat or Peat			ains Depr			³ Indicators of hydrophytic vegetation and wetland hydrology must be present,				
	ucky Peat or Peat (53) (LRR F)		RA 72 &	13 OF LRP	(П)		sturbed or problematic.			
Restrictive	Layer (if present):										
	ompact Soil										
<u> </u>	ches): 12		_				Hydric Soil Pr	esent? Yes No 🖌			
Remarks:	,						-				
No indica	tore are mot	vegyation b	olow 12" wa	c provo	ntod by	compa	et coil Multin	le locations attempted.			
	lois ale met. L			spieve	inteu by	compa		le locations attempted.			
HYDROLO											
-	drology Indicators										
	cators (minimum of	one required; c						Indicators (minimum of two required)			
	Water (A1)		Salt Crust	. ,				e Soil Cracks (B6)			
-	ater Table (A2)		Aquatic Ir		• •		Sparsely Vegetated Concave Surface (B8) Drainage Patterns (B10)				
Saturati			Hydrogen								
Water M			Dry-Seas					ed Rhizospheres on Living Roots (C3) re tilled)			
Drift De	nt Deposits (B2)			not tilled)		ing Roots	. , .	h Burrows (C8)			
	at or Crust (B4)		Presence			1)		tion Visible on Aerial Imagery (C9)			
Iron Dep	. ,		Thin Mucl					prphic Position (D2)			
-	on Vis ble on Aeria	I Imagery (B7)	Other (Ex					eutral Test (D5)			
	stained Leaves (B9)			plainin	Jinanio)			leave Hummocks (D7) (LRR F)			
Field Obser	. ,							((
Surface Wat		Yes No	✓ Depth (ir	ches):							
Water Table			✓ Depth (ir								
Saturation P			Depth (ir				and Hydrology P	resent? Yes No			
(includes ca			Deptil (ii	iciies)			and right ology i				
Describe Re	corded Data (strea	m gauge, monito	oring well, aerial	photos, pr	evious ins	spections),	if available:				
Remarks:											
No indi-	atora are re	^+									
INO INGIC	ators are m	et.									

Project/Site: Ripley Energy Center	City/County: P	_ City/County: Payne County Sampling Date: 2023					
Applicant/Owner: Associated Electric Coop	perative, Inc.	State: Oklahoma Sa	ampling Point: SP-25				
Investigator(s): J. Jorgensen	Section, Towns	hip, Range: S17 T19N R4E					
Landform (hillslope, terrace, etc.): Hillslope	Local relief (co	_ Local relief (concave, convex, none): <u>Convex</u> Slope (%)					
Subregion (LRR): H 80A	Lat: 36.119059	6.119059 Long: <u>-96.907704</u> Da					
Soil Map Unit Name: 4 - Coyle Ioam, 3 to 5 percent slopes, eroded NWI classification: N/A							
Are climatic / hydrologic conditions on the site ty	pical for this time of year? Yes	_ No (If no, explain in Rem	narks.)				
Are Vegetation, Soil, or Hydrolog	gy significantly disturbed?	tly disturbed? Are "Normal Circumstances" present? Yes 🖌 No					
Are Vegetation, Soil, or Hydrolog	gy naturally problematic?	(If needed, explain any answers i	in Remarks.)				
SUMMARY OF FINDINGS – Attach	site map showing sampling p	ooint locations, transects, i	mportant features, etc.				
Hydrophytic Vegetation Present? Yes	No Is the S	ampled Area					
Hydric Soil Present? Yes	No 🖌	•	No_				
Wetland Hydrology Present? Yes	No						
Remarks:							
I Inland confirmation sample plot T	he USACE Antecedent Preci	nitation Tool indicates nor	mal climatic				

Upland confirmation sample plot. The USACE Antecedent Precipitation Tool indicates normal climatic conditions three months prior to survey.

VEGETATION – Use scientific names of plants.

	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 30 ft r)	% Cover	Species?	Status	Number of Dominant Species
1				That Are OBL, FACW, or FAC
2				(excluding FAC-): 0 (A)
3				Total Number of Dominant
4				Species Across All Strata: <u>3</u> (B)
- T		= Total Cov		
Sapling/Shrub Stratum (Plot size: 15 ft r)	<u> </u>	- 10tal C0	/ei	Percent of Dominant Species That Are OBL, FACW, or FAC: 0.00 (A/B)
1				
				Prevalence Index worksheet:
2				Total % Cover of: Multiply by:
3				OBL species 0 x 1 = 0
4				FACW species 0 x 2 = 0
5				FAC species 0 $x = 0$
bill of the second s	0	= Total Cov	/er	FACU species 40 $x 4 = 160$
Herb Stratum (Plot size: 5 ft r) 1 Bothriochloa ischaemum	60	~	UPL	
				· <u> </u>
2. Sorghastrum nutans	20	<u> </u>	FACU	Column Totals: <u>100</u> (A) <u>460</u> (B)
3. Schizachyrium scoparium	20	 ✓ 	FACU	Prevalence Index = $B/A = 4.60$
4				
5				Hydrophytic Vegetation Indicators:
6				1 - Rapid Test for Hydrophytic Vegetation
7				2 - Dominance Test is >50%
8				$_$ 3 - Prevalence Index is $\leq 3.0^1$
				4 - Morphological Adaptations ¹ (Provide supporting
9				data in Remarks or on a separate sheet)
10	100			Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size: 30 ft r)	100	= Total Cov	/er	¹ Indicators of hydric soil and wetland hydrology must
				be present, unless disturbed or problematic.
1				
2				Hydrophytic Vegetation
N/ David Consumption Liberty Objections	0	= Total Cov	/er	Present? Yes No V
% Bare Ground in Herb Stratum Remarks:				
Incinaino.				
No test is passed.				
See Photo C-25.				

SOIL

	ription: (Describe	to the dep				or confirm	n the absence of	indicators.)	
Depth (inches)	<u>Matrix</u> Color (moist)	%	Color (moist)	<u>ox Featur</u> %	es Type ¹	Loc ²	Texture	Remarks	
0 - 5	5YR 3/4	100					Clay Loam	Komano	
5 - 15	5YR 3/4	60	5YR 2.5/1	40		M	Clay Loam		
	0111074		011(2.0/1						
						·			
						·			
-									
-									
-					<u> </u>				
-									
¹ Type: C=Co	oncentration, D=Dep	letion, RM=	Reduced Matrix, C	S=Covere	ed or Coat	ed Sand G	rains. ² Locati	on: PL=Pore Lining, M=Matrix.	
Hydric Soil	Indicators: (Applic	able to all	LRRs, unless othe	rwise no	ted.)			r Problematic Hydric Soils ³ :	
Histosol			Sandy					ck (A9) (LRR I, J)	
-	pipedon (A2)		-	Redox (S				airie Redox (A16) (LRR F, G, H)	
Black Hi	()			d Matrix (face (S7) (LRR G)	
	n Sulfide (A4) Layers (A5) (LRR	E)		-	ineral (F1) /atrix (F2)			ns Depressions (F16) H outside of MLRA 72 & 73)	
	ick (A9) (LRR F, G,	,	-	ed Matrix				Vertic (F18)	
	d Below Dark Surfac		Redox		. ,			Int Material (TF2)	
-	ark Surface (A12)	()			urface (F7)		llow Dark Surface (TF12)	
Sandy M	lucky Mineral (S1)		Redox	Depressi	ons (F8)			plain in Remarks)	
	/lucky Peat or Peat (hydrophytic vegetation and	
5 cm Mu	icky Peat or Peat (S	3) (LRR F)	(ML	RA 72 &	73 of LRI	R H)	wetland hydrology must be present,		
Bootriotivo I	_ayer (if present):						unless dis	sturbed or problematic.	
Type:	abos):						Hydric Soil Pr	esent? Yes No 🗾	
	ches):						Hydric Soli Fr		
Remarks:									
No indic	ators are me	et.							
HYDROLO	GY								
Wetland Hy	drology Indicators:								
Primary Indic	cators (minimum of c	one required	l; check all that app	ly)			Secondary	Indicators (minimum of two required)	
Surface	Water (A1)		Salt Crust	(B11)			Surfac	e Soil Cracks (B6)	
High Wa	iter Table (A2)		Aquatic Ir	vertebrat	es (B13)		Sparse	ely Vegetated Concave Surface (B8)	
Saturatio	on (A3)		Hydrogen	Sulfide C	Odor (C1)		Draina	ge Patterns (B10)	
Water M	arks (B1)		Dry-Seas	on Water	Table (C2)	Oxidize	ed Rhizospheres on Living Roots (C3)	
Sedimer	nt Deposits (B2)		Oxidized	Rhizosph	eres on Liv	ing Roots	(C3) (whe	ere tilled)	
Drift Dep	oosits (B3)		(where	not tilled	I)		Crayfis	h Burrows (C8)	
	at or Crust (B4)		Presence		`	4)		tion Visible on Aerial Imagery (C9)	
	osits (B5)		Thin Mucl		. ,		Geomorphic Position (D2)		
	on Vis ble on Aerial	Imagery (B7	7) Other (Ex	plain in R	emarks)		FAC-Neutral Test (D5)		
	tained Leaves (B9)						Frost-H	leave Hummocks (D7) (LRR F)	
Field Obser		,							
Surface Wate			No <u> </u>						
Water Table			No 🧹 Depth (ir						
Saturation P (includes cap		′es I	No 🥓 Depth (ir	iches):		Wet	land Hydrology P	Present? Yes No V	
	corded Data (stream	i gauge, mo	nitoring well, aerial	photos, p	previous in	spections),	if available:		
Remarks:									
No india	ators are me	. +							
	ators are me	ι.							

Project/Site: Ripley Energy Center	City/Cou	nty: Payne C	County	Sampling Date:	2023-10-26			
Applicant/Owner: Associated Electric Cooperative,	, Inc.		State: Oklahoma	Sampling Point:	SP-26			
Investigator(s): J. Jorgensen	Section,	Township, Ra	nge: S17 T19N R4E					
Landform (hillslope, terrace, etc.): Hillslope				Slo	pe (%): <u>5</u>			
Subregion (LRR): H 80A	Lat: 36.12280	5	_ Long: -96.90765	Datu	m: NAD 83			
		es NWI classification: N/A						
Are climatic / hydrologic conditions on the site typical for the	his time of year? Yes	✓ No_	(If no, explain in R	emarks.)				
Are Vegetation, Soil, or Hydrology	significantly disturbed	l? Are '	"Normal Circumstances" p	oresent? Yes	No			
Are Vegetation, Soil, or Hydrology	_naturally problematic		eeded, explain any answe					
SUMMARY OF FINDINGS – Attach site map	o showing samp	ina noint l	ocations transects	important fe	atures etc			
		ing point i						
Hydrophytic Vegetation Present? Yes Hydric Soil Present? Yes		the Sampled	Area					
Hydric Soil Present? Yes	No <u>v</u>	•	nd? Yes	No 🖌				
Wetland Hydrology Present? Yes	No							
Remarks:								
Upland confirmation sample plot. The USA	CE Antecedent	Precipitatio	on Tool indicates no	ormal climatio	;			
conditions three months prior to survey.		-						
VEGETATION – Use scientific names of pla	onte							
			1					
Tree Stratum (Plot size: <u>30 ft r</u>)		ant Indicator	Dominance Test work					
			Number of Dominant S					
1			That Are OBL, FACW, of (excluding FAC-):	0	(A)			
2					、 ,			
3			Total Number of Domin	ant				

2				(excluding FAC-):	<u> </u>	(A)
3				Total Number of Dominant Species Across All Strata:	1	(B)
Sapling/Shrub Stratum (Plot size: 15 ft r)	0	_ = Total Co		Percent of Dominant Species That Are OBL, FACW, or FAC:	0.00	(A/B)
1				Prevalence Index worksheet:		
2				Total % Cover of:	Multiply by:	
3				OBL species 0 x 1		-
4			·	FACW species 0 x 2		-
5			·	FAC species 0 x 3		-
Herb Stratum (Plot size: 5 ft r)	0	_ = Total Co	ver	FACU species 100 x 4		-
1 Cynodon dactylon	100	~	FACU	UPL species 0 x 5		-
2				Column Totals: 100 (A)		(B)
3				Prevalence Index = B/A =	4.00	
4				Hydrophytic Vegetation Indicate	ors:	
5				1 - Rapid Test for Hydrophytic	Vegetation	
6				2 - Dominance Test is >50%	-	
7				$3 - Prevalence Index is \le 3.0^1$		
8 9				4 - Morphological Adaptations data in Remarks or on a se	¹ (Provide supported as the support of the suppor	porting
10				Problematic Hydrophytic Vege		n)
	100	= Total Co	ver			,
Woody Vine Stratum (Plot size: 30 ft r)				¹ Indicators of hydric soil and wetla be present, unless disturbed or pro-		nust
1			·	be present, unless disturbed of pro-	Diematic.	
2				Hydrophytic		
% Bare Ground in Herb Stratum	0	_ = Total Co	ver	Vegetation Present? Yes	No 🖌	
Remarks:						
No test is passed.						
See Photo C-26.						

US Army Corps of Engineers

Depth	ription: (Describe Matrix			x Features	s			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0 - 15	10YR 3/3	100					Clay Loam	
-								
							<u> </u>	
-								
-								
-								
-					·			
	oncentration, D=Dep	letion RM=	Peduced Matrix C		d or Coate	d Sand G	raine ² Locatio	n: PL=Pore Lining, M=Matrix.
	Indicators: (Applic					u Sanu G		Problematic Hydric Soils ³ :
Histosol			Sandy (•			(A9) (LRR I, J)
	pipedon (A2)		Sandy F					rie Redox (A16) (LRR F, G, H)
Black Hi				d Matrix (S				ce (S7) (LRR G)
	n Sulfide (A4)			Mucky Mir				Depressions (F16)
Stratified	Layers (A5) (LRR	F)	Loamy	Gleyed Ma	atrix (F2)		(LRR H	outside of MLRA 72 & 73)
	ck (A9) (LRR F, G ,			d Matrix (I	,		Reduced V	
	Below Dark Surfac	e (A11)		Dark Surfa				t Material (TF2)
	ark Surface (A12)			d Dark Su				bw Dark Surface (TF12)
	lucky Mineral (S1) /lucky Peat or Peat ((S2) (I PP C		Depression		16)		lain in Remarks) ydrophytic vegetation and
	icky Peat or Peat (S			RA 72 & 7		,		drology must be present,
		o) (_ ,	(••)	-	urbed or problematic.
Restrictive I	_ayer (if present):							·
Туре:								
Depth (ind	ches):						Hydric Soil Pre	sent? Yes No 🖌
Remarks:								
No indic	ators are me	h t						
HYDROLO	GY							
Wetland Hyd	drology Indicators:							
-	ators (minimum of c		check all that appl	V)			Secondary Ir	ndicators (minimum of two required)
-	Water (A1)	• • •	Salt Crust					Soil Cracks (B6)
	iter Table (A2)		Aquatic In		s (B13)			Vegetated Concave Surface (B8)
Saturatio	()		Hydrogen		. ,			e Patterns (B10)
	arks (B1)		Dry-Seaso				-	Rhizospheres on Living Roots (C3)
	nt Deposits (B2)		Oxidized F		• •	ing Roots		e tilled)
	oosits (B3)			not tilled)		U	. , .	Burrows (C8)
Algal Ma	t or Crust (B4)		Presence	of Reduce	d Iron (C4	L)		on Visible on Aerial Imagery (C9)
-	osits (B5)		Thin Muck	Surface (C7)		Geomor	phic Position (D2)
	on Vis ble on Aerial	Imagery (B7)	Other (Exp	olain in Re	marks)			utral Test (D5)
Water-S	tained Leaves (B9)	,						eave Hummocks (D7) (LRR F)
Field Observ	vations:							
Surface Wate	er Present? Y	′es N	o 🗹 Depth (in	ches):				
Water Table			o 🔽 Depth (in					
Saturation P			o 🔽 Depth (in				and Hydrology Pr	esent? Yes No 🖌
(includes cap	oillary fringe)							
Describe Red	corded Data (stream	n gauge, mor	itoring well, aerial	photos, pr	evious ins	pections),	it available:	
Remarks:								
No indic	ators are me	et.						

Project/Site: Ripley Energy Center	City/County: Payr	ne County Sa	ampling Date: 2023-10-26				
Applicant/Owner: Associated Electric Cooperative, Inc.		State: Oklahoma Sa	ampling Point: SP-27				
Investigator(s): J. Jorgensen	Section, Township	_ Section, Township, Range: S17 T19N R4E					
		_ Local relief (concave, convex, none): <u>Convex</u> Slope (%					
Subregion (LRR): H80A L	at: <u>36.130233</u>	ة.130233 Long:96.907745 ۲					
Soil Map Unit Name: 47 - Renfrow loam, 3 to 5 percent	slopes, eroded	es, eroded NWI classification: N/A					
Are climatic / hydrologic conditions on the site typical for this tin	ne of year? Yes 🔽 N	lo (If no, explain in Rem	arks.)				
Are Vegetation, Soil, or Hydrologysigni	ficantly disturbed?	Are "Normal Circumstances" pres	ent? Yes 🖌 No				
Are Vegetation, Soil, or Hydrology natu	rally problematic? (roblematic? (If needed, explain any answers in Re					
SUMMARY OF FINDINGS – Attach site map she	owing sampling poi	nt locations, transects, ir	nportant features, etc.				
Hydrophytic Vegetation Present? Yes No	✓ Is the Sam	alad Araa					
Hydrophytic Vegetation Present? Yes No Hydric Soil Present? Yes No			No				
Wetland Hydrology Present? Yes No	<u> </u>						
Remarks:							
Upland confirmation sample plot. The USACE	Antecedent Precipit	ation Tool indicates norr	nal climatic				

conditions three months prior to survey.

VEGETATION – Use scientific names of plants.

	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 30 ft r)	% Cover	Species?	Status	Number of Dominant Species
1				That Are OBL, FACW, or FAC (A)
2				(excluding FAC-): 0 (A)
3				Total Number of Dominant
4				Species Across All Strata: <u>3</u> (B)
	0	= Total Cov	ver	Percent of Dominant Species
Sapling/Shrub Stratum (Plot size: 15 ft r)				That Are OBL, FACW, or FAC: 0.00 (A/B)
1				
2				Prevalence Index worksheet:
3				Total % Cover of: Multiply by:
4				OBL species 0 x 1 = 0
5				FACW species $0 x 2 = 0$
···	0	= Total Cov	/or	FAC species $0 \times 3 = 0$
Herb Stratum (Plot size: 5 ft r)	<u> </u>			FACU species 20 x 4 = 80
1. Ambrosia artemisiifolia	15	~	FACU	UPL species $5 \times 5 = 25$
2. Setaria pumila	5	~	FACU	Column Totals: <u>25</u> (A) <u>105</u> (B)
3 Amphiachyris dracunculoides	5	~	UPL	
4				Prevalence Index = $B/A = 4.20$
				Hydrophytic Vegetation Indicators:
5				1 - Rapid Test for Hydrophytic Vegetation
6				2 - Dominance Test is >50%
7				3 - Prevalence Index is $\leq 3.0^1$
8				4 - Morphological Adaptations ¹ (Provide supporting
9				data in Remarks or on a separate sheet)
10	25			Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size: 30 ft r)	25	= Total Cov	ver	¹ Indicators of hydric soil and wetland hydrology must
				be present, unless disturbed or problematic.
1				
2				Hydrophytic Vegetation
% Bare Ground in Herb Stratum	0	= Total Cov	ver	Present? Yes No V
Remarks:				
No test is passed.				
See Photo C-27.				

US Army Corps of Engineers

SOIL

Depth	ription: (Describe Matrix	to the dep	th needed to docur Redo	ment the part the part of the		or contirr	II the absence of I	nuicators.)
(inches)	Color (moist)	%	Color (moist)	<u>%</u>	Type ¹	Loc ²	Texture	Remarks
0 - 15	7.5YR 3/4	90	5YR 4/6	10	С	М	Clay Loam	
					· .			
						. <u></u>		
							<u> </u>	
-								
-								
-				_				
-								
			Reduced Matrix, C: LRRs, unless othe			ed Sand G		on: PL=Pore Lining, M=Matrix. Problematic Hydric Soils³:
-								•
Histosol	oipedon (A2)			Gleyed Ma Redox (S5				< (A9) (LRR I, J) irie Redox (A16) (LRR F, G, H)
Black Hi	,			d Matrix (S				ace (S7) (LRR G)
	n Sulfide (A4)			Mucky Mi				s Depressions (F16)
	Layers (A5) (LRR	F)		Gleyed M	• •			l outside of MLRA 72 & 73)
	ck (A9) (LRR F, G,			ed Matrix (/ertic (F18)
	Below Dark Surfac	ce (A11)		Dark Surfa				nt Material (TF2)
	ark Surface (A12)			ed Dark Su)	·	ow Dark Surface (TF12)
	lucky Mineral (S1)			Depressio			· · ·	plain in Remarks)
	Aucky Peat or Peat			ains Depro				hydrophytic vegetation and
	cky Peat or Peat (S	5) (LKK F)		.ΚΑ / Ζ α		(п)		drology must be present, turbed or problematic.
Restrictive I	_ayer (if present):							
Type:								
Depth (ind	ches):						Hydric Soil Pre	esent? Yes No 🖌
Remarks:							-	
NO INDIC	ators are me	et.						
	<u> </u>							
HYDROLO								
-	drology Indicators							
		one required	d; check all that appl					ndicators (minimum of two required)
	Water (A1)		Salt Crust	· · ·				Soil Cracks (B6)
	ter Table (A2)		Aquatic In					y Vegetated Concave Surface (B8)
Saturatio			Hydrogen				-	e Patterns (B10)
	arks (B1)		Dry-Seaso					d Rhizospheres on Living Roots (C3)
	nt Deposits (B2)		Oxidized I			ring Roots		re tilled)
	oosits (B3)			not tilled)				n Burrows (C8)
	it or Crust (B4)		Presence		`	4)		on Visible on Aerial Imagery (C9)
	osits (B5)		Thin Muck		. ,			rphic Position (D2)
	on Vis ble on Aerial	Imagery (B	7) Other (Ex	plain in Re	emarks)			eutral Test (D5)
	tained Leaves (B9)						Frost-He	eave Hummocks (D7) (LRR F)
Field Observ		,						
Surface Wate			No <u> </u>					
Water Table			No <u> </u>					
Saturation Pr		/es	No 🔽 Depth (in	ches):		Wet	land Hydrology Pr	resent? Yes No
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:								
	x		J					
Remarks:								
No india	atore are me	\ +						
	ators are me	Ξ ι.						

APPENDIX C - GROUND PHOTOGRAPHS

Photograph C-1: View of Sample Plot (SP)-1 within PEM Wetland (W)-3, facing southwest.

Photograph C-2: View of upland SP-2 adjacent to PEM W-3, facing southwest.

Ripley Energy Center Associated Electric Cooperative, Inc.

BURNS

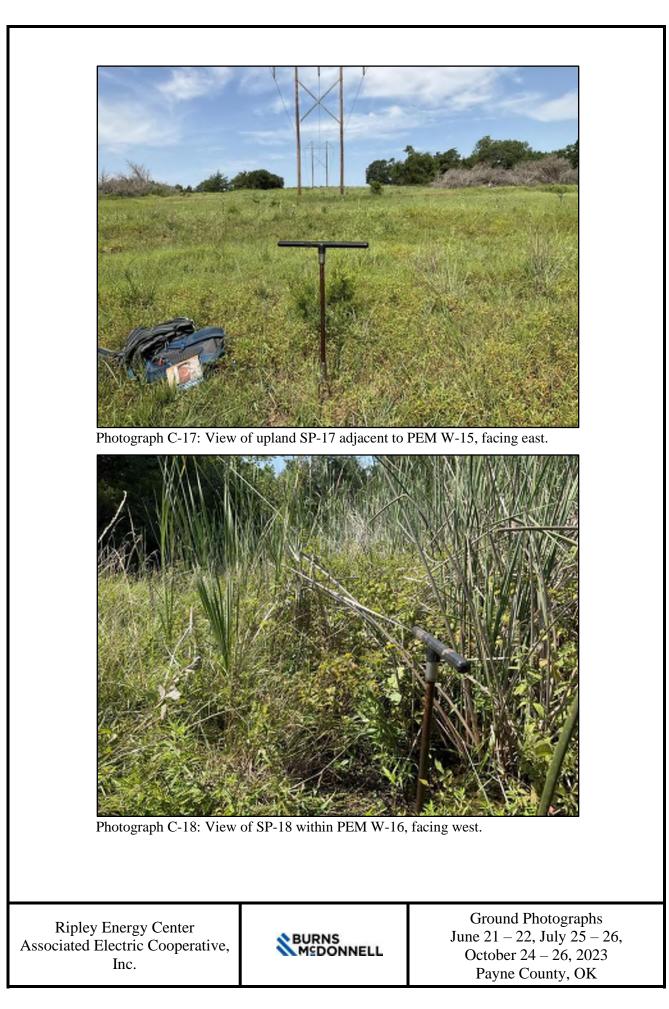
Photograph C-5: View of upland confirmation SP-5, facing south.

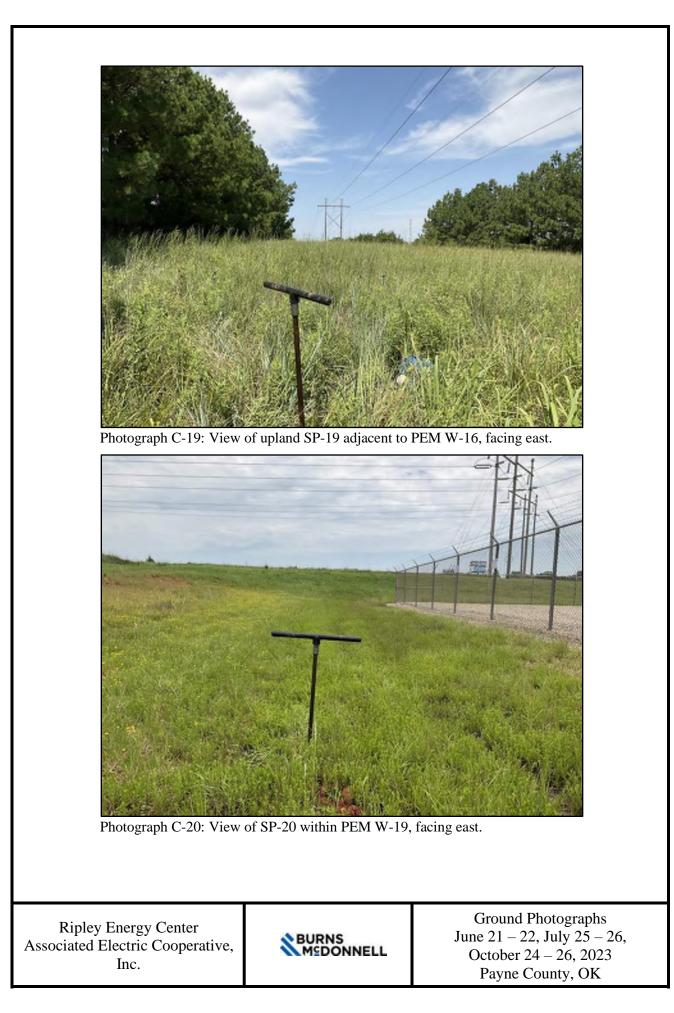
Photograph C-6: View of SP-6 within PSS W-5, facing south.

Inc.

SDONNELL

October 24 – 26, 2023 Payne County, OK




BURNS

BURNS

Photograph C-21: View of upland SP-21 adjacent to PEM W-19, facing east.

Photograph C-22: View of upland confirmation SP-22, facing north.

BURNS

Photograph C-23: View of upland confirmation SP-23, facing north.

Photograph C-24: View of upland confirmation SP-24, facing north.

BURNS

BURNS

Photograph C-27: View of upland confirmation SP-27, facing south.

Photograph C-28: View of PUB W-1, facing north.

Photograph C-29: View of PUB W-2, facing north.

Photograph C-30: View of PUB W-6, facing north.

Ripley Energy Center Associated Electric Cooperative, Inc.

Photograph C-31: View of PAB W-10, facing south.

Photograph C-32: View of PUB W-11, facing southwest.

Photograph C-33: View of PUB W-12, facing southwest.

Photograph C-34: View of PUB W-13, facing north.

Ripley Energy Center Associated Electric Cooperative, Inc.

Photograph C-35: View of PUB W-14, facing southwest.

Photograph C-36: View of PUB W-17, facing north.

Ripley Energy Center Associated Electric Cooperative, Inc.

Photograph C-37: View of PUB W-18, facing west.

Photograph C-38: View of PUB W-20, facing southeast.

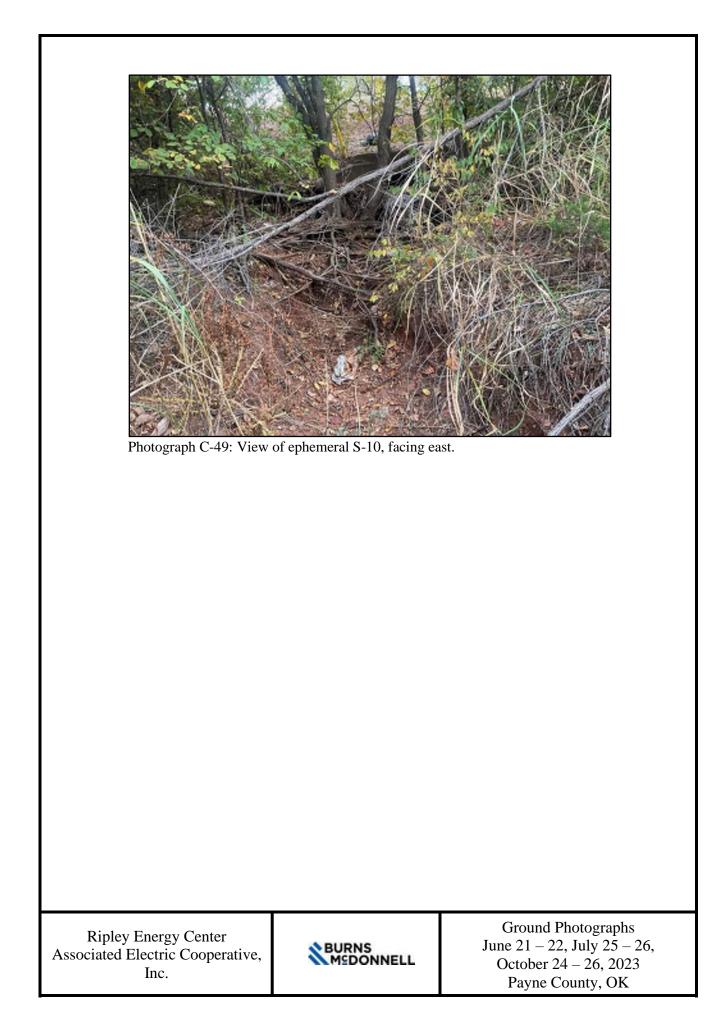
Ripley Energy Center Associated Electric Cooperative, Inc.

BURNS

Photograph C-43: View of ephemeral S-4, facing south.

Photograph C-44: View of perennial S-5, facing west.

Ripley Energy Center Associated Electric Cooperative, Inc.

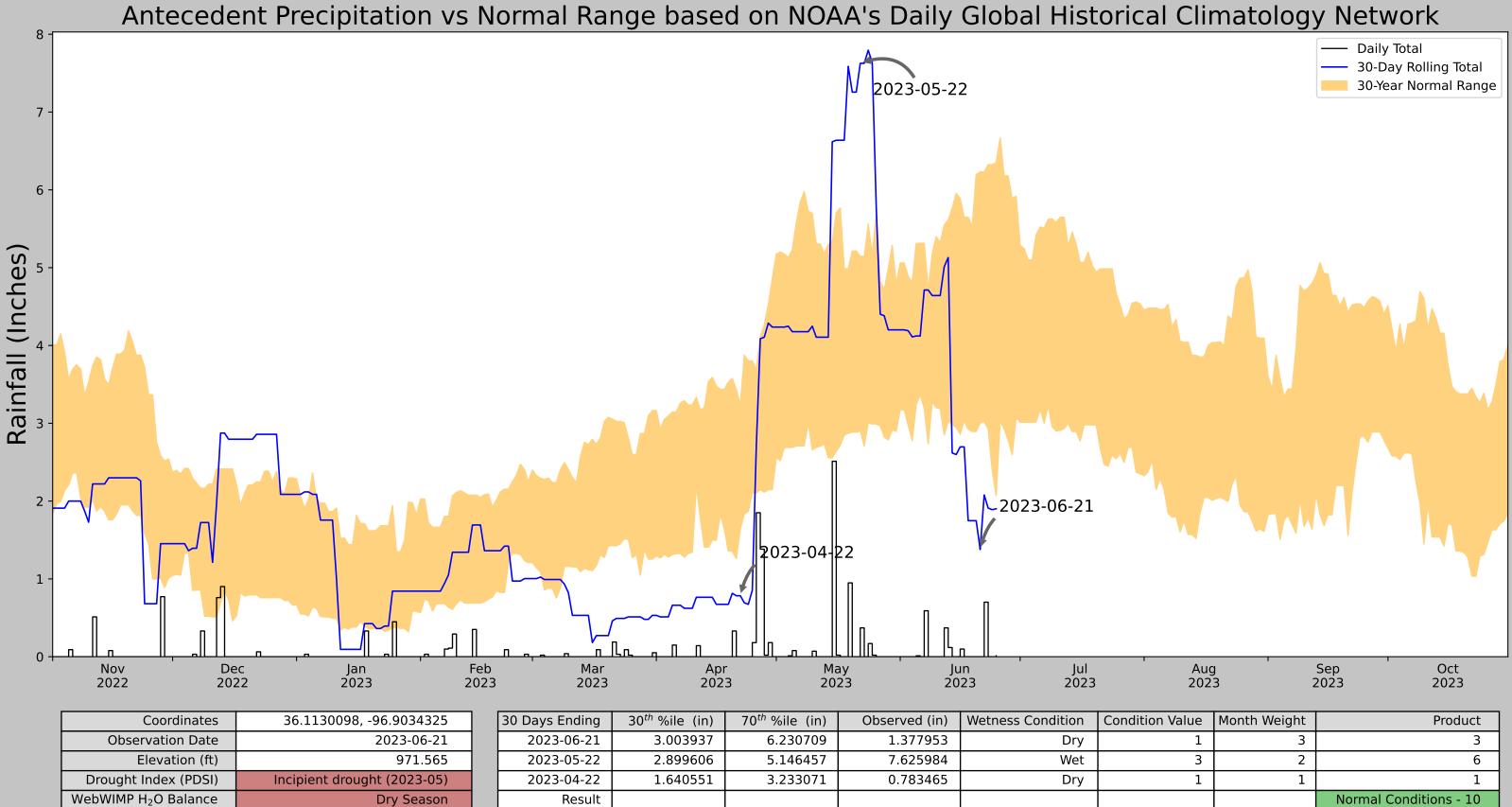


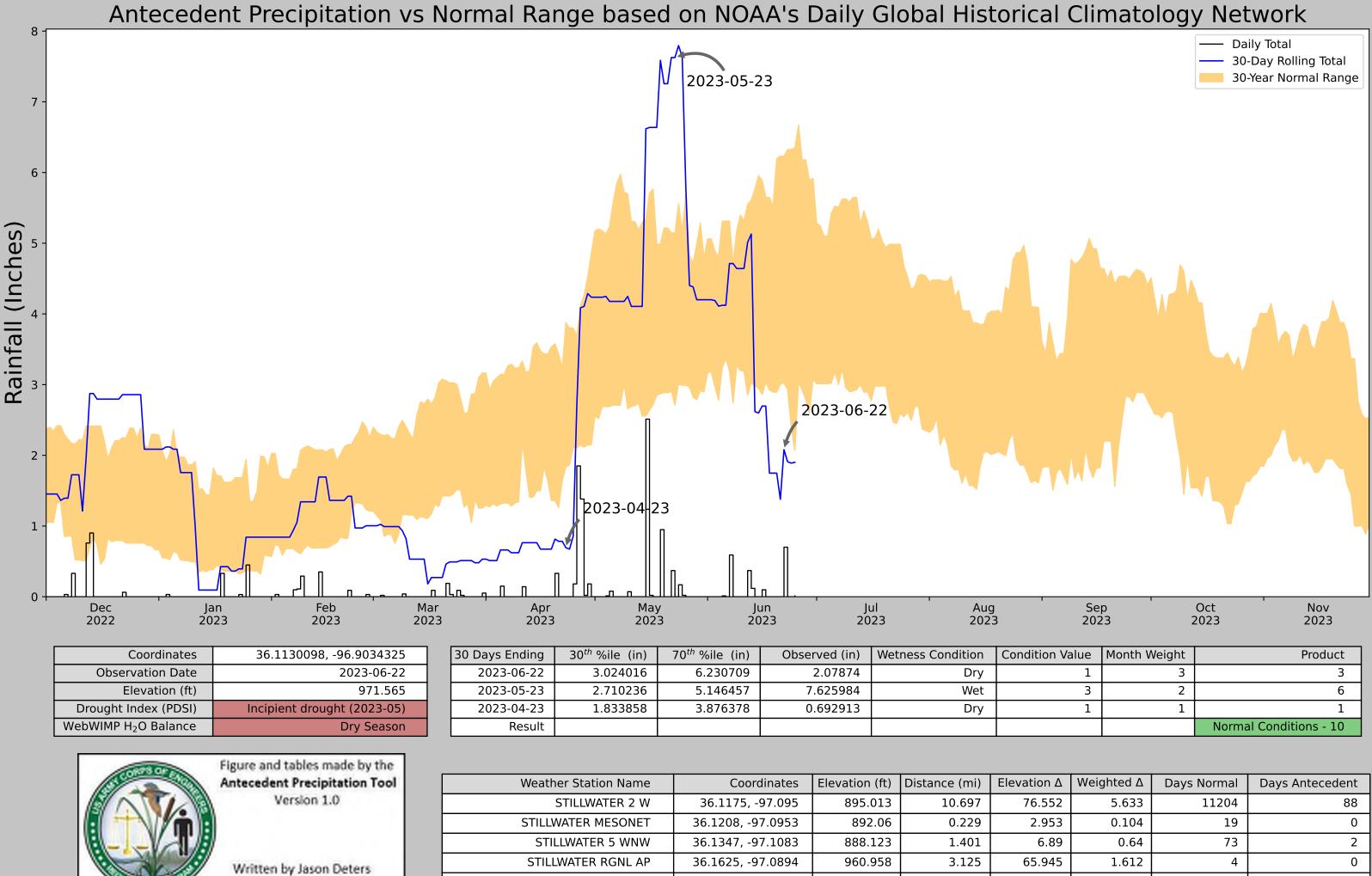
Ripley Energy Center Associated Electric Cooperative, Inc.

Photograph C-48: View of ephemeral S-9, facing west.

Ripley Energy Center Associated Electric Cooperative, Inc.

APPENDIX D - ANTECEDENT PRECIPITATION TOOL RESULTS




Figure and tables made by the **Antecedent Precipitation Tool** Version 1.0

Written by Jason Deters U.S. Army Corps of Engineers

Weather Station Name	Coordinates	Elevation (ft)	Distance (mi)	Elevation Δ	Weighted Δ	Days Normal	Days Antecedent
STILLWATER 2 W	36.1175, -97.095	895.013	10.697	76.552	5.633	11204	88
STILLWATER MESONET	36.1208, -97.0953	892.06	0.229	2.953	0.104	19	0
STILLWATER 5 WNW	36.1347, -97.1083	888.123	1.401	6.89	0.64	73	2
STILLWATER RGNL AP	36.1625, -97.0894	960.958	3.125	65.945	1.612	4	0
PERKINS	35.9742, -97.0269	892.06	10.607	2.953	4.804	53	0

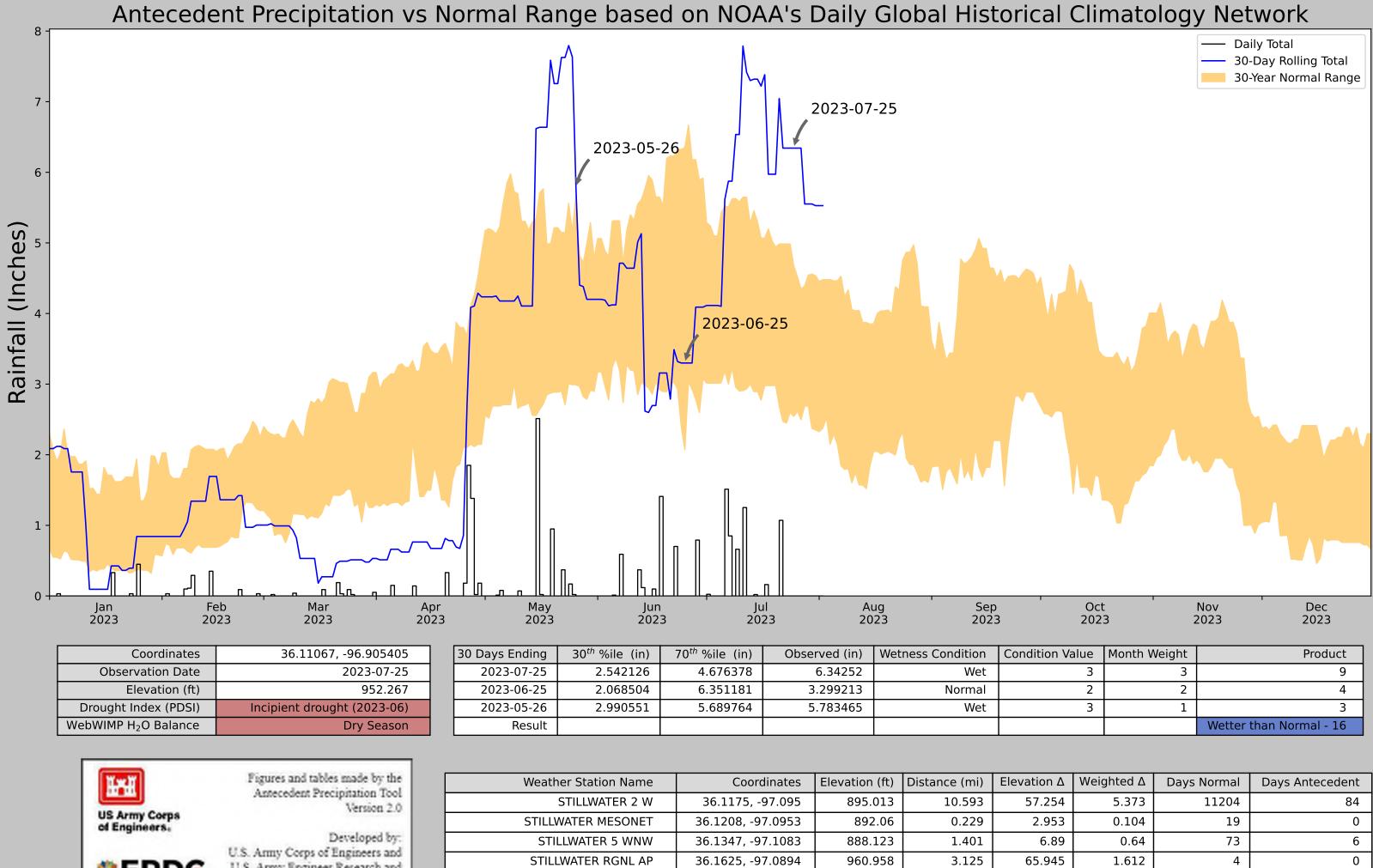
Aug 2023		Sep 2023	2023
Condition Value	Month Weight		Product
1	3		3

1	3	3
3	2	6
1	1	1
		Normal Conditions - 10

PERKINS

U.S. Army Corps of Engineers

35.9742, -97.0269


892.06

10.607

Sej		Oct	Nov
202		2023	2023
ondition Value	Month Weight		Product

Condition Value	Month Weight	Product
1	3	3
3	2	6
1	1	1
		Normal Conditions - 10

evation Δ	Weighted Δ	Days Normal	Days Antecedent
76.552	5.633	11204	88
2.953	0.104	19	0
6.89	0.64	73	2
65.945	1.612	4	0
2.953	4.804	53	0

PERKINS

35.9742, -97.0269

892.06

10.607

ERDC

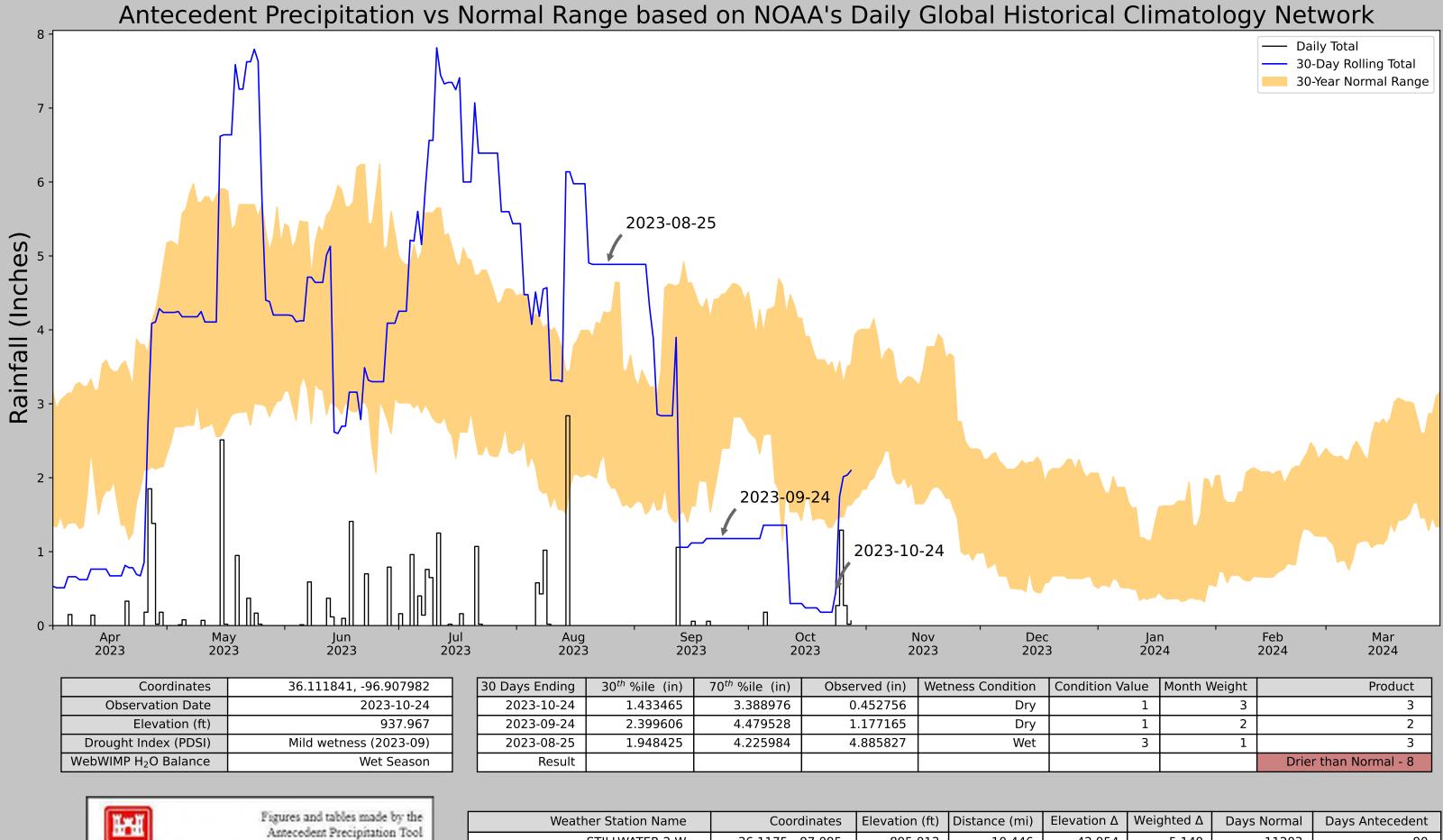
U.S. Army Engineer Research and

Development Center

Oct	Nov	Dec
2023	2023	2023

Condition Value	Month Weight	Product
3	3	9
2	2	4
3	1	3
		Wetter than Normal - 16

evation Δ	Weighted Δ	Days Normal	Days Antecedent
57.254	5.373	11204	84
2.953	0.104	19	0
6.89	0.64	73	6
65.945	1.612	4	0
2.953	4.804	53	0


ERDC

U.S. Anny Corps of Engineers and U.S. Army Engineer Research and Development Center

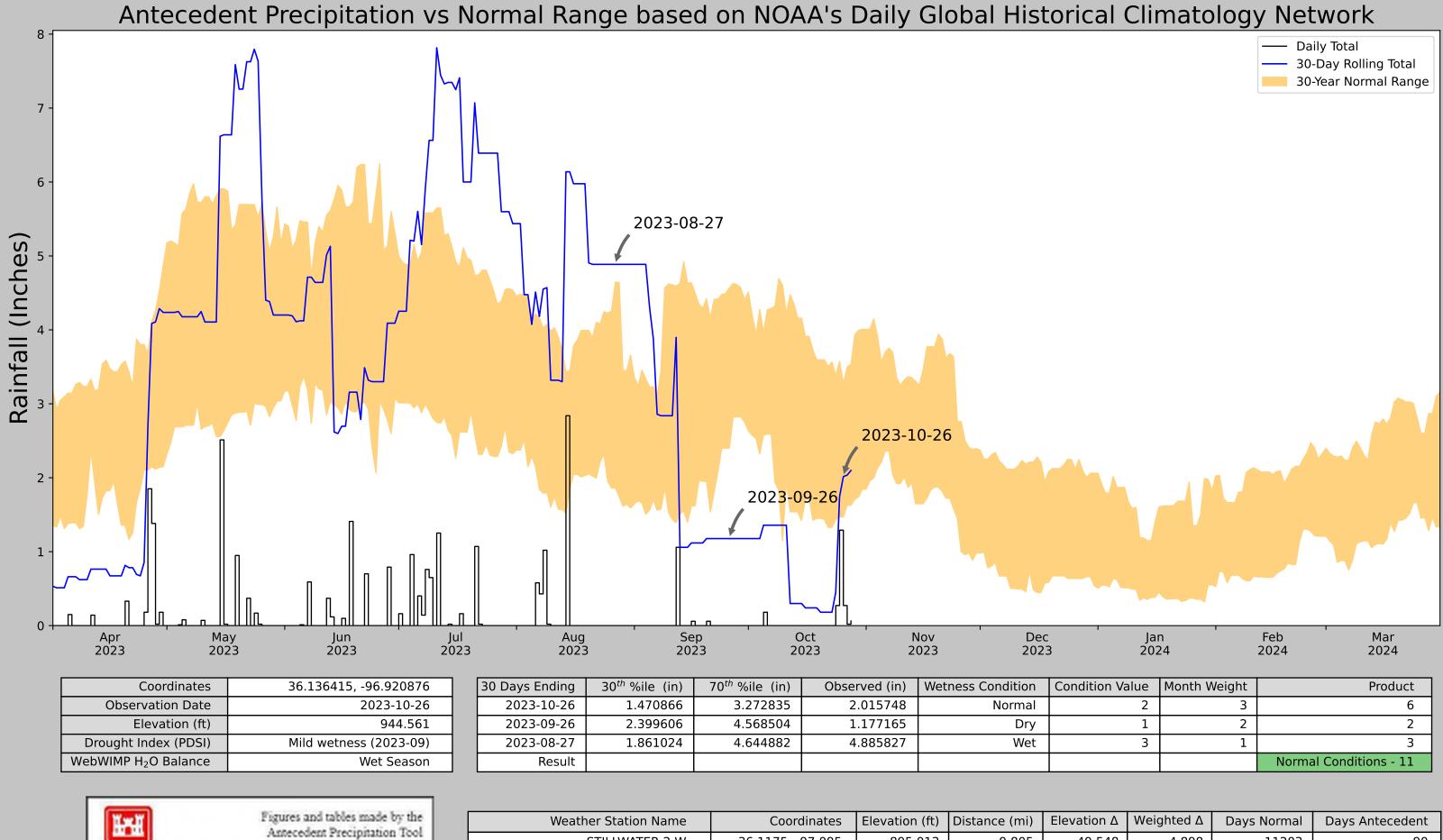
Weather Station Name	Coordinates	Elevation (ft)	Distance (mi)	Elevation Δ	Weighted Δ	Days Normal	Days Antecedent
STILLWATER 2 W	36.1175, -97.095	895.013	10.593	57.254	5.373	11204	84
STILLWATER MESONET	36.1208, -97.0953	892.06	0.229	2.953	0.104	19	0
STILLWATER 5 WNW	36.1347, -97.1083	888.123	1.401	6.89	0.64	73	6
STILLWATER RGNL AP	36.1625, -97.0894	960.958	3.125	65.945	1.612	4	0
PERKINS	35.9742, -97.0269	892.06	10.607	2.953	4.804	53	0

Oct	Nov	Dec
2023	2023	2023

Condition Value	Month Weight	Product
3	3	9
2	2	4
2	1	2
		Wetter than Normal - 15

US Army Corps of Engineers.

ERDC


Antecedent Precipitation Tool Version 2.0

Developed by: U.S. Anny Corps of Engineers and U.S. Army Engineer Research and Development Center

Weather Station Name	Coordinates	Elevation (ft)	Distance (mi)	Elevation Δ	Weighted Δ	Days Normal	Days Antecedent
STILLWATER 2 W	36.1175, -97.095	895.013	10.446	42.954	5.149	11203	90
STILLWATER MESONET	36.1208, -97.0953	892.06	0.229	2.953	0.104	19	0
STILLWATER 5 WNW	36.1347, -97.1083	888.123	1.401	6.89	0.64	75	0
STILLWATER RGNL AP	36.1625, -97.0894	960.958	3.125	65.945	1.612	4	0
PERKINS	35.9742, -97.0269	892.06	10.607	2.953	4.804	51	0

Jan	Feb	Mar
2024	2024	2024

Condition Value	Month Weight	Product
1	3	3
1	2	2
3	1	3
		Drier than Normal - 8

US Army Corps of Engineers.

ERDC

Antecedent Precipitation Tool Version 2.0

Developed by: U.S. Anny Corps of Engineers and U.S. Army Engineer Research and Development Center

Weather Station Name	Coordinates	Elevation (ft)	Distance (mi)	Elevation Δ	Weighted Δ	Days Normal	Days Antecedent
STILLWATER 2 W	36.1175, -97.095	895.013	9.805	49.548	4.898	11203	90
STILLWATER MESONET	36.1208, -97.0953	892.06	0.229	2.953	0.104	19	0
STILLWATER 5 WNW	36.1347, -97.1083	888.123	1.401	6.89	0.64	75	0
STILLWATER RGNL AP	36.1625, -97.0894	960.958	3.125	65.945	1.612	4	0
PERKINS	35.9742, -97.0269	892.06	10.607	2.953	4.804	51	0

Jan	Feb	Mar
2024	2024	2024

Condition Value	Month Weight	Product
2	3	6
1	2	2
3	1	3
		Normal Conditions - 11