APPENDIX C INDEPENDENT ENGINEERING STUDY

McClellanville 115 kV Transmission Line

Independent Engineering Study

For

Central Electric Power Cooperative, Inc.

Columbia, SC

February 2017

Performed By:

McGavran Engineering, P. C. 801 Baxter Street, Suite 410 Charlotte, North Carolina 28202

SIGNATURE:

^{v v}Édward G. McGavran, III, P.E. *(South Carolina, P.E.)*

McGavran Engineering, P. C. 801 Baxter Street, Suite 410 Charlotte, North Carolina 28202 Main: 704-347-4906 Fax: 704-347-4908

TABLE OF CONTENTS

1.	INTRODUCTION	.4					
2.	METHODOLOGY	5					
3.	PROJECT NEED	7					
4.	TRANSMISSION LINE ROUTE ANALYSIS AND IMPACTS	12					
5.	PROJECT ALTERNATIVES	22					
6.	CONCLUSIONS AND RECOMMENDATIONS	26					
Appendix 1 – BEC Outage history 2011 - 2016							

Appendix 2 – BEC System Growth Trends Appendix 3 – SCE&G BEC Winter Weather Operating Agreement Appendix 4 – Central Electric 2012 CWP

Appendix 5 – Transmission Line Cost Estimates

I. <u>INTRODUCTION</u>.

This Independent Engineering Study ("Study") is prepared for Central Electric Power Cooperative, Inc. ("Central") of Columbia, South Carolina relating to its proposed 115 kV transmission line project to serve the McClellanville - Awendaw area ("Service Area"). Central is the transmission provider for Berkeley Electric Cooperative Inc. ("BEC"), which provides retail distribution service to this area. BEC owns all substation facilities, and Central owns all transmission facilities that serve those substations. As such, this project is a collaborative effort by both organizations to explore avenues to better serve co-op members in the Service Area. The Study is intended to evaluate and supplement the extensive work already done by the co-ops in assessing the merit of several identified project alternatives (each, a "Proposed Plans") based on need, impact, and cost, as well as to offer additional insight and information that may be relevant to assessing each of the Proposed Plans.

BEC proposed upgrades to the infrastructure in the Service Area in the late 1990s to better serve members in the remoter areas of its footprint. The Service Area is now served and has been served via a 20-plus-mile distribution feeder from South Carolina Electric and Gas ("SCE&G") in Mt. Pleasant, SC, which is the sole feeder source for both SCE&G and BEC customers/members in the area. Reliability within the Service Area has always been problematic for this reason, and the magnitude of the problems is increasing as demand grows.

This Study evaluates the following criteria in reviewing the Proposed Plans:

- Project Need
- Routes and impacts
- Alternatives
- Cost

Project need will be examined and reviewed to determine if that need is legitimate and if Proposed Plan or alternative proposal can adequately fulfill that need. Need is based on reliability and capacity chiefly, but other metrics may well enter the discussion.

Line routes and their impact on surrounding areas will be examined in depth. As considerable work has been done to evaluate alternative routes and their impacts, the Study does not propose new alternative routes or specify an actual route for any Proposed Plan.

The Study will instead focus primarily on the existing Proposed Plans and assess whether they (1) meet the accepted industry criteria for investigation, and (2) have been vetted to an appropriate degree.

Project alternatives will be an evaluation of two alternatives proposed to either delay or eliminate the need for the transmission line to serve the proposed substation. These alternatives would include, but not be limited to, energy storage and onsite generation to alleviate both capacity and reliability issues that drive the project need.

Economic factors for all the Proposed Plans and alternatives will be examined as well. The Study is not geared to identify the lowest cost alternative but rather to present conclusions as to the best alternative considering all relevant factors.

II. <u>METHODOLOGY</u>.

The following describes the methods used by the Engineer in preparing the Study. The Engineer has reviewed all prior work done by the co-ops in establishing necessity for the project, evaluating routes, and some degree of project alternatives such as energy storage and onsite generation. The Engineer has reviewed all of this, and in addition has made a site visit to the project area. As such, the review will be the professional opinion of the Engineer in looking at all the work done, as well as add in information previously not known regarding certain components of the project such as additional information regarding reliability, cost, and impact that may be deterministic in the evaluation.

This Study considers environmental impacts but is not intended as an environmental study. The considerable environmental study work done speaks competently and clearly to those impacts. The studies were used as a means of assessing these impacts for the purpose of this report along with the field investigation.

As follows, the methods included the following:

All documents regarding the project were reviewed, and examined for professional competence, and proper focus on the areas of study they were intended. Those documents would be:

- McClellanville Power Supply Alternative Evaluation
- Macro Corridor Study Report
- McClellanville 115 kV Transmission Line Proposal Summary Report/ Environmental Decision
- McClellanville 115 kV Transmission Project Draft Environmental Impact Statement
- Environmental Review Process McClellanville Transmission Line Proposal
- McClellanville 115 kV Transmission Project Newsletter, Volume 1, No. 1
- McClellanville 115 kV Transmission Project Newsletter, Volume 1, No. 2
- Federal Register

- McClellanville 115 kV Transmission Line Project –Environmental Impact Statement -Addendum to Scoping Report
- Appendix A Notice of Intent
- Appendix E Agency and Public Scoping Meeting Sign In Sheets
- McClellanville 115 kV Transmission Project Environmental Impact Statement Scoping Summary Report
- McClellanville Scoping Meeting Slides
- DRAFT EIS

As the project is proposed to solve a service issue on the BEC system, the following additional documentation was reviewed concerning system performance as related to reliability and capacity:

- BEC system growth trends.
- BEC system reliability trends including individual circuit performance and history.
- BEC distribution planning regarding the McClellanville Awendaw area.

Engineer reviewed a significant amount of very detailed mapping related to the Service Area and Proposed Plans. Central also provided detailed cost estimates for all the transmission line alternatives. It should be reiterated that the Study evaluates the overall economic impact of each Proposed Plan and presented alternatives, but that lowest overall cost was not the determining factor in Engineer's analysis.

Engineer conducted a two-day field investigation in November 2016 that included the following tasks:

- Engaging in discussions with both Central and BEC staff regarding previously conducted system planning and operational aspects that include but are not be limited to capacity issues, reliability metrics, and environmental impacts.
- Visiting the proposed substation site to get to know firsthand the community that would be served and understand the impact and practicality of all the alternatives on that community. This was a very important aspect of the entire independent analysis because the visit afforded the Engineer an opportunity to better assess the real-world effects of each of the Proposed Plans on the community.
- Conducting a field investigation of all the transmission line routes as studied in the Macro Corridor Study ("MCS") and the Draft Environmental Impact Study ("DRAFT EIS"). This was done to verify the findings in those studies and to see if there is some additional detail or information that could be added to supplement those works and bring light to the reasoning behind the ultimate choices made. Again, the Study examined merits of the respective routes for each Proposed Plan in preparing its conclusions.

III. PROJECT NEED.

Project need has been well established through the past decade and longer based on two prime metrics, system reliability and system capacity. It is the case that in the electric utility industry these two-broad metrics decide the need for all infrastructure projects and their associated expenditures. It is also the case that this infrastructure is built based on growth trends that are observable and verifiable. It is never the case that electrical infrastructure is built to encourage and promote economic activity and growth. It is built to meet the needs of the community that result from prolonged and sustained growth and economic activity.

A. <u>Existing System Description</u>.

Presently the system in the McClellanville area is configured as it is represented in Figure 1 below.

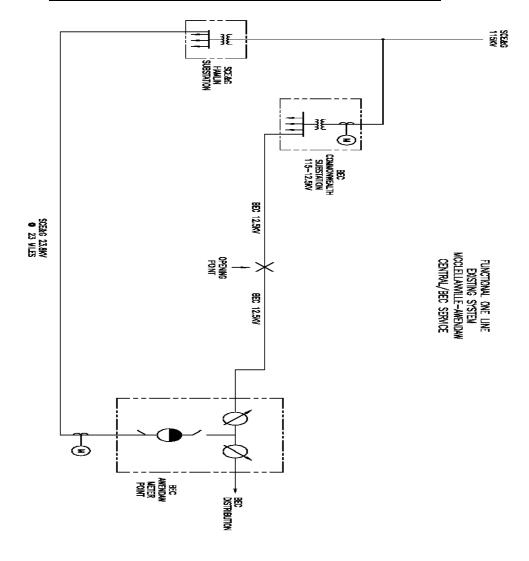


Figure 1 – Existing System Functional One Line Diagram

Appendix C, Page 7 of 104

The above diagram shows that presently the Service Area is served via a 20X mile (13.8 or 24.9 kV) distribution line owned and operated by SCE&G. That line is a long three phase distribution line, that sources at the SCE&G Hamlin substation. That substation is served from the SCE&G 115 kV system in, and around the Mount Pleasant, SC - Charleston, SC metro area. The distribution line serves the BEC Awendaw delivery that is shown in Figure 1.

Figure 2 – Awendaw Point of Delivery

The Awendaw delivery presently serves approximately 1,500 BEC members in and around the McClellanville – Awendaw area. The BEC members are located generally outside the corporate area of McClellanville. The same distribution line does serve the SCE&G customers in the area, as well as the BEC members through the Awendaw Metering Point.

The SCE&G line is built on wood poles and follows the route of U.S. Highway 17 ("US 17") north to McClellanville. As such, it parallels the Intracoastal Waterway just inland from coastal barrier islands and the Atlantic Ocean, which makes it susceptible to reliability issues arising from storm damage and environmental damage from high salt content. Other sections of the existing line parallel across US 17 as well as many roadways, thus exposing the line to traffic accidents. The long line exposure is through forested properties, increasing the likelihood of service interruption. All of these factors render this source inherently unreliable.

It is also the case that, even if a transmission resource were built to replace this distribution line, BEC would still be dependent on a SCE&G resource that is, in turn, dependent on reliability in the

Mount Pleasant area, as opposed to reliability throughout the BEC and Central - Santee Cooper area. As the system is configured now, all power flows from Mount Pleasant to McClellanville, from SCE&G's source. The SCE&G 115 kV transmission system is not configured to supply redundant service to the SCE&G substation at Hamlin which is the SCE&G source for BEC.

The most reliable mode of operation would be to have access to multiple sources, so that if one is out the other one can serve the load. One source would be considered a primary or nominal resource, the other one a secondary or contingency resource. The resources do not have to be both transmission type resources. One should be a transmission resource, in that it would be the primary resource that operates as the nominal resource. The only reason to have two transmission resources would be for the benefit of the overall transmission system, as opposed to being focused on the preservation of distribution service.

As for the existing reliability metrics for BEC, the co-op has done a superb job of keeping records of its reliability, including significant source outage information. In Appendix 1, the coop source outage information for each substation/metering point is shown from November 2011 – November 2016. That data shows that 28% of all source outages system wide occur at the Awendaw delivery, and that over that period there were 40 separate outages that inflicted 525,825 total member minutes; that complete service was lost to the delivery. In looking over the information that detail the cause of the loss of service, it is a myriad of reasons that include, but are not limited to, complete line outages on the source line, outages that took out part of the line between the source, and the delivery which takes out the delivery point. These incidents and outages are related directly to long line length and location of the line.

In summation, the co-ops' use of system reliability as a justification for the contemplated project is completely in keeping with any and all industry standards and requirements to provide improved electric service to the Service Area. System growth and system capacity are as important a set of metrics as reliability can be and are is generally easier to quantify than reliability.

B. System Growth.

BEC has grown substantially the past decade. This mirrors growth in the greater Charleston, SC metro area. The McClellanville area is now growing as a result of the growth in Mount Pleasant and Charleston. That growth is driven by the ease of travel into the metro area via US 17, which is a four-lane highway, proximity to the coastal areas, and existing infrastructure that can support the growth for both residents and businesses that are in the area. That growth extends all the way to the Santee River area north of McClellanville but is concentrated south of McClellanville along US 17. There is very little growth west of US 17 because of the lack of facilities, such as water and sewer infrastructure. So, very little if any growth will occur in the area west and north of US 17 simply because, there is no existing infrastructure to support it and it would be very expensive

to build it. The need for power is highly concentrated in the US 17 – coastal area corridor. That was also clear on the field investigation as well in November 2016.

BEC system growth trends are reflected in Table 1 below.

Year	Active Meters	Active Members
9/30/2016	92,669	78,050
2015	90,395	75,826
2014	88,111	72,134
2013	85,307	71,451
2012	83,572	70,066
2011	82,322	68,619
2010	81,284	67,581
2009	75,156	66,257
2008	77,659	65,046
2007	76,526	63,818
2006	74,146	61,736
2005	73,044	60,059
2004	70,484	58,051
2003	67,593	56,479
2002	66,343	55,962
2001	64,891	54,384
2000	63,293	53,491

Table 1 – System Growth – Active meters and Memberships

As the above table shows, BEC increased from approximately 53,000 members in 2000 to over 78,000 in 2016. Active meters, a more reliable metric of system growth, went from approximately 63,000 to over 92,000 during that period, an increase of almost 50%.

The Awendaw metering point tends to peak in the winter, driven by growth and weather conditions. The peak demand in 1994 was 3,453 KW. In 2000, that same demand was 4,505 KW. The largest peak demand maximum was 6,300 KW in 2014. The 2015 demand was 6,178 KW and the 2016 peak was 5,579 KW. Demand growth is projected at about 2% annually.

As the growth trends indicate, system demand has been increasing in the McClellanville service area for BEC. The Winter Weather Operating Agreement in Appendix 3 indicates that BEC load has grown to the point that BEC must switch load from an SCE&G feed to an alternate BEC resource in real time to avoid overload of the SCE&G facilities.

The key element of the Winter Weather Operating Agreement is found on Page 1. This agreement states that Santee Cooper (in physical reality BEC) is allowed a max of 120 amps at the McClellanville delivery. When temperatures are forecasted to fall below 23 degrees F north of the

Mount Pleasant and McClellanville areas, or if for any reason anticipated electrical demand is expected to exceed 120 amps per phase, BEC will be dispatched to switch load off the Awendaw meter point and over to the BEC Commonwealth substation via the circuit that ties with the Awendaw meter point.

Physical real-time switching is a very difficult and inefficient mode of operation when used in this manner to avoid an overload condition on the long distribution feeder from Hamlin.

The SCE&G 23.9 kV source to BEC starts at the termination of a 23-mile distribution line. Thus, the Service Area is subject to poor reliability and limited capacity from a source that nominally serves the Awendaw metering point. As such, the current SCE&G source is insufficient to reliably serve the Service Area.

C. <u>Conclusions and Recommendations</u>.

The Engineer reaches the following conclusions about project need/necessity as follows:

- 1. The reliability indices and associated data compiled and tracked by BEC prove that the project is well justified in terms of need for improved system reliability. The Awendaw metering point, which is fed from a 23-mile-long 23.9 kV feeder from the SCE&G Hamlin substation, is a long, exposed line inadequate for serving the Service Area.
- 2. As presently configured, all power flows from the SCE&G source in Mount Pleasant to McClellanville and beyond. Any minimally adequate transmission alternative should therefore bring power in from another source to insure equivalent reliability to the Service Area. The existing system as shown above in Figure 1 shows that there is no N-1 capability available. N-1 is defined as having reasonable service capability available in the event one source is lost. The only possible way to do that is to have another power resource as opposed to staying dependent on the reliability of one source.

The N-1 contingency in this case would be to have one source from SCE&G supplemented by a second resource from Central. That would best be served by having a strong Central source at the proposed McClellanville substation, and using the distribution system from Commonwealth as a contingency resource. That would fit the N-1 criteria for the BEC members in that service area.

3. Limits on current capacity further illustrate the need for the project. This is most evidenced by the Winter Operating Agreement between BEC and SCE&G governing the capacity management of the existing resource, a 23.9 kV L-L circuit from Hamlin. This resource cannot deliver more than 120 amps to Awendaw. The operating agreement stipulates that under certain conditions as mentioned above, at least some portion the load at Awendaw must be switched to the BEC Commonwealth substation to assure that the maximum load

threshold is not exceeded. This mode of operation is neither reliable nor efficient. As such, the project is justified by bringing in a resource with greater capacity that avoids having to do real-time switching to maintain system integrity.

- 4. System growth is increasing in the entire service area, and in particular the area in and around Mount Pleasant and Charleston, SC, further underscoring the need for the project in the Service Area. BEC has seen its number of active services increase by almost 50% since 2000. Load on Awendaw, which will be served via the proposed McClellanville substation, was at 3,453 KW in 1994 and has peaked at 6,300 KW (2.7% Annual Load Growth over 30 years) in 2014. Growth is being driven by access to the area, via US 17 and the coastal area east southeast of the highway. There is an established infrastructure in that area, such as adequate water and sewer facilities, roads, and communications facilities, indicating that the area will likely be the source of further growth in the foreseeable future.
- 5. BEC and all electric utilities respond to growth trends as opposed to attempting to drive those trends. Development north and west of the US 17 corridor will not be encouraged by any project of this nature. There is not any existing infrastructure as mentioned here that is present to drive growth outside of the US 17 corridor. It would take a huge infrastructure development that would be a cost prohibitive to undertake compared to any electric expansion to serve existing load that is growing in a defined area.
- 6. The support studies and documentation indicate some of the capacity issues highlighted here. Others like the operational limitations mentioned in the Winter Weather Operating Agreement are recent developments not mentioned previously. Appendix 4 has the most recent planning documentation that addresses need by Central. At the time, the original plan for McClellanville was made in 2002. Projected load on the proposed substation was 9,065 KW which would include all the existing Awendaw metering point load and transferring some from Commonwealth to alleviate capacity and distribution line exposure issues on the long circuit from Commonwealth.

The foregoing illustrates that the long-term system reliability and capacity benefits are not limited just to the existing Awendaw service area, further illustrating project necessity.

The growth rates are consistent with the system demand and consumer growth trends on both a system wide and localized basis.

IV. TRANSMISSION LINE ROUTE ANALYSIS AND IMPACTS.

Central has proposed to mitigate the reliability and capacity issues in the Service Area by constructing a single-circuit 115 kV transmission line to feed the site of the proposed

McClellanville substation. This would be a radial line and would source either SCE&G in the Mount Pleasant area or a line provided by Central from the Santee Cooper transmission system.

Based on the available options for transmission service to McClellanville, the best interests of BEC are served by having the line source a Santee Cooper resource due to N-1 contingencies.

Reliability and capacity factors must be balanced with other factors such as environmental impact and cost, which frequently have an inverse correlation. That is, minimization of environmental impacts can affect the cost of a project dramatically.

A. <u>Transmission Line Routes Studied</u>:

The Proposed Plans provide the following five routing/sourcing alternatives for getting the 115 kV source over to the proposed McClellanville site:

- Source the 115 kV Central/Santee Cooper line at Belle Isle substation north of the Santee River and come south down the US 17 corridor to the proposed McClellanville site.
- Source the Santee Cooper 230 115 kV substation at Charity which serves the North Charleston area. Construct the 115 kV line from there by taking a route northeast from Charity to the proposed McClellanville site.
- Source the Santee Cooper 115 kV source at Jamestown and construct a 115 kV line from Jamestown southeast from the delivery to the proposed McClellanville site.
- Source the Santee Cooper 230 kV line that connects Winyah and Charity 230 kV points and install a 230 -115 kV substation at Honey Hill. Then construct a 115 kV line from Honey Hill to the proposed McClellanville substation.
- Source the SCE&G 115 kV source at or around the BEC Commonwealth substation, and construct a 115 kV line north up the US highway 17 corridor to the proposed McClellanville site.

The Proposed Plans have been evaluated to some degree in the MCS and the DRAFT EIS. The Study summarizes those findings and present the Engineer's conclusions regarding same.

The Study's examination of "impacts" will not be limited just to environmental impact but will also address system impact. As such, all impacts are analyzed in light of how they fit the need basis of the entire project. If project necessity is not met via reliability and/or capacity, it is noted as such and may be eliminated accordingly.

A synopsis of each Proposed Plan is given below and is based on the evaluations in the studies and the field investigation by the Engineer in November of 2016.

B. <u>Proposed Plans For Individual Routes and Sources.</u>

1. <u>Proposed Plan 1: Belle Isle Substation 115 kV Source</u>:

The Belle Isle substation is a substation on the Santee Electric co-op system and is served via a 115 kV line from the Santee Cooper source at Winyah. Winyah is a strong 230 -115 kV source and serves Belle Isle on a radial feed from Winyah. To construct a 115 kV line from Belle Isle to McClellanville, it would include a lengthy crossing of the Santee River and then following the US 17 corridor south to the proposed McClellanville substation.

The Santee River Delta ("Delta") crossing involves constructing an overhead or underground transmission line across a two-mile expanse of diverse salt marsh ecosystem.

As illustrated by the MCS and DRAFT EIS, the environmental impact on this crossing will largely be to birds by causing collisions with the conductors across the Delta. The impact of a cleared right of way would be marginal because the crossing would be located along the pre-existing route of the bridge on US 17.

Using a directional bore, under the delta to get the transmission line across the marsh has been examined. Since the impact of the bore would be to put the line underground it would eliminate the bird collision issue. However, it would challenge other aspects of the project involving need.

The Risk Corridor scores range from a low of 6.2 to a high of 18.2. Part of the reason the scores are low is that the national forest areas are not heavily impacted. However, the Santee River crossing is a significant barrier that can cause reliability problems as will be discussed below.

To reiterate, factors establishing "need" include improving reliability and alleviating capacity concerns in the Service Area. Using any route as defined in the MCS from Belle Isle would address need as follows:

<u>Capacity</u>: Capacity issues are readily addressed by this alternative and any other 115 kV alternatives, primarily because the co-op unloads existing source distribution line would be unloaded from SCE&G and transferred to the co-ops' proposed McClellanville substation. The co-ops could then eliminate the Awendaw metering point from service and its corresponding system capacity concerns.

<u>Reliability</u>: There are several ways to quantify the effects of a capital project on system reliability. As discussed in Section III above, the threshold industry standard for acceptable reliability is the

N-1 criteria as defined by NERC is preserving service in the event a source is lost. In this case, the criteria are applied by Central serving as the transmission source. In the event that the source is out of service, it is possible to maintain service by switching distribution load over to Commonwealth for the time that service is down. That source would be from SCE&G, which is independent of the Central source at Belle Isle. This comes as close to completely satisfying the N-1 criteria as can reasonably be expected in this part of the BEC Service Area.

While the N-1 criteria is satisfied in absolute terms by adding a source not already in operation and having a backup from a completely different source, there are still issues with this alternative as follows:

First, the 115 kV from Bell Isle is a long radial line that goes all the way back to Winyah. That adds approximately 3.1 miles to the distance from Belle Isle to McClellanville. That distance to McClellanville is approximately 16.0 miles if Central utilizes the US 17 corridor. This means that total line exposure is approximately 19.1 miles to the source at Winyah.

Second, this Proposed Plan has some inherent risk from crossing a large river delta over 2.0 miles either underground or overhead. It is also the case that this Proposed Plan is located near the coastal areas, and is subject to consequential damage from storms that can happen regularly and would be difficult to repair in the delta area either overhead or underground.

The underground part of the project is only about 2.0 miles and would be only approximately 10% of the entire line exposure if the option to use a directional bore were utilized. Although this would eliminate some portion of the danger from storm damage, it would not do so for the entire project length. So, the use of a directional bore would only have a marginally positive effect on protecting the line from storm damage and would also introduce the difficulties inherent in repairing damage to the underground lines. These difficulties could extent outage times and/or require a shift in source to the Commonwealth contingent resource.

If an overhead line went down in the Delta overhead, it would be hard to access and would be a difficult process (though not as difficult and time consuming as an underground line) to getting the line back in service. So, while it does utilize a different source and a strong source from Santee Cooper, this Proposed Plan does present long term problems that would have to be dealt with from a reliability perspective over the life of the project. As such, although this Project plan does meet some of the criteria for reliability as related to need, it poses other major issues such as complexity to construct and operate as well as long line exposure.

2. <u>Proposed Plan 2: Source 230 - 115 kV at Charity Substation</u>:

The Charity 230 -115 kV substation is a major Santee Cooper substation just outside North Charleston, SC. It serves a large steel mill that has a very high reliability requirement, and is served

by the major 230 kV line from the Santee Cooper Winyah steam plant. This 230 kV source is part of the Santee Cooper 230 kV network which is a redundant system that ties major power generation and delivers bulk power throughout the state of South Carolina.

There are two routes that have been investigated from Charity. We will concentrate on the route designated in the MCS as Charity Route 1 that goes north out of Charity, and then ties in with the US 17 corridor and follows that corridor all the way to McClellanville. The alternative route from Charity goes south and adds quite a bit of unnecessary distance. Charity Route 1 is approximately 28.9 miles in total length and Charity Route 2 is approximately 34.8 miles in total length.

Environmental Impact: Both routes cross a considerable amount of marsh and wet areas along the Wando River area as is reflected in the MCS until it reaches the US 17 corridor. The MCS and DRAFT EIS both mention a considerable amount of red cockaded woodpecker habitat along the route and as the MCS shows over 49% of the entire route is in the National Forest with 14.3 square miles of the total 28.6 miles of the entire project area in the forest. The risk corridor score in the MCS is 26.0 which is the third highest of all the routes studied in the MCS.

Following the route of US 17 does not necessarily lower actual impacts as we see from the MCS and DRAFT EIS. Typically, because a transportation corridor has an established use corridor it is compatible with a transmission line and lowers overall impact. In this case, the route must go through a large area between Charity and the US 17 corridor to get to the corridor. The overall distance of the entire length of the route, being longer than most routes increases environmental impacts.

The project would all be constructed overhead as shown in the DRAFT EIS using single-pole structures, and a 75-foot-wide right of way. There are no obstacles that would require underground construction. The difficulty with this route and much of the impact from are related to accessing the project area. Due to the remoteness of the corridor in this Project Plan and lack of existing forest roads, access to the corridor for line construction and maintenance would be a major and ongoing task, especially in and around the Charity – US 17 part of the route. Both proposed paths present these difficulties.

The capacity and reliability factors for the are discussed below:

<u>Capacity</u>: Capacity issued are resolved by the installation of the 115 kV transmission line, which would be the source for the McClellanville substation. Upon its establishment, the Awendaw meter point and associated SCE&G distribution source would be abandoned by BEC, resolving the capacity problem permanently.

<u>Reliability</u>: There are several ways to quantify the effects of a capital project on system reliability. As discussed in Section III above, the threshold industry standard for acceptable reliability is the

N-1 criteria as defined by NERC is preserving service in the event a source is lost. In this case, the criteria are applied by having Central serving as the transmission source. In the event that the source is out of service, it is possible to maintain service by switching distribution load over to Commonwealth for the time that service is down. That source would be from SCE&G which is totally independent of the Central source at Charity. This comes as close to completely satisfying the N-1 criteria as can reasonably be expected in this part of the Service Area.

It is also the case that the Charity substation is a very strong source as it is part of the backbone Santee Cooper 230 kV system, which makes it the most reliable source in the entire MCS and DRAFT EIS study area. The downside of any route from this source is that they are the longest in terms of actual linear distance, and in areas that can be problematic in terms of reliability as follows:

- First, distance is a factor in reliability. At 28.9 and 34.8 miles, respectively the two routes from Charity are the longest routes available, and therefore the most line exposure which can and will cause outages from time to time.
- Second, both routes are along US 17, and near the coastal area for some distance which exposes them to nominal storm issues in the area that arise often. That is one reason the 230 kV line from Winyah to Charity takes a more upland route and avoids the coastal area along US 17. Line accessibility is a challenge on these routes as well, and in the event of a major outage could result in long-duration outages that would cripple service in the Service Area.

Although the routes from Charity do source an extremely reliable resource, they do pose challenges for long-term system reliability, a core justification for this project, due to length and location.

3. <u>Proposed Plan 3: Source the Santee Cooper 115 kV Source at Jamestown</u> <u>Substation</u>:

This Proposed Plan would involve tapping the existing 115 kV transmission line at the BEC Jamestown substation, which is served from the existing Santee Cooper 115 kV transmission system. The 115 kV transmission that is proposed as the source at Jamestown is a loop-fed transmission line from Winyah that terminates in Moncks Corner and is part of the 115 kV Santee Cooper transmission network. As such, this is a very reliable transmission resource and has more than sufficient capacity available to serve the McClellanville area. Distance is approximately 20.9 miles from the source at Jamestown to the proposed McClellanville substation.

Impacts:

The MCS shows that this Proposed Plan's route stays within the BEC service territory and is located in a very rural part of the service area. Approximately 49.9% of the route is in the national forest. It is also the case that a large part of the route follows the route of SC Highway 45 ("SC 45"), which serves to limit impacts that would typically be associated with routing away from established road corridors. It is also the case that the forest service roads in the area provide both access and right of way corridors that would minimize any impacts from the project.

The impact would revolve around red-cockaded woodpecker clusters and associated foraging habitat and some wetlands. In terms of the woodpecker issue, these clusters have been and can be readily identified and any impacts, all of which would be minor, can be appropriately mitigated. Impacts during the construction would be negligible because construction activities would (1) be limited to daylight hours, while birds are generally not in the cluster and (2) not occur within at least one to two hours of dawn and dusk. Additionally, use of mechanized equipment in a cluster is not permitted during the breeding season. Once completed, the project would not be an impediment to woodpecker clusters within the right -of-way because the 75 foot right – of – way "opening", even adjacent to Forest Service roads which would add 20 fee to the opening, would not exceed 200 feet. Foraging stands are not considered fragment as long as they are not separated by more than 200 feet.

49.9% of this Proposed Plan is located in the national forest as mentioned above. 63.4% of the route is in forested land that would include public and private land taken together. The total percentage of the route traversing wetlands is 64.6%. As this project is composed of single pole structures, there is minimal impact on wetlands and forest areas, especially after construction operations are concluded. Since access roads are already in place, this reduces overall impact throughout the project area on wetlands and forested areas.

The Proposed Plan's route does cross a wilderness linkage management area near Honey Hill. At this point, the route parallels SC 45, which already impacts this part of the wilderness area, and sets the use of it as a transportation link. As such, placing a transmission line overhead along this corridor would minimally affect the wilderness area except during construction. Clearing for the project would be limited to approximately 37.5 feet, except for some danger trees from time to time. One of the big advantages of this Proposed Plan is its high degree of easy access both for construction and ongoing O&M due to the route's proximity to roads. Its risk corridor score is rated at 19.0, which is the midrange of all risk corridor scores of all the Proposed Plans.

4. <u>Proposed Plan 4: Santee Cooper 230 kV Source at Honey Hill</u>:

Source the Santee Cooper 230 kV transmission line at Honey Hill and build a 115 kV transmission line from Honey Hill to McClellanville. This would follow the same route as set forth in Proposed Plan 3.

Implementing Proposed Plan 4 would be complex for the following reasons:

- The project would require a significant amount of land (6-10 acres) to be cleared, and graded at Honey Hill to provide room for a 230 115 kV substation. This would have impacts on the surrounding environment as well as create a complex electrical system that would require significant maintenance and technology to monitor and control the system.
- The substation itself would require a large 230 -115 kV transformer and it may be that two transformers would be needed to switch over to in case one of the units failed.
- The interconnection between the main transmission line, and the substation would add significantly to the protection, and control system of the existing line which is very secure, and has to be operated at a very high level of reliability, as it is an important backbone line for the entire Santee Cooper 230 kV network. This would likely result in the application of a three ring 230 kV breaker scheme, to assure line operation in the event of a fault on the 230 -115 kV substation.
- NERC standard operating procedures would highly discourage this alternative due to the negative impacts to the 230 kV bulk transmission system.

Impacts:

The primary environmental impacts from this Proposed Plan would result from placement of considerable facilities in wetland areas, including a major 230 - 115 kV substation. Approximately 89.9% of the entire project land area lies in wetland acreage per the MCS. Placing a major substation in such an area additionally would require changing the character and nature of the area and the major permitting and remediation attendant to such changes.

The transmission line itself in this Proposed Plan would again follow the minimal-impact route of SC 45 to McClellanville. The Proposed Plan's risk corridor score is 18.3, one of the lower such scores, due to the relatively short line length of 10.0 miles. However, the impact from the required new substation would be a major impact factor that offsets some of the impacts mitigated by a shorter line route.

Project Necessity:

<u>Capacity</u>: The project as proposed easily fulfills any, and all capacity needs at McClellanville on a permanent basis.

<u>Reliability</u>: Reliability from this source would be the best and most reliable source that could be tapped. This 230 kV line is the most reliable source in the entire study area due to the nature of

the 230 kV network requirements. Additionally, the 115 kV line to McClellanville would have less exposure only being 10.0 miles long, which is the shortest route in any of the Proposed Plans.

The alternative also satisfies the N-1 criteria, as it sources a major Santee Cooper resource and can rely on the SCE&G resources at Commonwealth to be a temporary backup in the event the primary resource was out of service. It is also the case that the 115 kV line and substation are easily accessed, facilitating efficient maintenance. However, the reliability of the bulk transmission system could be severely compromised, which overrides local reliability issues.

5. <u>Proposed Plan 5: Construct a 115 kV Transmission Line From</u> <u>Commonwealth Substation to McClellanville</u>:

This route is not covered in the DRAFT EIS or the MCS because it does not satisfy the system reliability factor for project necessity. It was mentioned in the 2011 scoping report as a route that should be considered because it generally did not affect natural areas at least around its point of origin at the BEC Commonwealth Substation.

This Proposed Plan would source the SCE&G 115 kV source that feeds the BEC Commonwealth substation. This line is a 115 kV extension from the SCE&G Hamlin substation, and sources the 115 kV SCE&G transmission system. As such, this line (which is owned by Central) is a radial feed from the SCE&G 115 kV delivery point at the Hamlin SCE&G substation. It is also the case that the Hamlin substation is the present source for the 23.9 kV distribution line. This feeds Awendaw metering point which would be replaced by the McClellanville substation and transmission line project.

The environmental and other impacts discussed in this report on this route result from placing this project in populated rights of way that are present in and around Commonwealth substation. Found just outside the city of Mt. Pleasant, SC, there is significant urbanized population in the area. The area contains many residences, often of significant monetary value, numerous shopping and other commercial centers, as well as health care and educational facilities that are not optimal for placement of transmission lines. Thus, this Proposed Plan would be very complicated to implement. Total line length from Commonwealth to Awendaw as modeled is 24.0 miles. The added line length back to Hamlin which is the source is 3.11 miles. This makes total line exposure of 27.11 miles, the second longest line exposure of any of the Proposed Plans.

Impacts:

This Proposed Plan poses similar impact to the Charity Route Proposed Plans because they follow generally the same route to McClellanville. Impacts would be similar to those routes.

There is no risk corridor score associated with this route, as the MCS and the DRAFT EIS have only studied the routes from the Charity source. It can be determined from mapping that, even though the project corridor is located along US 17, there will be areas impacted by the Proposed Plan. Parts of the Proposed Plan's corridor must be routed to avoid existing infrastructure.

The impact on existing infrastructure is likely much more pronounced than anything that would be seen on natural resources because, especially in the case of the first part of the route from Commonwealth, the project area is largely urbanized as it is in the proximity of the town of Mt. Pleasant, SC a rapidly growing bedroom community in Charleston County, SC with a population exceeding 75,000. This area is home to a significant business community and port infrastructure on the Wando River.

This Proposed Plan's transmission line route would be difficult to determine and even more difficult to acquire proper rights of way for. This route would not only pose cost and time problems, but it would also create operational problems relating to accessing and executing O&M. Such issues would also involve consideration of traffic control coordination of other city operations that could affect electric operations in real time.

Additionally, rudimentary ongoing issues such as tree trimming, construction and maintenance would impact the movement and actions of a fairly large population in real time when facilities are in proximity to homes and other areas such as schools and health care centers. Transmission line infrastructure is generally located in areas conducive to such ongoing operations and generally away from high-population-density areas to avoid such issues.

Project Necessity:

<u>Capacity</u>: The capacity issues at Awendaw are solved by this proposed project permanently.

<u>Reliability</u>: There following are reliability factors related to this Proposed Plan:

First, utilizing a 115 kV source and building a 115 kV transmission line to McClellanville would be a more reliable option than the existing 23.9 kV circuit from Hamlin.

Second, the route for this Proposed Plan poses significant reliability problems. Following the US 17 corridor from Commonwealth to McClellanville is a route that essentially parallels the coastal areas around Bull's Bay and into some wetland areas between Bull's Bay and McClellanville. The entire route of the line all the way back to Commonwealth is exposed to this harsh environment and nominal storm issues on a regular basis (as opposed to just major storms on an occasional basis).

Third, this Proposed Plan would employ a long radial transmission line of approximately 24 miles in length from Commonwealth. Additionally, the 115 kV line from Hamlin to Commonwealth is another 3 miles, which means that the entire line length from the SCE&G source will be approximately 27 miles. With the exception of the proposed Charity routes, this would represent the longest route in the entire project area. Having this long length through an area that is so inherently difficult to operate renders this Proposed Plan very difficult to justify.

Generally, a transmission feed into an area like this through such an environment requires a dual feed from another source, eventually requiring construction of another transmission line from one of the other sources to derive the full reliability benefits available from the other Proposed Plans.

Another concern here that impairs the viability of this Proposed Plan is that the same source that serves the area now is the SCE&G resource at Hamlin substation. This alternative continues the Service Area's dependency on the SCE&G 115 kV source at Hamlin. In the event of a service outage, there would be no backup from Commonwealth available to carry load at McClellanville. The N-1 capabilities available from all other Proposed Plans involving Santee Cooper are not available in this Proposed Plan.

This alternative continues to rely on the SCE&G 115 kV transmission system in and around Mt. Pleasant and Charleston, SC as a single-point resource with no backup capability either on the transmission or distribution sides. As such, this alternative does not meet the project need criteria as required by BEC and Central and was accordingly omitted from both the MCS and the DRAFT EIS. The Engineer concludes that further consideration of this Project Plan is not merited for this reason.

V. <u>PROJECT ALTERNATIVES</u>.

The project, as it has been analyzed in this report up to this point, has been based on the assumption that constructing a transmission line and substation is the best and most practical way to solve the reliability and capacity problems in the Service Area. However, other project alternatives have been examined due to the challenges discussed above in providing transmission service to the Service Area. This section evaluates the following two such proposed alternatives:

- Onsite generation that would supplement existing resources both at time of peak and in the case outages occurred that took the existing SCE&G distribution resource out of service.
- Energy storage technology that would store energy in the case of a capacity problem or a source outage as mentioned above.

A. <u>Onsite Generation</u>.

Onsite generation in the Awendaw – McClellanville area could take two forms and have various functions. First, the nature of that generation could be either full base load support and operation, or merely confined to peaking and emergency times. A base load solution would mean running the generation system as the primary resource at all times. The Study analyzes such generation implementing a natural gas generation system or a diesel generation system. In theory, such a solution could eliminate the immediate need for a transmission line.

1. <u>Base Load Generation</u>:

Natural gas would provide the most feasible base load solution based on capital and fuel costs. Several factors support this conclusion, with the projected low cost of natural gas over diesel fuel being the most substantial. Capital costs would be similar regardless of whether a natural gas or diesel solution were implemented. Implementing either system would require overcoming the significant challenge of efficiently providing an efficient continuous fuel supply.

Provision of a continuous diesel fuel source in the Service Area would require construction of a large onsite storage tank and a significant containment area to guard against spills in a coastal area. A spill would have very detrimental impacts on that environment, so a large part of the footprint for such a facility would be dedicated to this secondary containment. Because there is no pipeline in the service area dedicated to getting diesel fuel deployed in the service area, the only way to get fuel to the resource would be have it trucked in, which would be very expensive and potentially unreliable. Thus, the diesel resource alternative is rejected.

A natural gas generation solution requires a pipeline to be constructed to the proposed McClellanville substation, the designs for which would have to be adapted to host a generation system. The only nearly natural gas pipeline runs parallel to the 230 kV line from Winyah to Charity, and the tap point on that pipeline would be 10 miles from the proposed substation. Such a pipeline would follow the route of the proposed Honey Hill to McClellanville transmission line.

A project of that magnitude would be very expensive and have much more impact on wetlands and forest areas than a transmission line would. For this reason, the natural gas alternative is not feasible.

In sum, neither base load generation solution merits further consideration.

2. <u>Peak Load Generation</u>:

The McClellanville Power Supply Alternatives Evaluation (MCPAE) completed in 2002 examines both the transmission and generation alternatives. It also evaluates diesel generation primarily as a peaking resource. The use of diesel generation becomes much more standard in this case, and is discussed in the MCPAE, as an alternative to the transmission line project.

Appendix C, Page 23 of 104

To make this project work, it would take a considerable upgrade at Awendaw or, as discussed previously, utilization of the proposed substation site at McClellanville. Also, considerable upgrades to the distribution system would be necessary to utilize the system to its fullest both at peak time and during emergency times. The historical peak demand would require the generation to exceed that level which is over 6 MW to serve the load at Awendaw during an outage on the SCE&G resource for that metering point. The 2002 analysis proposed a 5 MW generation resource. In 2002, the Awendaw metering point had not reached the 5 MW level so, to meet levels now seen on the metering point it would have to exceed the 5 MW level based on the latest data available. Since generation cannot be pushed beyond its base level it must also be sized for power factor beyond a base MW rating. In this case, the Engineer would expect that sizing a generation resource today would be somewhere between 7.5 - 10 MW.

The estimated cost for such a project in 2002 was \$12,100,000. Given that the co-op would need more capacity than the 2002 study proposed, we would expect that cost figure to increase possibly up to \$20,000,000 to provide this capacity as a diesel peak demand generation resource. That would exceed cost estimates of most of the transmission line proposals under consideration in this report. There would also be considerable regulatory and environmental concerns that would include a significant degree of secondary containment in the event of fuel spills.

Additionally, diesel engines also require a high degree of maintenance to remain operational, requiring regular "exercising," frequent lubrication and regular visual inspection. As such, a diesel system would require installation of a significant SCADA and communications link, adding to both the cost and complexity of this alternative, rendering this alternative less reliable than the Proposed Plans that involve construction of transmission infrastructure.

B. <u>Energy Storage Alternatives</u>.

The alternative to a generation system as described above is an energy storage system that would, in effect, act as a support system for the existing distribution resource from Hamlin. There are several possible solutions postulated in the Renewable Audit Report of November 2016 ("RAR").

The Study analyzes the following three possible alternatives:

- Deploy grid-level battery storage at the McClellanville site.
- Deploy behind-the-meter technology ("BTM") at individual member's premise.
- Deploy a mix of grid-level battery and BTM as above.

1. <u>Grid-Level Storage at the Proposed McClellanville Substation Site</u>:

In this scenario, BEC would install a single bank of 4 MW /4 MWh batteries, along with inverter and switching capabilities to activate the system and would be available either in times of capacity

Appendix C, Page 24 of 104

requirements or during some system outages. Infrastructure upgrades to the distribution system would be necessary to accommodate the solution.

There are negative consequences to this solution. First, such a system would require advanced switching logic, necessitating a very detailed study of how the distribution system operates. This further complicates this solution. Second, this alternative would cover only 78% of all outages, a calculation apparently based on power and energy requirements on the system. That is a very straight-line calculation that has no real backup to it, and cannot be relied on as a practical calculation or predictor of operational capability. Finally, restoration time is limited to the capacity of the storage and then power is lost again until distribution service is restored.

2. <u>Behind-the-Meter Storage</u>:

Another storage alternative is a BTM storage solution. In this scenario, a transfer switch, inverter, and 4 kW/ 7 kWh battery, and critical load panel is installed and would likely need conditioned space to be operable and reliable. This alternative poses numerous complications that make it a very impractical.

First, the retail member is required to pay for battery losses, which are modeled at 15%. This modeling is an ideal number and is questionable. Also, requiring a member to accept such a complicated device may well require a significant adjustment in the BEC's membership rules and practices. BTM storage is a very complicated load management solution that is typically implemented on a voluntary basis; in this scenario, it would require involuntary imposition on members to provide any reasonable prospect for successful implementation.

Second, it is doubtful that every member on the system in the Service Area, (or any other part of it) is capable of having such a complicated device placed on their premises. Along with multiple parts, including battery and switching panel, the requirement for conditioned air at each site is almost an impossible expectation to satisfy.

Third, back feeding stored power onto the distribution system during switching or outages could pose a very dangerous situation for BEC or contract employees working on the distribution lines. Electrocutions could result when the system is down if the switching does not work properly at the premises of each and every member affected by an outage or maintenance operation. This aspect alone should disqualify this proposed solution.

Finally, at best, this solution provides backup for only 68% of all outages which again, and this figure may be optimistic given the theoretical nature of the calculation with no underlying support.

3. <u>Hybrid Central and Behind the Meter Storage</u>:

This solution combines the concerns of grid-level and BTM storage, requiring even more complex control strategies than the first two alternatives. Such strategies are unknown in addition to being unproven.

A hybrid solution involves placing a battery solution at each member's premises, identical to the solution above, and a 7.4 MW/8.0 MWH on the distribution system at an undetermined location. It would also require a critical load assessment and a load shedding strategy as well as to be fully functional.

C. <u>Conclusions Regarding Stored Energy Solutions</u>.

Conventional methods of onsite generation, using diesel or natural gas as a generation fuel are difficult to implement due to the location of the project and the cost to install such a facility. The only practical transport system for fuel is to truck it in to the site and to keep a large onsite fuel storage system operational, Such solutions would require more physical space and create more compliance issues such as major spill prevention and fire safety requirements.

The energy storage alternatives provided in the RAR require significant system upgrades and are unproven technologies today. Also, they do not factor in growth, which has been occurring for some time in this part of the service area. BTM storage would additionally involve a major overhaul of BEC member rules and regulations and forced compliance, both difficult prospects.

The reliability of energy storage solutions is questionable as well. The RAR storage solutions rely on technology that is just now being deployed on a utility scale, with unproven results when compared to a mature transmission solution. The calculations regarding outages covered in the RAR appear to be related to a straight-line calculation regarding storage capacity versus the peak demand of the service area as seen on a historical basis. This means that, as growth occurs, the ability to cover these outages will diminish.

Ultimately, neither the conventional onsite generation nor the energy storage provides solutions that are viable at this time based on existing technology.

VI. OVERALL CONCLUSIONS AND RECOMMENDATIONS.

This portion of the report deals with the final conclusions and recommendations concerning the alternatives investigated, and recommends from the Engineer's independent perspective the Proposed Plan that provides the best alternative for implementation. In addition to Engineer's analysis of the work previously done by the co-ops and its own field examinations, the recommendations are also based on Engineer's experience in looking at similar projects with similar goals, and metrics that drive and define the necessity, practicality, operational, environmental, cultural and economic impacts of such projects.

Appendix C, Page 26 of 104

A. <u>Base Conclusions</u>.

- 1. All possible alternatives to solve the project need/necessity have been studied, and all those studies are competently and thoroughly done and present a true and complete picture of what it will take to solve the service issue problems as presented. The studies appropriately consider distribution system upgrades, transmission and substation capital investment, and onsite generation. Those studies and analyses are very thorough and present an honest, real picture of what each alternative would entail, in terms of fulfilling project need, impact, and cost.
- 2. Of all the alternatives studied, only Proposed Plans that entail building the proposed McClellanville substation and 115 kV transmission line from a reliable source resolve the project necessity issues totally and permanently. A distribution solution would only provide a temporary fix and would require a transmission solution at some point. As documented, the onsite generation solutions have major fuel and environmental issues rendering them impractical and costly. The energy storage solutions rely on technologies that are very immature and require significant adverse social impact on the BEC membership to be implemented, all without completely filling the need basis for the project.

B. <u>Transmission Line Project Comparisons.</u>

The Study analyzes the Proposed Plans involving construction of transmission lines/substation on the following criteria:

- Ability to fulfill the project necessity, as presented in various studies and summarized in this report.
- Project impacts which include but are not limited to environmental and cultural impacts as well.
- Economics and the long-term cost to construct and operate the facility.

C. <u>Project Necessity</u>.

The project necessity has been defined as two major issues that must be solved, for the alternative to meet the project necessity criteria. They are as follows:

The Study evaluates each Proposed Plan in terms of how well it improves what at present is a very poor source of reliability for the Service Area. Presently, the Service Area has one distribution source and that is a very long and exposed single-source distribution line from SCE&G's Hamlin substation. To insure quality of service, an ideal Proposed Plan should meet the above-discussed N-1 criterion by providing multi-source service to the Service Area so that full service may be

Appendix C, Page 27 of 104

quickly restored in the event of a service outage from the primary source. In this scenario, the Service Area needs both a more reliable primary source and a newly implemented secondary source.

This gets us to an N-1 criterion, which means that full service can either be maintained or rapidly restored with one source out of service. That means that any source from Santee Cooper fits that need criteria. A source from SCE&G's 115 kV source in Mt. Pleasant does not meet this criterion. This would eliminate the Hamlin 115 kV alternative, as it does not meet the defined need.

Other Proposed Plans demonstrate varying ability to fill this need but all do meet the basic criteria as set forth above. As the project descriptions discuss, distance, access, and placement of each project affect potential reliability. Building a line across the Santee River from Belle Isle and/or along the US 17 corridor exposes the line to hazardous operating environments that pose significant risk for frequent outages, from nominal events such as smaller storms and exposure to coastal environments that hamper reliable operations more generally. Also, distance is a criterion that can pose a problem, as longer distances mean more line exposure.

Crossing the Santee River imposes operational constraints. Also, using the US 17 corridor hampers the Belle Isle routes as the best reliability alternatives. The distance and access issues, as noted above in the discussion of the Charity routes eliminates them from consideration as the best alternative based on the reliability criterion as stated.

Here, because of its upland location and relative ease of access, the Jamestown route offers the best solution for the reliability criterion. The Jamestown source is part of the Santee Cooper 115 kV network, an extremely reliable source. The line location is such that it is not exposed to coastal issues except at or near the termination point at McClellanville. The distance is less than most of the routes, and it is easily accessible generally either by main paved roads such as SC 45 or local and forest service roads, which can be used to get to the line for both O&M and emergency restoration.

The Honey Hill site offers the best reliability from both source, route and distance perspectives. However, the NERC issues previously discussed make this Proposed Plan a very difficult proposition as a practical matter.

There are now urgent capacity concerns regarding the Awendaw metering point and documented reliability issues that result from a 23.9 kV source that is more than 23 miles away. All Proposed Plans employing 115 kV N-1 alternatives and the installation of the McClellanville substation will eliminate those concerns permanently.

D. <u>Environmental Impacts</u>.

Environmental impacts are analyzed in both the DRAFT EIS and the MCS. The risk corridor scores in the MCS are good indicators of the degree of environmental impact each route poses. The entire range of values in the MCS for the routes studied range from a low of 6.2 for the Belle Isle alternate with a directional bore under the Santee River to a high of 36.8 for the route from Charity to Honey Hill to McClellanville. These are total scores. On a per-mile basis, the scores range from 0.9 to 1.8. A midrange value of approximately 1.4 per mile is acceptable.

As we have noted in the discussions, the routes of the Belle Isle and Charity routes are difficult to access and would require construction and maintenance of significant road entrances and rights of way to be viable. The Jamestown route to McClellanville follows the route of existing highways, county roads, and forest service access roads, which limits impacts as existing road corridors establish use generally.

The Honey Hill Proposed Plan, tapping the 230 kV line and building the transmission line down to McClellanville, has the highest per-mile risk corridor score because it requires a large tract of cleared land to accommodate the 230 - 115 kV required substation.

The Jamestown route does run adjacent to the linkage area. However, the route is also adjacent to a bridge on SC 45 which is established as a transport medium compatible with construction of the transmission line, so there would be no major impact from the transmission line either during construction or long-term operation. The Jamestown Proposed Plan would only require an additional 37.5 feet or less of cleared right of way. The Jamestown route at approximately 20.9 miles, is midrange and its per-mile risk corridor score at 1.2 is in the low range indicating, at most, a moderate impact.

E. <u>Economic and Long Range System Impact</u>.

As with any major capital project there is an economic aspect that must be considered. Those considerations include the actual cost of the project in today's dollars and the long-term benefit of the project that is realized by that cost. This Study considers both actual dollars spent as well as long-term benefits that would decide that outcome.

Appendix 5 presents the cost estimates for the various alternatives. As shown, the costs are affected by a number of factors that include linear distance, type of special construction, such as directional bores under the river system, and additional costs for a 230 - 115 kV step down station. The cost ranges from a high \$25,979,254 for one of the Honey Hill routes to a low of \$12,469,807 for the Jamestown-to-McClellanville Proposed Plan.

Based on long-term system analysis done over the past decade or more, and reviewing the project in the field, the Jamestown alternative provides the best long-term and initial-cost Proposed Plan. If this Proposed Plan were implemented, no additional transmission construction would be required to serve the Service Area, and it will be the easiest to construct and maintain.

F. <u>Final Recommendation</u>.

For the following reasons, the Jamestown-to McClellanville Proposed Plan is the best alternative considering all of the metrics considered by the Engineer:

- The Jamestown to McClellanville route meets the project necessity requirements as we have seen for both reliability and for capacity reasons.
- The Jamestown to McClellanville route offers moderate and light impacts as seen from its corridor risk scores, distance, and access. The impacts are lessened by the fact that it generally will follow existing road corridors and will avoid large land use issues as posed by new substations sites.
- The Jamestown to McClellanville route is the best long term investment for Central and BEC. It permanently solves any and all capacity and reliability problems in the area. In this case, it does for the least cost of all the alternatives studied. As such, it presents the best one system plan that is a criterion for any RUS project and in fact any transmission and substation investment plan.

The Engineer ranks the Proposed Plans based on the above criteria as follows (Proposed Plans or alternatives that are not ranked do not satisfy need criteria):

- 1. Jamestown route
- 2. Belle Isle routes
- 3. Charity routes
- 4. Honey Hill route

Appendix 1

BEC Outage Trends 2011 -2016

Appendix C, Page 31 of 104

"Priority" Members During Storm Situation

AW CKT 1

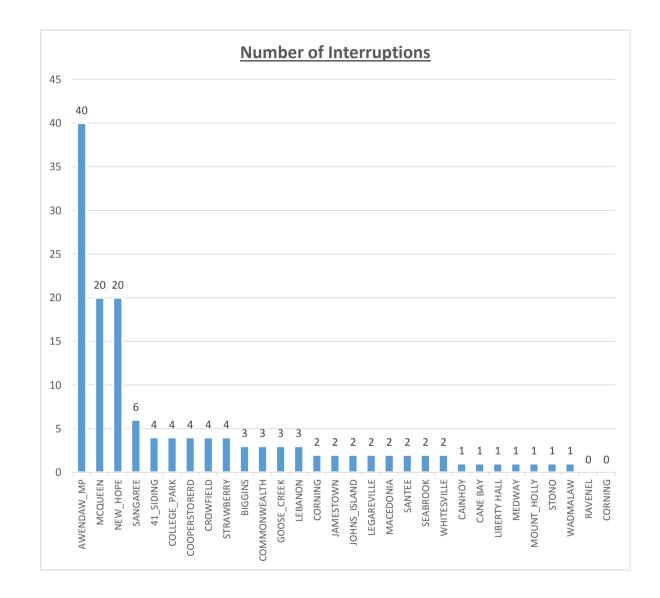
Communications Tower (8757 Old Georgetown Rd McClellanville, SC) St James Elementary School (8900 Hwy 17 North McClellanville, SC) Awendaw Fire Dept. Station 3 (Across from 8900 Hwy 17 North McClellanville, SC) Mt. Pleasant Water Works Water Station (8900 Hwy 17 North McClellanville, SC) TDS Telephone control box (Lofton Rd near 8900 Hwy 17 North McClellanville, SC) Awendaw Fire Dept. Station 4 & Charleston County Operations Center (10009 Hwy 17 North McClellanville, SC) Mt. Pleasant Water Works Water Station (10009 Hwy 17 North McClellanville, SC) Gas Station & Convenience Store (10105 Hwy 17 North McClellanville, SC) Dollar General (10141 Hwy 17 North McClellanville, SC) Communications Building (10750 Hwy 17 North McClellanville, SC) South Santee-Germantown Fire Dept. (911 South Santee Rd) Mt. Pleasant Water Works Water Station (911 South Santee Rd) Several Communication (Cell Towers) (Seven Mile Rd)

CW CKT 8

Berkeley Electric Co-op Awendaw Office (7200 Hwy 17 North Awendaw, SC) Cell Tower (7951 Hwy 17 North Awendaw, SC) TDS Telephone control box (Corner of Seewee Rd & Hwy 17 North) Charleston County Public Works (4836 Seewee Rd Awendaw, SC) WTAT-TV Tower (5404 Seewee Rd Awendaw, SC) Awendaw Fire Dept. Station 2 (6384 Maxville Rd Awendaw, SC) Communications Tower behind this same location Awendaw Town Hall and Water Tower (6971 Doar Rd Awendaw, SC) **CW CKT 7**

Pump Station on Gadsenville Rd & Beehive Rd Awendaw Fire Dept. Station 1 (4286 Hwy 17 North Awendaw, SC) Cell tower behind this same location Tractor Supply (4765 Hwy 17 North Awendaw, SC) Dollar General (4775 Hwy 17 North Awendaw, SC) Cell Tower (4816 Hwy 17 North Awendaw, SC) Seewee Outpost (4853 Hwy 17 North Awendaw, SC) Pump Station on Paradise Island (two) US Post Office (6201 Hwy 17 North Awendaw, SC)

<u>Note</u>


Will be in McClellanville Sub Service Territory Will be in McClellanville Sub Service Territory

Will be in McClellanville Sub Service Territory Will be in McClellanville Sub Service Territory

<u> 15</u>

SOURCE OUTAGE SUMMARY 1/1/2011 - 11/7/2016

				^{1; 1%} Number of Interruptions	
Source Number of Interru Total Member Minute Total Duration				1; 1%	
AWENDAW_MP	40	529,825	740	2; $1\% - 1; 1\% - 1; 1\%$ = AWENDAW_MP	
MCQUEEN	20	587,719	188	- Micqueen	
NEW_HOPE	20	361,112	187	$2; 1\% \ 1; \ 1; \ 0; 0\% = \text{NEW}_{\text{HOPE}}$	
SANGAREE	6	280,119	67	2; 1% 2: 1% % 1 //_0; 0%	
41_SIDING	4	566,899	214	2; 1% % = 41_SIDING = COLLEGE_PARK	
COLLEGE_PARK	4	249,192	44		
COOPERSTORER	C 4	0	0	■ CROWFIELD	
CROWFIELD	4	0	0	2; 1% ■ STRAWBERRY	
STRAWBERRY	4	0	0	2; 1% BIGGINS	
BIGGINS	3	0	0	3; 2% 40; 28% COMMONWEALTH	
COMMONWEAL	.1 3	28,399	27	• GOOSE_CREEK	
GOOSE_CREEK	3	496	62	3; 2%	
LEBANON	3	0	0	3; 2%	
CORNING	2	37	37	= JAMESTOWN 3; 2% = JOHNS_ISLAND	
JAMESTOWN	2	0	0	3; 2% JOHNS_ISLAND	
JOHNS_ISLAND	2	0	0	4; 3%	
LEGAREVILLE	2	0	0	a 3% ■ SANTEE	
MACEDONIA	2	0	0	■ SEABROOK	
SANTEE	2	120,453	57	4; 3% • WHITESVILLE	
SEABROOK	2	0	0	20; 14% CAINHOY	
WHITESVILLE	2	0	14	4; 3%	
CAINHOY	1	308,709	363		
CANE BAY	1	93,115	35	4; 3% 6; 4%	
LIBERTY HALL	1	0	0	20; 14%	
MEDWAY	1	0	0	= STONO	
MOUNT_HOLLY	1	0	0	= RAVENEL	
STONO	1	0	0	CORNING	
WADMALAW	1	258,112	218		
RAVENEL	0	0	0		
CORNING	0	0	0		_
TOTAL	141	3,384,187	2,253		

SOURCE OUTAGE SUMMARY 1/1/2012 - 11/7/2016

Row Labels	Number of Interruptions	Total Member Minutes	Total Duration
41_SIDING	4	566,899	214
AWENDAW_MP	40	529,825	740
BIGGINS	3	0	0
CAINHOY	1	308,709	363
CANE BAY	1	93,115	35
COLLEGE_PARK	4	249,192	
COMMONWEALTH	3	28,399	27
COOPERSTORERD	4	0	0
CORNING	2	37	37
CROWFIELD	4	0	0
GOOSE_CREEK	3	496	62
JAMESTOWN	2	0	0
JOHNS_ISLAND	2	0	0
LEBANON	3	0	0
LEGAREVILLE	2	0	0
LIBERTY HALL	1	0	0
MACEDONIA	2	0	÷
MCQUEEN	20	587,719	188
MEDWAY	1	0	0
MOUNT_HOLLY	1	0	÷
NEW_HOPE	20	361,112	
SANGAREE	6	280,119	
SANTEE	2	120,453	57
SEABROOK	2	0	0
STONO	1	0	0
STRAWBERRY	4	0	e e
WADMALAW	1	258,112	
WHITESVILLE	2	0	
Grand Total	141	3,384,187	2,253

Sources NOT Listed Above (no source outages)			
RAVENEL	0	0	
CORNING	0	0	

0 0

			a :-	
SDate	EDate	OutageName	OutageRecID	Substation
2011-01-01 00:00:00	2016-11-09 23:59:59	41-SIDING SUB (SOURCE)	2013-07-02-0116	41_SIDING
2011-01-01 00:00:00	2016-11-09 23:59:59	41-Siding: Source O/C	2013-07-15-0765	41_SIDING
2011-01-01 00:00:00	2016-11-09 23:59:59	SANTEE COOPER 230KV LOCKOUT	2013-11-22-0973	41_SIDING
2011-01-01 00:00:00 2011-01-01 00:00:00	2016-11-09 23:59:59 2016-11-09 23:59:59	41-SIDING (SOURCE) AWENDAW MP (SOURCE OPERATION	2016-03-16-1167	41_SIDING AWENDAW MP
2011-01-01 00:00:00	2016-11-09 23:59:59	· · · · · · · · · · · · · · · · · · ·	2011-01-06-0263	AWENDAW_MP
2011-01-01 00:00:00	2016-11-09 23:59:59	AWENDAW MP (SOURCE OPERATION		AWENDAW MP
2011-01-01 00:00:00	2016-11-09 23:59:59	AWENDAW MP (SOURCE OFERATION	2011-05-11-0713	AWENDAW MP
2011-01-01 00:00:00	2016-11-09 23:59:59	AWENDAW MP (SOURCE OPERATION		AWENDAW MP
2011-01-01 00:00:00	2016-11-09 23:59:59	AWENDAW MP (SOURCE OPERATION		AWENDAW MP
2011-01-01 00:00:00	2016-11-09 23:59:59		2011-09-20-1328	AWENDAW MP
2011-01-01 00:00:00	2016-11-09 23:59:59	AWENDAW MP (SOURCE OPERATION		AWENDAW MP
2011-01-01 00:00:00	2016-11-09 23:59:59		2011-10-19-1552	AWENDAW MP
2011-01-01 00:00:00	2016-11-09 23:59:59	AMWENDAW MP (SOURCE OUTAGE)		AWENDAW MP
2011-01-01 00:00:00	2016-11-09 23:59:59	AWENDAW MP (SOURCE OPERATION		AWENDAW MP
2011-01-01 00:00:00	2016-11-09 23:59:59	AWENDAW MP (SOURCE OPERATION	2011-11-29-1935	AWENDAW_MP
2011-01-01 00:00:00	2016-11-09 23:59:59	AWENDAW MP (SOURCE OPERATION		AWENDAW_MP
2011-01-01 00:00:00	2016-11-09 23:59:59	AWENDAW MP (SOURCE OPERATION		AWENDAW_MP
2011-01-01 00:00:00	2016-11-09 23:59:59	AWENDAW MP (SOURCE OUTAGE)	2012-01-23-1363	AWENDAW_MP
2011-01-01 00:00:00	2016-11-09 23:59:59	AWENDAW MP (SOURCE OPERATION		AWENDAW_MP
2011-01-01 00:00:00	2016-11-09 23:59:59	AWENDAW MP (SOURCE OPERATION		AWENDAW_MP
2011-01-01 00:00:00	2016-11-09 23:59:59	AWENDAW MP (SOURCE OPERATION		AWENDAW_MP
2011-01-01 00:00:00	2016-11-09 23:59:59	AWENDAW MP (SOURCE OPERATION		AWENDAW_MP
2011-01-01 00:00:00	2016-11-09 23:59:59	AWENDAW MP (SOURCE OPERATION		AWENDAW_MP
2011-01-01 00:00:00	2016-11-09 23:59:59	· · · · · · · · · · · · · · · · · · ·	2012-09-25-1016	AWENDAW_MP
2011-01-01 00:00:00	2016-11-09 23:59:59	AWENDAW MP (SOURCE OPERATION		AWENDAW_MP
2011-01-01 00:00:00	2016-11-09 23:59:59	AWENDAW MP (SOURCE OUTAGE)	2013-05-06-0255	AWENDAW_MP
2011-01-01 00:00:00	2016-11-09 23:59:59	AWENDAW MP (SOURCE OPERATION AWENDAW MP (SOURCE OUTAGE)		
2011-01-01 00:00:00	2016-11-09 23:59:59		2013-06-05-0286	AWENDAW_MP AWENDAW MP
2011-01-01 00:00:00 2011-01-01 00:00:00	2016-11-09 23:59:59	AWENDAW MP (SOURCE OPERATION AWENDAW MP (SOURCE OPERATION		AWENDAW_MP
2011-01-01 00:00:00	2016-11-09 23:59:59 2016-11-09 23:59:59		2013-08-14-0556	AWENDAW_MP
2011-01-01 00:00:00	2016-11-09 23:59:59	AWENDAW MP (SOURCE O/C)	2013-08-25-1057	AWENDAW MP
2011-01-01 00:00:00	2016-11-09 23:59:59	AWMP (Sourceside) O/C	2013-12-03-0066	AWENDAW MP
2011-01-01 00:00:00	2016-11-09 23:59:59	AWMP (Sourceside) O/C	2013-12-03-0067	AWENDAW MP
2011-01-01 00:00:00	2016-11-09 23:59:59	AWMP (SOURCE OUTAGE)	2013-12-18-0589	AWENDAW MP
2011-01-01 00:00:00	2016-11-09 23:59:59	AWENDAW MP	2014-07-24-2135	AWENDAW MP
2011-01-01 00:00:00	2016-11-09 23:59:59	AWENDAW MP (SOURCE OUTAGE)	2014-09-19-2148	AWENDAW_MP
2011-01-01 00:00:00	2016-11-09 23:59:59	AWENDAW MP (SOURCE)	2015-05-08-0804	AWENDAW_MP
2011-01-01 00:00:00	2016-11-09 23:59:59	AWENDAW MP (SOURCE)	2015-05-15-1120	AWENDAW_MP
2011-01-01 00:00:00	2016-11-09 23:59:59	AWENDAW MP (SOURCE)	2015-05-16-1193	AWENDAW_MP
2011-01-01 00:00:00	2016-11-09 23:59:59	AWENDAW MP (SOURCE)	2015-05-17-1216	
2011-01-01 00:00:00	2016-11-09 23:59:59	AW-MP (SOURCE)	2015-07-03-0278	
2011-01-01 00:00:00	2016-11-09 23:59:59	AWENDAW MP (SOURCE)	2016-09-20-1998	AWENDAW_MP
2011-01-01 00:00:00	2016-11-09 23:59:59	BIGGINS SUB (SOURCE OPERATION)		BIGGINS
2011-01-01 00:00:00	2016-11-09 23:59:59	SANTEE COOPER 230V LOCKOUT	2013-11-22-0969	BIGGINS
2011-01-01 00:00:00	2016-11-09 23:59:59		2015-03-12-0415	BIGGINS
2011-01-01 00:00:00 2011-01-01 00:00:00	2016-11-09 23:59:59	CAINHOY (PRI SWITCH)	2013-04-30-1541	CAINHOY CANE BAX
2011-01-01 00:00:00	2016-11-09 23:59:59 2016-11-09 23:59:59	CANE BAY SUB (SOURCE) 2011-04-23-1841	2016-09-16-1755 2011-04-23-1841	CANE BAY COLLEGE PARK
2011-01-01 00:00:00	2016-11-09 23:59:59	COLLEGE PARK CKT 9 O/C	2011-04-23-1841	COLLEGE_PARK
2011-01-01 00:00:00	2016-11-09 23:59:59		2011-04-23-1831	COLLEGE_PARK
2011-01-01 00:00:00	2016-11-09 23:59:59	COLLEGE PARK SOB (SOURCE 0/C)		COLLEGE_PARK
2011-01-01 00:00:00	2016-11-09 23:59:59	COMMONWEALTH CKT 8 OPERATION		COMMONWEALTH
2011-01-01 00:00:00	2016-11-09 23:59:59	Commonwealth Ckt 1:Lockout/Maint	2012-10-18-0796	COMMONWEALTH
2011-01-01 00:00:00	2016-11-09 23:59:59	Commonwealth Ckt 2:Lockout/Maint	2012-10-18-0788	COMMONWEALTH
2011-01-01 00:00:00	2016-11-09 23:59:59	COOPER STORE SUB (SOURCE O/C)		COOPERSTORERD
2011-01-01 00:00:00	2016-11-09 23:59:59	COOPERSTORE (SOURCE BLINK)	2014-08-13-0553	COOPERSTORERD
2011-01-01 00:00:00	2016-11-09 23:59:59	COOPER STORE SUB (SOURCE BLINI		COOPERSTORERD
2011-01-01 00:00:00	2016-11-09 23:59:59	COOPERSTORE SUB (SOURCE)	2016-08-25-3661	COOPERSTORERD
2011-01-01 00:00:00	2016-11-09 23:59:59	CORNING TRANSMISISON	2013-03-11-0548	CORNING
2011-01-01 00:00:00	2016-11-09 23:59:59	SANTEE COOPER 230KV LOCKOUT	2013-11-22-0974	CORNING
2011-01-01 00:00:00	2016-11-09 23:59:59	CROWFIELD SUB (SOURCE O/C)	2011-07-14-1488	CROWFIELD
2011-01-01 00:00:00	2016-11-09 23:59:59	SANTEE COOPER 230KV LOCKOUT	2013-11-22-0975	CROWFIELD
2011-01-01 00:00:00	2016-11-09 23:59:59	CROWFIELD SUB (SOURCE BLINK)	2015-03-12-0435	CROWFIELD

	.			
2011-01-01 00:00:00	2016-11-09 23:59:59	CROWFIELD SUB (SOURCE BLINK)	2016-07-14-0967	CROWFIELD
2011-01-01 00:00:00	2016-11-09 23:59:59	· · · · · · · · · · · · · · · · · · ·	2011-07-14-1493	GOOSE_CREEK
2011-01-01 00:00:00	2016-11-09 23:59:59	412 TRUMAN DRIVE	2015-03-13-0475	GOOSE_CREEK
2011-01-01 00:00:00	2016-11-09 23:59:59	GOOSE CREEK (SOURCE BLINK)	2016-07-14-0968	GOOSE_CREEK
2011-01-01 00:00:00	2016-11-09 23:59:59		2015-04-07-0193	JAMESTOWN
2011-01-01 00:00:00	2016-11-09 23:59:59	JAMESTOWN MP (SOURCE BLINK)	2015-07-13-0865	JAMESTOWN
2011-01-01 00:00:00	2016-11-09 23:59:59	SANTEE COOPER 230KV LOCKOUT	2013-11-22-0972	
2011-01-01 00:00:00	2016-11-09 23:59:59	JOHNS ISLAND SUB (SOURCE BLINK) LEBANON SUB (SOURCE O/C)	2013-09-03-0100	JOHNS_ISLAND
2011-01-01 00:00:00 2011-01-01 00:00:00				LEBANON
2011-01-01 00:00:00		LEBANON SUB (SOURCE BLINK) LEBANON SUB (SOURCE)	2014-08-13-0551 2016-08-25-3662	LEBANON
2011-01-01 00:00:00		LEGAREVILLE SUB (SOURCE BLINK)		LEGAREVILLE
2011-01-01 00:00:00		LEGAREVILLE (SOURCE BLINK)		LEGAREVILLE
2011-01-01 00:00:00	2016-11-09 23:59:59	LIBERTY HALL SUB (SOURCE BLINK)		LIBERTY HALL
2011-01-01 00:00:00	2016-11-09 23:59:59			MACEDONIA
2011-01-01 00:00:00		MACEDONIA SUB (SOURCE BLINK)	2015-07-13-0866	MACEDONIA
2011-01-01 00:00:00	2016-11-09 23:59:59	MCQUEEN SUB (SOURCE O/C)	2011-08-16-2297	MCQUEEN
2011-01-01 00:00:00	2016-11-09 23:59:59	MQUEEN SUB	2012-08-17-0986	MCQUEEN
2011-01-01 00:00:00	2016-11-09 23:59:59	MQUEEN SUB (TRANS.OUTAGE)	2012-10-02-0090	MCQUEEN
2011-01-01 00:00:00	2016-11-09 23:59:59	McQueen Sub: Source O/C	2012-11-07-0329	MCQUEEN
2011-01-01 00:00:00	2016-11-09 23:59:59	McQueen Sub: Source Outage	2013-03-11-0602	MCQUEEN
2011-01-01 00:00:00	2016-11-09 23:59:59	MQUEEN SUB (TRANS BLINK)	2014-07-17-1797	MCQUEEN
2011-01-01 00:00:00	2016-11-09 23:59:59	MCQUEEN SUB (SOURCE BLINK)	2014-09-03-0088	MCQUEEN
2011-01-01 00:00:00	2016-11-09 23:59:59	MCQUEEN (SOURCE BLINK)	2014-09-15-1068	MCQUEEN
2011-01-01 00:00:00	2016-11-09 23:59:59	MQUEEN SUB (SOURCE)	2014-10-17-0702	MCQUEEN
2011-01-01 00:00:00	2016-11-09 23:59:59	MCQUEEN SUB (SOURCE)	2014-12-22-2124	MCQUEEN
2011-01-01 00:00:00	2016-11-09 23:59:59	MCQUEEN SUB (SOURCE)	2016-07-14-0971	MCQUEEN
2011-01-01 00:00:00	2016-11-09 23:59:59	MCQUEEN SUB (SOURCE)	2016-03-03-0268	MCQUEEN
2011-01-01 00:00:00	2016-11-09 23:59:59	MCQUEEN SUB (SOURCE)	2016-03-03-0326	MCQUEEN
2011-01-01 00:00:00	2016-11-09 23:59:59	MCQUEEN SUB (SOURCE)	2016-03-03-0387	MCQUEEN
2011-01-01 00:00:00	2016-11-09 23:59:59	MCQUEEN SUB (SOURCE)	2016-03-03-0406	MCQUEEN
2011-01-01 00:00:00		MCQUEEN SUB (SOURCE)	2016-03-03-0431	MCQUEEN
2011-01-01 00:00:00	2016-11-09 23:59:59	MCQUEEN SUB (SOURCE)	2016-08-25-3660	MCQUEEN
2011-01-01 00:00:00	2016-11-09 23:59:59	MCQUEEN SUB (SOURCE)	2016-09-21-2047	MCQUEEN
2011-01-01 00:00:00		MCQUEEN SUB (SOURCE)	2016-09-19-1903	MCQUEEN
2011-01-01 00:00:00	2016-11-09 23:59:59		2016-09-19-1937	MCQUEEN
2011-01-01 00:00:00	2016-11-09 23:59:59	MEDWAY SUB (SOURCE BLINK)	2015-03-12-0421	MEDWAY
2011-01-01 00:00:00	2016-11-09 23:59:59 2016-11-09 23:59:59	MOUNT HOLLY SUB (SOURCE BLINK)		
2011-01-01 00:00:00 2011-01-01 00:00:00	2016-11-09 23:59:59	NEW HOPE SUB (SOURCE O/C) NEW HOPE SUB	2011-08-16-2296 2012-08-17-0994	NEW_HOPE NEW_HOPE
2011-01-01 00:00:00	2016-11-09 23:59:59	NEW HOPE SUB.(TRANS.OUTAGE)	2012-10-03-0199	NEW HOPE
2011-01-01 00:00:00	2016-11-09 23:59:59	New Hope Sub: Source O/C	2012-11-07-0328	NEW HOPE
2011-01-01 00:00:00		New Hope Sub: Source Orce	2013-03-11-0601	NEW HOPE
2011-01-01 00:00:00		NEW HOPE SUB (TRANS BLINK)	2014-07-17-1796	
2011-01-01 00:00:00	2016-11-09 23:59:59	NEW HOPE (SOURCE BLINK)	2014-09-03-0086	
2011-01-01 00:00:00	2016-11-09 23:59:59	NEW HOPE (SOURCE BLINK)		NEW HOPE
2011-01-01 00:00:00	2016-11-09 23:59:59	NEW HOPE SUB (SOURCE)	2014-10-17-0703	NEW_HOPE
2011-01-01 00:00:00	2016-11-09 23:59:59	NEW HOPE SUB (SOURCE)	2014-12-19-1957	NEW HOPE
2011-01-01 00:00:00	2016-11-09 23:59:59	NEW HOPE SUB SOURCE	2015-09-04-0326	NEW HOPE
2011-01-01 00:00:00	2016-11-09 23:59:59	NEW HOPE SUB (SOURCE)	2016-03-03-0286	NEW_HOPE
2011-01-01 00:00:00	2016-11-09 23:59:59	NEW HOPE SUB (SOURCE)	2016-03-03-0334	NEW_HOPE
2011-01-01 00:00:00	2016-11-09 23:59:59	NEW HOPE SUB (SOURCE)	2016-03-04-0489	NEW_HOPE
2011-01-01 00:00:00	2016-11-09 23:59:59	NEW HOPE SUB (SOURCE)	2016-03-03-0409	NEW_HOPE
2011-01-01 00:00:00	2016-11-09 23:59:59	NEW HOPE SUB (SOURCE)	2016-03-03-0436	NEW_HOPE
2011-01-01 00:00:00	2016-11-09 23:59:59	NEW HOPE SUB (SOURCE)	2016-08-25-3654	NEW_HOPE
2011-01-01 00:00:00	2016-11-09 23:59:59	NEW HOPE SUB (SOURCE)	2016-08-25-3658	NEW_HOPE
2011-01-01 00:00:00	2016-11-09 23:59:59	NEW HOPE SUB (SOURCE)	2016-09-19-1905	NEW_HOPE
2011-01-01 00:00:00	2016-11-09 23:59:59	NEW HOPE (SOURCE)	2016-09-19-1925	NEW_HOPE
2011-01-01 00:00:00	2016-11-09 23:59:59	SANGAREE SUB (SOURCE O/C)	2011-08-16-2293	SANGAREE
2011-01-01 00:00:00	2016-11-09 23:59:59	SANGAREE SUB	2012-08-17-0988	SANGAREE
2011-01-01 00:00:00	2016-11-09 23:59:59	SANGAREE SUB (TRANS. OUTAGE)	2012-10-02-0181	SANGAREE
2011-01-01 00:00:00		Sangaree Sub: Source operation	2012-11-07-0325	SANGAREE
	2016-11-09 23:59:59	¥		
2011-01-01 00:00:00	2016-11-09 23:59:59	Sangaree Sub: Source Outage	2013-03-11-0600	SANGAREE
2011-01-01 00:00:00 2011-01-01 00:00:00	2016-11-09 23:59:59 2016-11-09 23:59:59	Sangaree Sub: Source Outage SANGAREE SUB (SOURCE)	2013-03-11-0600 2016-09-28-2435	SANGAREE
2011-01-01 00:00:00	2016-11-09 23:59:59	Sangaree Sub: Source Outage	2013-03-11-0600	

2011-01-01 00:00:00	2016-11-09 23:59:59	SEABROOK SUB (SOURCE BLINK)	2015-04-20-0841	SEABROOK
2011-01-01 00:00:00	2016-11-09 23:59:59	SEABROOK SUB (SOURCE SUB)	2016-07-14-0970	SEABROOK
2011-01-01 00:00:00	2016-11-09 23:59:59	STONO SUB (SOURCE BLINK)	2015-04-20-0842	STONO
2011-01-01 00:00:00	2016-11-09 23:59:59	STRAWBERRY SUB (SOURCE O/C)	2013-09-04-0130	STRAWBERRY
2011-01-01 00:00:00	2016-11-09 23:59:59	SANTEE COOPER 230KV LOCKOUT	2013-11-22-0970	STRAWBERRY
2011-01-01 00:00:00	2016-11-09 23:59:59	STRAWBERRY SUB (SOURCE BLINK)	2015-03-12-0419	STRAWBERRY
2011-01-01 00:00:00	2016-11-09 23:59:59	STRAWBERRY SUB (SOURCE BLINK)	2016-08-18-1215	STRAWBERRY
2011-01-01 00:00:00	2016-11-09 23:59:59	WADMALAW SUBSTATION	2012-05-17-0927	WADMALAW
2011-01-01 00:00:00	2016-11-09 23:59:59	WHITESVILLE SUB (SOURCE BLINK)	2015-03-12-0420	WHITESVILLE
2011-01-01 00:00:00	2016-11-09 23:59:59	WHITESVILLE SUB (SOURCE)	2015-07-20-2651	WHITESVILLE

Feeder	OutageStartTime	OutageEndTime
	6.20.2013 2:55 PM	6.20.2013 5:08 PM
	7.13.2013 3:33 PM	7.13.2013 3:33 PM
	11.11.2013 3:16 PM	11.11.2013 3:16 PM
	3.13.2016 4:54 PM	3.13.2016 6:16 PM
	1.5.2011 4:46 PM	1.5.2011 4:46 PM 3.3.2011 12:00 PM
	3.3.2011 11:58 AM 3.5.2011 4:41 PM	3.5.2011 4:41 PM
	5.11.2011 4:21 AM	5.11.2011 5:16 AM
	7.13.2011 9:44 PM	7.13.2011 9:44 PM
	9.11.2011 5:00 PM	9.11.2011 5:00 PM
AW-01	9.19.2011 4:54 PM	9.19.2011 4:57 PM
	10.18.2011 10:11 AM	10.18.2011 10:11 AM
	10.19.2011 6:32 PM	10.19.2011 9:48 PM
	11.17.2011 1:34 PM	11.17.2011 1:35 PM
	11.17.2011 2:40 PM	11.17.2011 2:40 PM
	11.29.2011 8:34 AM	11.29.2011 8:34 AM
	12.29.2011 3:56 PM 12.30.2011 10:10 AM	12.29.2011 3:56 PM 12.30.2011 10:10 AM
AW-01	1.23.2012 7:48 PM	1.23.2012 11:12 PM
	2.11.2012 9:29 PM	2.11.2012 9:29 PM
	2.27.2012 1:26 PM	2.27.2012 1:26 PM
AW-01	4.13.2012 8:50 AM	4.13.2012 8:50 AM
	5.4.2012 7:44 AM	5.4.2012 7:44 AM
	9.1.2012 6:02 AM	9.1.2012 6:02 AM
AW-01	9.25.2012 9:02 AM	9.25.2012 9:10 AM
A)A/ 04	4.19.2013 5:58 AM	4.19.2013 5:58 AM
AW-01	5.3.2013 6:58 PM 6.3.2013 1:40 PM	5.3.2013 7:04 PM 6.3.2013 1:40 PM
	6.5.2013 4:06 AM	6.5.2013 1:40 PM 6.5.2013 4:19 AM
	6.26.2013 3:07 PM	6.26.2013 3:07 PM
	7.24.2013 9:51 AM	7.24.2013 9:51 AM
AW-01	8.14.2013 12:30 PM	8.14.2013 2:41 PM
	8.25.2013 9:08 AM	8.25.2013 9:08 AM
	12.2.2013 9:02 AM	12.2.2013 9:02 AM
	12.2.2013 9:02 AM	12.2.2013 9:02 AM
	12.18.2013 7:57 AM	12.18.2013 8:00 AM
AW-01	7.24.2014 3:52 PM	7.24.2014 4:37 PM
AW-01	9.19.2014 3:15 PM 5.7.2015 3:10 PM	9.19.2014 3:40 PM 5.7.2015 3:19 PM
AW-01	5.15.2015 5:00 PM	5.15.2015 5:08 PM
AW-01	5.16.2015 4:11 PM	5.16.2015 4:20 PM
AW-01	5.17.2015 3:34 PM	5.17.2015 3:42 PM
	7.3.2015 3:12 PM	7.3.2015 3:25 PM
	9.20.2016 8:21 PM	9.20.2016 8:25 PM
	8.29.2013 9:53 PM	8.29.2013 9:53 PM
	11.11.2013 3:16 PM	11.11.2013 3:16 PM
	3.5.2015 12:35 PM 4.21.2013 10:47 AM	3.5.2015 12:35 PM
	9.16.2016 6:54 AM	4.21.2013 4:50 PM 9.16.2016 7:30 AM
CP-09	4.23.2011 2:07 PM	4.23.2011 2:09 PM
CP-09	4.23.2011 2:07 PM	4.23.2011 2:09 PM
	9.3.2011 8:55 AM	9.3.2011 8:57 AM
	3.10.2013 5:19 PM	3.10.2013 5:56 PM
CW-08	9.11.2011 5:00 PM	9.11.2011 5:00 PM
CW-01	10.18.2012 6:16 AM	10.18.2012 6:33 AM
CW-02	10.18.2012 6:21 AM	10.18.2012 6:31 AM
	9.2.2013 7:05 PM	9.2.2013 7:05 PM
	8.12.2014 4:36 PM	8.12.2014 4:36 PM
	3.5.2015 12:35 PM	3.5.2015 12:35 PM 8.20.2016 7:24 PM
		10 ZU ZU 10 / Z4 PM
	8.20.2016 7:24 PM	
	3.10.2013 5:19 PM	3.10.2013 5:56 PM
	3.10.2013 5:19 PM 11.11.2013 3:16 PM	3.10.2013 5:56 PM 11.11.2013 3:16 PM
	3.10.2013 5:19 PM	3.10.2013 5:56 PM

		-
	7.7.2016 10:51 AM	7.7.2016 10:51 AM
	7.13.2011 4:49 PM	7.13.2011 4:49 PM
GC-03	3.13.2015 11:45 PM	3.14.2015 12:47 AM
	7.7.2016 10:51 AM	7.7.2016 10:51 AM
	3.5.2015 12:35 PM	3.5.2015 12:35 PM
	7.11.2015 9:45 PM 11.11.2013 3:16 PM	7.11.2015 9:45 PM 11.11.2013 3:16 PM
	4.19.2015 6:09 PM	4.19.2015 6:09 PM
	9.2.2013 7:05 PM	9.2.2013 7:05 PM
	8.12.2014 4:36 PM	8.12.2014 4:36 PM
	8.20.2016 7:24 PM	8.20.2016 7:24 PM
	4.19.2015 6:09 PM	4.19.2015 6:09 PM
	8.21.2015 4:35 PM	8.21.2015 4:35 PM
	3.5.2015 12:35 PM	3.5.2015 12:35 PM
	3.5.2015 12:35 PM	3.5.2015 12:35 PM
	7.11.2015 9:45 PM	7.11.2015 9:45 PM
	8.12.2011 11:46 AM	8.12.2011 11:46 AM
	8.17.2012 5:00 PM	8.17.2012 5:25 PM
	10.2.2012 8:43 PM	10.2.2012 8:53 PM
	11.1.2012 2:39 AM	11.1.2012 2:39 AM
	3.11.2013 11:55 AM	3.11.2013 11:56 AM
	7.15.2014 6:28 PM	7.15.2014 6:28 PM
	9.2.2014 4:36 PM	9.2.2014 4:36 PM
	9.12.2014 7:19 PM	9.12.2014 7:19 PM
	10.16.2014 4:15 PM 12.18.2014 5:08 PM	10.16.2014 4:21 PM 12.18.2014 5:15 PM
	9.4.2015 11:26 PM	9.5.2015 12:19 AM
	3.3.2016 6:25 PM	3.3.2016 7:16 PM
	3.3.2016 7:40 PM	3.3.2016 7:42 PM
	3.3.2016 7:49 PM	3.3.2016 7:51 PM
	3.3.2016 9:30 PM	3.3.2016 9:47 PM
	3.3.2016 11:27 PM	3.3.2016 11:29 PM
	8.18.2016 6:57 PM	8.18.2016 6:57 PM
	8.24.2016 4:03 PM	8.24.2016 4:03 PM
	9.19.2016 4:39 PM	9.19.2016 4:44 PM
	9.19.2016 5:05 PM	9.19.2016 5:12 PM
	3.5.2015 12:35 PM	3.5.2015 12:35 PM
	4.14.2015 9:10 AM	4.14.2015 9:10 AM
	8.12.2011 11:46 AM	8.12.2011 11:46 AM
	8.17.2012 5:00 PM	8.17.2012 5:25 PM
	10.2.2012 8:43 PM 11.1.2012 2:39 AM	10.2.2012 8:53 PM 11.1.2012 2:39 AM
	3.11.2013 11:55 AM	3.11.2013 11:56 AM
	7.15.2014 6:28 PM	7.15.2014 6:28 PM
	9.2.2014 4:36 PM	9.2.2014 4:36 PM
	9.12.2014 7:19 PM	9.12.2014 7:19 PM
	10.16.2014 4:15 PM	10.16.2014 4:21 PM
	12.18.2014 5:08 PM	12.18.2014 5:15 PM
	9.4.2015 11:26 PM	9.5.2015 12:19 AM
	3.3.2016 6:25 PM	3.3.2016 7:16 PM
	3.3.2016 7:40 PM	3.3.2016 7:42 PM
	3.3.2016 7:49 PM	3.3.2016 7:51 PM
	3.3.2016 9:30 PM	3.3.2016 9:47 PM
	3.3.2016 11:27 PM	3.3.2016 11:29 PM
	8.18.2016 6:57 PM	8.18.2016 6:57 PM
	8.24.2016 4:03 PM	8.24.2016 4:03 PM
	9.19.2016 4:39 PM	9.19.2016 4:44 PM
	9.19.2016 5:05 PM	9.19.2016 5:12 PM
	8.12.2011 11:46 AM 8.17.2012 5:00 PM	8.12.2011 11:46 AM
	10.2.2012 5:00 PM	8.17.2012 5:25 PM 10.2.2012 8:53 PM
	11.1.2012 2:39 AM	11.1.2012 2:39 AM
	11.1.2012 2:39 AM 3.11.2013 11:55 AM	11.1.2012 2:39 AM 3.11.2013 11:56 AM

4.19.2015 6:09 PM	4.19.2015 6:09 PM
8.21.2015 4:35 PM	8.21.2015 4:35 PM
4.19.2015 6:09 PM	4.19.2015 6:09 PM
8.29.2013 9:53 PM	8.29.2013 9:53 PM
11.11.2013 3:16 PM	11.11.2013 3:16 PM
3.5.2015 12:35 PM	3.5.2015 12:35 PM
8.10.2016 2:54 PM	8.10.2016 2:54 PM
5.17.2012 3:28 AM	5.17.2012 7:06 AM
3.5.2015 12:35 PM	3.5.2015 12:35 PM
7.20.2015 12:19 PM	7.20.2015 12:33 PM

Cause	TroubledElement
051 Santee Cooper	41_SIDING
051 Santee Cooper	41_SIDING
051 Santee Cooper	SW1535988441-B
051 Santee Cooper 052 SCE&G	41_SIDING SW618929878-A
052 SCE&G	SW618929878-A
052 SCE&G	OC1531708827
052 SCE&G	SW618929878-A
052 SCE&G	OC1531708827
052 SCE&G	SW618929878
052 SCE&G	SW618929878
052 SCE&G	OC1531708827
052 SCE&G 052 SCE&G	AWENDAW_MP SW618929878
052 SCE&G	OC1531708827
052 SCE&G	AWENDAW MP
052 SCE&G	OC1531708827
052 SCE&G	AWENDAW MP
052 SCE&G	AWENDAW MP
052 SCE&G	AWENDAW MP
052 SCE&G	AWENDAW_MP
052 SCE&G	OC1531708827
052 SCE&G	AWENDAW_MP
052 SCE&G	OC1531708827
052 SCE&G	OC1531708827
052 SCE&G	AWENDAW_MP
052 SCE&G 052 SCE&G	OC1531708827 OC1531708827
052 SCE&G	OC1531708827
052 SCE&G	AWENDAW MP
052 SCE&G	OH1460503743
051 Santee Cooper	SW662338177-B
051 Santee Cooper	OH-42610481
054 Santee Cooper Operation	BIGGINS
053 BEC	CAINHOY
051 Santee Cooper	XFMR210035
051 Santee Cooper	OC1865049885
051 Santee Cooper	OC1865049885
051 Santee Cooper	COLLEGE_PARK
051 Santee Cooper	COLLEGE_PARK
052 SCE&G	OC275325955
052 SCE&G	OC344976902
052 SCE&G	OC215251518
051 Santee Cooper	
051 Santee Cooper 054 Santee Cooper Operation	COOPERSTORERD COOPERSTORERD
054 Santee Cooper Operation 051 Santee Cooper	COOPERSTORERD
051 Santee Cooper	CORNING
051 Santee Cooper 051 Santee Cooper	CORNING
051 Santee Cooper	CROWFIELD
051 Santee Cooper	OH1376581575
054 Santee Cooper Operation	CROWFIELD

051 Santee Cooper	CROWFIELD
051 Santee Cooper	GOOSE_CREEK
052 SCE&G	TR-1865317810
051 Santee Cooper	GOOSE_CREEK
054 Santee Cooper Operation	JAMESTOWN
051 Santee Cooper	JAMESTOWN
051 Santee Cooper	SW-1794710131-B
051 Santee Cooper	JOHNS_ISLAND
051 Santee Cooper	LEBANON
051 Santee Cooper	LEBANON
051 Santee Cooper	LEBANON
051 Santee Cooper	LEGAREVILLE
051 Santee Cooper	LEGAREVILLE
054 Santee Cooper Operation	SW186213-B
054 Santee Cooper Operation	MACEDONIA
051 Santee Cooper	MACEDONIA
051 Santee Cooper	MCQUEEN
	MCQUEEN
	MCQUEEN
	MCQUEEN
051 Santee Cooper	MCQUEEN
	MCQUEEN
	MCQUEEN
	MCQUEEN
051 Santee Cooper	MCQUEEN
	MCQUEEN
	MCQUEEN
051 Santee Cooper	OH1368234708
051 Santee Cooper	MCQUEEN
	MCQUEEN
051 Santee Cooper	OH1368234708
051 Santee Cooper	OH1368234708
054 Santee Cooper Operation	MEDWAY
	MOUNT_HOLLY
	NEW HOPE
051 Santee Cooper	NEW HOPE
051 Santee Cooper	NEW HOPE
	NEW HOPE
051 Santee Cooper	NEW HOPE
	NEW_HOPE
051 Santee Cooper	NEW HOPE
	NEW_HOPE
	NEW_HOPE
	NEW HOPE
051 Santee Cooper	OH-1142665965
	OH-1142665965
051 Santee Cooper	OH-1142665965
	NEW HOPE
051 Santee Cooper	NEW_HOPE
051 Santee Cooper	OH960514415
051 Santee Cooper	OH-1142665965
051 Santee Cooper	SANGAREE
051 Santee Cooper	SANGAREE
051 Santee Cooper	SANGAREE
051 Santee Cooper 051 Santee Cooper	SANGAREE
051 Santee Cooper	SANGAREE
051 Santee Cooper	SANGAREE
051 Santee Cooper	SANTEE
051 Santee Cooper 051 Santee Cooper	SANTEE SANTEE

051 Santee Cooper	SEABROOK
051 Santee Cooper	SEABROOK
051 Santee Cooper	STONO
051 Santee Cooper	SW1428772315-B
051 Santee Cooper	SW1428772315-B
054 Santee Cooper Operation	STRAWBERRY
051 Santee Cooper	STRAWBERRY
051 Santee Cooper	SW-808879795
054 Santee Cooper Operation	SW42671492-B
051 Santee Cooper	WHITESVILLE

EquipMat	equip
030 Conductors and devices	30
070 Transmision Breaker	70
070 Transmision Breaker	70
020 Towers, poles, and fixtures	20
070 Transmision Breaker	70
070 Transmision Breaker	70
070 Transmision Breaker	70 70
070 Transmision Breaker 070 Transmision Breaker	70
070 Transmision Breaker	70
070 Transmision Breaker	70
070 Transmision Breaker	70
070 Transmision Breaker	70
070 Transmision Breaker	70
070 Transmision Breaker	70
070 Transmision Breaker	70
070 Transmision Breaker	70
070 Transmision Breaker	70
070 Transmision Breaker	70
070 Transmision Breaker	70
070 Transmision Breaker	70
070 Transmision Breaker	70
070 Transmision Breaker	70
070 Transmision Breaker	70
070 Transmision Breaker 070 Transmision Breaker	70 70
070 Transmision Breaker	70
130 Source side fuse or Device	130
020 Towers, poles, and fixtures	20
020 Towers, poles, and fixtures	20
070 Transmision Breaker	70
190 Circuit Lockout	190
070 Transmision Breaker	70
070 Transmision Breaker	70
199 Distribution substation, other (Explain) 070 Transmision Breaker	199 70
199 Distribution substation, other (Explain)	199
070 Transmision Breaker	70
099 Generation or transmission, other	99
130 Source side fuse or Device	130
040 Transmission substations	40
190 Circuit Lockout	190
191 Circuit Operation	191
010 Generation	10
199 Distribution substation, other (Explain)	199
070 Transmision Breaker	70
190 Circuit Lockout	190
190 Circuit Lockout 070 Transmision Breaker	190
070 Transmision Breaker 099 Generation or transmission, other	70 99
099 Generation of transmission, other	99
070 Transmision Breaker	70
020 Towers, poles, and fixtures	20
070 Transmision Breaker	70
070 Transmision Breaker	70
070 Transmision Breaker	70

070 Transmision Breaker	70
070 Transmision Breaker	70
999 No Equipment failure 070 Transmision Breaker	999 70
099 Generation or transmission, other	70 99
070 Transmision Breaker	99 70
070 Transmision Breaker	70
099 Generation or transmission, other	99
070 Transmision Breaker	70
099 Generation or transmission, other	99
070 Transmision Breaker	70
099 Generation or transmission, other	99
070 Transmision Breaker	70
099 Generation or transmission, other	99
099 Generation or transmission, other	99
070 Transmision Breaker	70
099 Generation or transmission, other	99
040 Transmission substations	40
199 Distribution substation, other (Explain)	199
070 Transmision Breaker	70
070 Transmision Breaker	70
099 Generation or transmission, other	99
099 Generation or transmission, other	99
199 Distribution substation, other (Explain)	199
070 Transmision Breaker	70
070 Transmision Breaker	70
070 Transmision Breaker	70
040 Transmission substations	40
070 Transmision Breaker	70
070 Transmision Breaker	70
070 Transmision Breaker 070 Transmision Breaker	70 70
099 Generation or transmission, other	70 99
070 Transmision Breaker	70
099 Generation or transmission, other	99
040 Transmission substations	40
040 Transmission substations	40
070 Transmision Breaker	70
070 Transmision Breaker	70
099 Generation or transmission, other	99
099 Generation or transmission, other	99
199 Distribution substation, other (Explain)	199
070 Transmision Breaker	70
070 Transmision Breaker	70
070 Transmision Breaker	70
040 Transmission substations	40
070 Transmision Breaker	70
070 Transmision Breaker	70
	70
070 Transmision Breaker	
070 Transmision Breaker 070 Transmision Breaker	70
070 Transmision Breaker 070 Transmision Breaker 099 Generation or transmission, other	70 99
070 Transmision Breaker 070 Transmision Breaker 099 Generation or transmission, other 040 Transmission substations	70 99 40
070 Transmision Breaker 070 Transmision Breaker 099 Generation or transmission, other 040 Transmission substations 040 Transmission substations	70 99 40 40
070 Transmision Breaker 070 Transmision Breaker 099 Generation or transmission, other 040 Transmission substations 040 Transmission substations 070 Transmision Breaker	70 99 40 40 70
070 Transmision Breaker 070 Transmision Breaker 099 Generation or transmission, other 040 Transmission substations 040 Transmission substations 070 Transmision Breaker 070 Transmision Breaker	70 99 40 40 70 70
070 Transmision Breaker 070 Transmision Breaker 099 Generation or transmission, other 040 Transmission substations 040 Transmission substations 070 Transmision Breaker 070 Transmision Breaker 070 Transmision Breaker	70 99 40 40 70 70 70
070 Transmision Breaker 070 Transmision Breaker 099 Generation or transmission, other 040 Transmission substations 040 Transmission substations 070 Transmision Breaker 070 Transmision Breaker	70 99 40 40 70 70

099 Generation or transmission, other	99
070 Transmision Breaker	70
099 Generation or transmission, other	99
070 Transmision Breaker	70
070 Transmision Breaker	70
099 Generation or transmission, other	99
099 Generation or transmission, other	99
050 Insulator	50
099 Generation or transmission, other	99
020 Towers, poles, and fixtures	20

Manthan	C	Customer
Weather 100 Clear, calm	Crew 421-GEORGE SWEATMAN	Customers 2783
020 Lightning, Thunderstorm		2783
100 Clear, calm		2738
020 Lightning, Thunderstorm	816-Jeremy Harrell	2728
010 Rain		848
030 Wind	420-Joe Harvey	842
100 Clear, calm		850
020 Lightning, Thunderstorm	511-Kenny Holloway	849
020 Lightning, Thunderstorm		847
100 Clear, calm		838
100 Clear, calm	511-Kenny Holloway	835
015 Cloudy		834
100 Clear, calm		834
015 Cloudy		841
015 Cloudy		841
015 Cloudy		841
100 Clear, calm		841
100 Clear, calm		841
015 Cloudy	507-Terrance Branton	846
030 Wind		847
015 Cloudy 100 Clear, calm		845 845
015 Cloudy		845
100 Clear, calm		869
100 Clear, calm		869
015 Cloudy		886
030 Wind	506-Rico Harrell	885
020 Lightning, Thunderstorm		882
020 Lightning, Thunderstorm		884
020 Lightning, Thunderstorm		889
015 Cloudy		883
020 Lightning, Thunderstorm		885
100 Clear, calm		888
100 Clear, calm		896
100 Clear, calm		896
100 Clear, calm		896
100 Clear, calm	507-Terrance Branton	874
010 Rain	507-Terrance Branton	877
010 Rain		869
100 Clear, calm	507-Terrance Branton	865
100 Clear, calm	507-Terrance Branton	866
100 Clear, calm	507-Terrance Branton	866
020 Lightning, Thunderstorm		869
015 Cloudy		858
020 Lightning, Thunderstorm		2851
100 Clear, calm		2873
010 Rain 030 Wind	451 Bruce Jones	2851 1455
100 Clear, calm	451-Bryce Jones	2692
100 Clear, calm		670
100 Clear, calm		670
100 Clear, calm		6038
100 Clear, calm	605 - Ryan Ford	6318
100 Clear, calm		774
015 Cloudy	421-GEORGE SWEATMAN	987
015 Cloudy	421-GEORGE SWEATMAN	1162
020 Lightning, Thunderstorm		1637
020 Lightning, Thunderstorm		1645
010 Rain		1662
020 Lightning, Thunderstorm		1666
100 Clear, calm	605 - Ryan Ford	1
100 Clear, calm		1
020 Lightning, Thunderstorm		7014
100 Clear, calm		6323
010 Rain		6316

100 Clear, calm		6364
020 Lightning, Thunderstorm		6527
100 Clear, calm	605 - Ryan Ford	8
100 Clear, calm		6859
010 Rain		1148
020 Lightning, Thunderstorm		1142
100 Clear, calm		2793
020 Lightning, Thunderstorm		2861
020 Lightning, Thunderstorm		1719
020 Lightning, Thunderstorm		1693
020 Lightning, Thunderstorm		1715
020 Lightning, Thunderstorm		3825
020 Lightning, Thunderstorm		3898
010 Rain		1571
010 Rain		1584
020 Lightning, Thunderstorm		1673
015 Cloudy 020 Lightning, Thunderstorm	612 Mike Mellerd	2341 2699
010 Rain	613-Mike Mallard	2699
100 Clear, calm		2693
015 Cloudy		2093
020 Lightning, Thunderstorm		2715
020 Lightning, Thunderstorm	<u> </u>	2000
020 Lightning, Thunderstorm		2902
015 Cloudy		2908
100 Clear, calm		2957
015 Cloudy		3293
010 Rain		3224
010 Rain		3238
010 Rain		3238
010 Rain		3239
010 Rain		3241
020 Lightning, Thunderstorm		3289
100 Clear, calm		3299
015 Cloudy		3292
100 Clear, calm		3292
010 Rain		16
010 Rain		9435
015 Cloudy	C12 Mike Mellerd	1781
020 Lightning, Thunderstorm 010 Rain	613-Mike Mallard	1811
100 Clear, calm		1809 1808
015 Cloudy		1808
020 Lightning, Thunderstorm		1873
020 Lightning, Thunderstorm		1886
020 Lightning, Thunderstorm		1888
015 Cloudy		1885
100 Clear, calm		1898
015 Cloudy		1962
010 Rain		1987
010 Rain		1990
020 Lightning, Thunderstorm		2024
100 Clear, calm		2024
015 Cloudy		2019
100 Clear, calm		2019
015 Cloudy		3926
020 Lightning, Thunderstorm	l	4143
010 Rain		4130
100 Clear, calm		4096
015 Cloudy		4106
100 Clear, calm 100 Clear, calm		4522
015 Cloudy	+	2106 2112
		2112

020 Lightning, Thunderstorm		4785
020 Lightning, Thunderstorm		4881
020 Lightning, Thunderstorm		3286
020 Lightning, Thunderstorm		2947
100 Clear, calm		3091
010 Rain		3201
100 Clear, calm		3498
020 Lightning, Thunderstorm	700-Scott Bennett	1184
010 Rain		3324
100 Clear, calm		0

		CustomerHours
132	343203	5720.05
0	0	0
0 82	0 223696	0 3728.266666
02	223090	0
2	1684	28.066666
0	0	0
55	46695	778.25
0	0	0
0	0	0
3	2505	41.75
0	0	0
196	163464	2724.4
0	841	14.016666
0	0	0
0	0	0
0	0	0
0	0	0
204	171738	2862.3
0	0	0
0	0	0
0	0	0
0	0	0
8	6952	115.866666
0	0002	0
6	5310	88.5
0	0	0
13	11492	191.533333
0	0	0
0	0	0
131	12390	206.5
1	888	14.8
0	0	0
0	0	0
2	2688	44.8
45	39330	655.5
24	21358	355.966666
9	7821	130.35 115.333333
8	6920 6928	115.466666
8	6928	115.466666
13	11297	188.283333
4	2596	43.266666
0	0	0
0	0	0
0	0	0
363	308709	5145.15
35	93115	1551.916666
3	2010	33.5
2	1340	22.333333
2	12076	201.266666
37	233766	3896.1
0	0	0
17	16779	279.65
10	11620	193.666666
0	0	0
0	0	0
0	0	0
37	37	0.616666
0	0	0.010000
0	0	0
0	0	0
0	0	0

<u> </u>	0	0
0	0	0
0	0	0
62	496	8.266666
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
-	Ţ	-
25	67475	1124.583333
11	29667	494.45
0	0	0
1	2715	45.25
0	0	0
0	0	0
0	0	0
6	17448	290.8
7	20699	344.983333
53	174529	2908.816666
51	164424	2740.4
2	6476	107.933333
2	6476	107.933333
16	51824	863.733333
2	6482	108.033333
0	0	0
0	0	0
5	16460	274.333333
7	23044	384.066666
0		
0	0	0
0	0	0
-	-	-
0	0	0
0	0 0 45275	0 0 754.583333
0 0 25 11	0 0 45275 18090	0 0 754.583333 301.5
0 0 25 11 0	0 0 45275 18090 0	0 0 754.583333 301.5 0
0 0 25 11 0 1	0 0 45275 18090 0 1807	0 0 754.583333 301.5 0 30.116666
0 0 25 11 0 1 1	0 0 45275 18090 0 1807 0	0 0 754.583333 301.5 0 30.116666 0
0 0 25 11 0 1 0 0	0 0 45275 18090 0 1807 0 0 0	0 0 754.583333 301.5 0 30.116666 0 0
0 0 25 11 0 1 0 0 0	0 0 45275 18090 0 1807 0 0 0 0	0 0 754.583333 301.5 0 30.116666 0 0 0 0
0 0 25 11 0 1 0 0 0 0 0 0	0 0 45275 18090 0 1807 0 0 0 0 0 0 0 0 0 0	0 0 754.583333 301.5 0 30.116666 0 0 0 0 188.5
0 0 25 11 0 1 0 0 0 0 0 0 0 7	0 0 45275 18090 0 1807 0 0 0 0 11310 13286	0 0 754.583333 301.5 0 30.116666 0 0 0 0 0 188.5 221.433333
0 0 25 11 0 1 0 0 0 0 0 0	0 0 45275 18090 0 1807 0 0 0 0 11310 13286 103986	0 0 754.583333 301.5 0 30.116666 0 0 0 0 0 188.5 221.433333 1733.1
0 0 25 11 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 45275 18090 0 1807 0 0 0 0 11310 13286	0 0 754.583333 301.5 0 30.116666 0 0 0 0 0 188.5 221.433333 1733.1 1655.833333
0 0 25 11 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 45275 18090 0 1807 0 0 0 0 11310 13286 103986	0 0 754.583333 301.5 0 30.116666 0 0 0 0 0 188.5 221.433333 1733.1
0 0 25 11 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 45275 18090 0 1807 0 0 0 0 11310 13286 103986 99350	0 0 754.583333 301.5 0 30.116666 0 0 0 0 0 188.5 221.433333 1733.1 1655.833333 99.5 66.333333
0 0 25 11 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 45275 18090 0 1807 0 0 0 0 11310 13286 103986 99350 5970	0 0 754.583333 301.5 0 30.116666 0 0 0 0 0 188.5 221.433333 1733.1 1655.833333 99.5 66.333333
0 0 25 11 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 45275 18090 0 1807 0 0 0 0 11310 13286 103986 99350 5970 3980	0 0 754.583333 301.5 0 30.116666 0 0 0 0 188.5 221.433333 1733.1 1655.833333 99.5
0 0 25 11 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 45275 18090 0 1807 0 0 0 0 0 11310 13286 103986 99350 5970 3980 31840 1990	0 0 754.583333 301.5 0 30.116666 0 0 0 0 188.5 221.433333 1733.1 1655.833333 99.5 66.333333 530.666666 33.1666666
0 0 25 11 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 45275 18090 0 1807 0 0 0 0 11310 13286 103986 99350 5970 3980 31840 1990 0	0 0 754.583333 301.5 0 30.116666 0 0 0 0 188.5 221.433333 1733.1 1655.833333 99.5 66.333333 530.6666666
0 0 25 11 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 45275 18090 0 1807 0 0 0 0 11310 13286 103986 99350 5970 3980 31840 1990 0 0	0 0 754.583333 301.5 0 30.116666 0 0 0 0 0 0 0 0 188.5 221.433333 1733.1 1655.833333 1733.1 1655.833333 99.5 66.333333 530.666666 33.166666 0 0
0 0 25 11 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 45275 18090 0 1807 0 0 0 0 11310 13286 103986 99350 5970 3980 31840 1990 0 0 0	0 0 754.583333 301.5 0 30.116666 0 0 0 0 188.5 221.433333 1733.1 1655.833333 1733.1 1655.833333 99.5 66.333333 530.666666 33.166666 0 0 0 0
$\begin{array}{c} 0 \\ 0 \\ 25 \\ 11 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	0 0 45275 18090 0 1807 0 0 0 0 11310 13286 103986 99350 5970 3980 31840 1990 0 0 0 0 10095 14133	0 0 754.583333 301.5 0 30.116666 0 0 0 188.5 221.433333 1733.1 1655.833333 99.5 66.333333 530.666666 33.166666 0 0 0 0 168.25 235.55
$\begin{array}{c} 0 \\ 0 \\ 25 \\ 11 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	0 0 45275 18090 0 1807 0 0 0 11310 13286 103986 99350 5970 3980 31840 1990 0 0 0 10095 14133 0	0 0 754.583333 301.5 0 30.116666 0 0 0 0 188.5 221.433333 1733.1 1655.833333 99.5 66.333333 530.666666 33.166666 33.166666 0 0 0 168.25 235.55 0
$\begin{array}{c} 0 \\ 0 \\ 25 \\ 11 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	0 0 45275 18090 0 1807 0 0 0 11310 13286 103986 99350 5970 3980 31840 1990 0 0 0 10095 14133 0 103575	0 0 754.583333 301.5 0 30.116666 0 0 0 0 188.5 221.433333 1733.1 1655.833333 1733.1 1655.833333 99.5 66.333333 530.666666 33.166666 33.166666 0 0 0 168.25 235.55 0 0
0 0 25 11 0 1 0 0 0 0 0 0 0 0 0 0 5 3 3 50 3 3 2 50 3 3 2 50 50 3 3 7 7 0 0 25 5 11	0 0 45275 18090 0 1807 0 0 0 11310 13286 103986 99350 5970 3980 31840 1990 0 0 0 10095 14133 0 103575 41300	0 0 754.583333 301.5 0 30.116666 0 0 0 0 188.5 221.433333 1733.1 1655.833333 221.433333 1733.1 1655.833333 99.5 66.333333 530.666666 33.166666 33.166666 0 0 0 168.25 235.55 0 0 1726.25 688.333333
$\begin{array}{c} 0 \\ 0 \\ 25 \\ 11 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	0 0 45275 18090 0 1807 0 0 0 11310 13286 103986 99350 5970 3980 31840 1990 0 0 0 10095 14133 0 103575 41300	0 0 754.583333 301.5 0 30.116666 0 0 0 188.5 221.433333 1733.1 1655.833333 99.5 66.333333 530.666666 33.166666 33.166666 0 0 0 168.25 235.55 0 0 1726.25 688.333333 0 0
$\begin{array}{c} 0 \\ 0 \\ 25 \\ 11 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	0 0 45275 18090 0 1807 0 0 0 11310 13286 103986 99350 5970 3980 31840 1990 0 0 0 10095 14133 0 103575 41300 0 0	0 0 754.583333 301.5 0 30.116666 0 0 0 188.5 221.433333 1733.1 1655.833333 299.5 66.333333 530.666666 33.166666 33.166666 0 0 0 168.25 235.55 0 0 1726.25 688.333333 0 0 68.433333
$\begin{array}{c} 0 \\ 0 \\ 25 \\ 11 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	0 0 45275 18090 0 1807 0 0 0 11310 13286 103986 99350 5970 3980 31840 1990 0 0 0 10095 14133 0 103575 41300	0 0 754.583333 301.5 0 30.116666 0 0 0 188.5 221.433333 1733.1 1655.833333 99.5 66.333333 530.666666 33.166666 33.166666 0 0 0 168.25 235.55 0 0 1726.25 688.333333 0 0
$\begin{array}{c} 0 \\ 0 \\ 25 \\ 11 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	0 0 45275 18090 0 1807 0 0 0 11310 13286 103986 99350 5970 3980 31840 1990 0 0 0 10095 14133 0 103575 41300 0 4106 131138 0	0 0 754.583333 301.5 0 30.116666 0 0 0 188.5 221.433333 1733.1 1655.833333 99.5 66.333333 530.666666 33.166666 33.166666 0 0 0 168.25 235.55 0 0 1726.25 688.33333 0 0 68.433333
0 0 25 11 0 1 0 0 0 0 0 6 7 53 50 3 3 50 3 3 2 50 3 3 50 50 3 3 50 50 50 50 50 50 50 11 1 0 0 0 1 1 0 0 0 0	0 0 45275 18090 0 1807 0 0 0 11310 13286 103986 99350 5970 3980 31840 1990 0 0 0 10095 14133 0 0 103575 41300 0 0 4106 131138	0 0 754.583333 301.5 0 30.116666 0 0 0 188.5 221.433333 1733.1 1655.833333 221.433333 1733.1 1655.833333 99.5 66.333333 530.666666 33.166666 33.166666 0 0 0 168.25 235.55 0 0 1726.25 688.333333 0 0 68.433333 2185.633333

0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
218	258112	4301.866666
0	0	0
14		0

Notes 6/20/2013 14:58:00 421-GEORGE SWEATMAN assigned to outage. Jefferies to St Stephen Hydro operated during a strong storm. 11/22/2013 06:43:51 This was a 230kV outage – Line between Jefferies and Cross – tree caused. BEC did not see an outage or direct operation
Jefferies to St Stephen Hydro operated during a strong storm.
11/22/2013 06:43:51 This was a 230kV outage - Line between Jefferies and Cross - tree caused BEC did not see an outage or direct operation
A SMALL STORM CAME THROUGH THE AREA. SANTEE COOPER FOUND A BROKE TRANSMISSION POLE ON THE BONNEAU SIDE O
1/6/2011 14:58:44 TARGETS ON A PHASE TO GROUND CAUSE UNKNOWN 1350 OPERATED PER BILL TURNER
5/11/2011 04:29:11 511-Kenny Holloway assigned to outage. SCE&G has restored power to their line feeding our Awendaw Mp. The 7/14/2011 12:11:31 SCE&G breaker operated.
9/19/2011 17:56:20 511-Kenny Holloway assigned to outage SCE@G breaker# 920912 malfunctioned. 10/18/2011 11:04:53 Breaker# 1350 operated per: Wenday @ SCE&G Charleston Dispatch.
10/19/2011 19:20:21 SWAPED 18:32:47
1/23/2012 19:49:00 507-Terrance Branton assigned to outage 1/23/2012 23:11:26 SCE&G RECLOSERS
2/27/2012 13:41:05 Breaker# 1350 operated per: Wendy @ SCE&G Charleston Dispatch.
5/4/2012 09:11:52 SCE&G Breaker #1350 operated per: Charleston Dispatch
SCE&G took a dip on their 90912, cause unknown. Per:Wendy @ SCE&G Charleston Dispatch
EVERYTHING WAS BACK TO NORMAL AT 22:21 5/6/2013 8:01:44 AM 506-Rico Harrell assigned to outage. Crew was assign 6/3/2013 16:09:41 2 Operations per Wendy @ SCE&G Dispatch
Closed MOAB 4:19:32 SCE&G back hot at 9:11:33, Bad insulator near Beehive & Gadsenville Rd.
6/26/2013 15:20:15 1350 operated due to T-storm per: James SCE&G Dispatch
7/24/2013 13:37:38 SCE&G breaker# 1350 operated per: James @ Charleston Dispatch
CAUSE UNKNOWN PER LEVI AT SCE&G. CLOSE IN MOAB AT 12:44 AM TERRACE BRANTON OPEN THE BLADES BACK TO NORMAL A
Breaker failure. Bill Turner stated they found high resistance in the auxiliary contacts for that breaker. long operation. 12/3/2013 2:28:57 AM A truck hit and brought down primary on a tap off Doar Road per Bill Turner ""Truck ran over an anchor and cut a down
12/3/2013 2:31:19 AM A truck hit and brought down primary on a tap off Doar Road per Bill Turner ""Truck ran over an anchor and cut a down SCE&G FOUND A SQUIRREL BEHIND CHARLESTON NATIONAL AT 1200 OLD COURSE LN
5/8/2015 13:07:41 SCE&G FOUND A TREE ON THEIR 90912 FEEDER TO AWMP 5/8/2015 13:09:38 SCE&G GOT THE 90912 BACK HOT A
5/15/2015 7:48:45 PM SCE&G FOUND NOTHING BUT SAID IT MIGHT HAVE BEEN TREE LIMBS BRUSHING AGAINST THE LINE SCE&G HAD THERE CREWS RIDE THE LINES THEY SAID THEY FOUND TREE LIMBS BRUSHING AGAINST LINES THEY HAVE THE T
SCE@G FOUND TREE ON LINE AT GARDEN HILL RD. LOAD WAS SWAPPED NOW BACK TO NORMAL
SCE&G FOUND A LIMB ON THERE 90912. SYSTEM CONTROL SWAP BACK OVER THE NEXT MORNING. SCE STRONG STORMS SANTEE COOPER JEFFRIES TO MEDWAY OPERATED. ALSO FOUND GROUNDS MISSING AROUND AREA OF LIGI
This was a 230kV outage – Line between Jefferies and Cross – tree caused. BEC did not see an outage or direct operation. We saw possible I
3/12/2015 15:12:06 "Low voltage at multiple subs in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken
SANTEE COOPER WAS WORKING ON THEIR BREAKER AND KNOCKED OUT
SANTEE COOPER TRANSMISSION LINE BLINKED BROKEN POLE
Buzzard
Santee Cooper had a broken pole on fire that feeds transmission line to College Park to Corning
10/18/2012 06:16:20 421-GEORGE SWEATMAN assigned to outage 10/18/2012 06:53:52 SCE&G switch burnt-up while
10/18/2012 06:21:40 421-GEORGE SWEATMAN assigned to outage 10/18/2012 06:58:30 SCE&G switch burnt-up while 9/3/2013 3:25:34 PM STRONG STORM SANTEE COOPER JEFFRIES TO HARLEYVILLE OPERATED
8/13/2014 08:17:05 TRANSMISSION BLINK 3/12/2015 15:13:50 "Low voltage at multiple subs in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken
11/22/2013 06:47:35 This was a 230kV outage – Line between Jefferies and Cross – tree caused. BEC did not see an outage or direct operation operat
3/12/2015 20:29:01 "Low voltage at multiple subs in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken

Appendix C, Page 55 of 104

02/14/2016 09:43:96 Truck came into contast with Cooperative ine underneath South Carolina Public Authority ine. This source that cooperative is 71/42/01 16:33/ Carebo 1510 Noth Chardesion operated, possibly lighting, 71/42/01 66:362 TRUCK CARE INTO CONTACT WITH COOPERATIVE UNE UNDERFRANTS OUTH CAREUNA PUBLIC AUTHORITY LINE 71/42/01 66:362 TRUCK CARE INFO CONTACT WITH COOPERATIVE UNE UNDERFRANTS OUTH CAREUNA PUBLIC AUTHORITY LINE 71/42/01 66:362 TRUCK CARE INFO CONTACT WITH COOPERATIVE UNE UNDERFRANTS OUTH CARENT AUX 71/2015 08:2100 T-Uow voltage at multiple subs in Mondes Coner and Goose Creek due to an adjacent transmission feeder fault. A stroken pole. 51/2020 10:01.01 The Mark 2000 THE LOYING SUMDI 1550: TRANSMISSION 71/2016 08:150.31 TRANSMISSION BLINK 71/2016 10:31:47 TRANSMISSION BLINK 71/2016 10:31:47 TRANSMISSION BLINK 71/2016 10:31:47.1 TRANSMISSION BLINK 71/2016 10:31:47.1 TRANSMISSION BLINK 71/2016 10:31:47.1 TRANSMISSION BLINK DUE TO LIGHTININO STRIKE ON THE JOHNS ISLAND 11560: LINE 71/2017 10:31:43.1 Tow voltage at multiple subs in Mondes Corper and Goose Creek due to an adjacent transmission feeder fault. A broken pole 71/2017 10:31:2017 10:31:2017 10:31:31:31.1 Transmission feeder fault. A broken pole 71/2017 10:31:2017 10:31:31:31.1 Tow voltage at multiple subs in Mondes Corper and Goose Creek due to an adjacent transmission feeder fault. A broken pole 71/2017 10:31:2017 10:31:31.1 Tow voltage at multiple subs in Mondes Corper and Goose Creek due to an adjacent transmission feeder fault. A broken pole 71/2017 12:31:1 Tow voltage at multiple subs in Mondes Corper and Goose Creek due to an adjacent transmission feeder fault. A broken pole 71/2017 12:31:1 Tow voltage at multiple subs in Mondes Corper and Goose Creek due to an adjacent transmission feeder fault. A broken pole 71/2017 12:31:1 Tow Voltage at multiple subs in Mondes Corper and Goose Creek due to an adjacent transmission feeder fault. A broken pole 71/2017 12:21:21:21:21:21:21:21:21:21:21:21:21:2	
THAUDIT 1018.37 Cames 115 to North Chalesion operated, possibly lighting, SCASG transmission inse making node, mosture con the lines. Notice Chalesion the lines. Notice Chalesion the lines. Notice Chalesion of the lines of the lines of the lines. Notice Chalesion of the lines of the lines. Notice Chalesion of the lines of the lines. Notice Chalesion of the lines. Notice Chalesion of the lines of the	07/14/2016 09:48:36 Truck came into contact with Cooperative line underneath South Carolina Public Authority line. this caused the cooperative li
SC&&E transmission lines makeling noise molature etc on the lines Nothing to worry about per Ryan Ford ————————————————————————————————————	
07/14/2016 09:50/24 TRUCK CAME INTO CONTACT WITH COOPERATIVE LINE UNDERNEATING SUCH CARCILIAP PUBLICA JUTHORITY LINE 7/2015 08:200 Low votage at multiple subs in Moncks Comer and Goose Creek due to an adjacent transmission feeder fault. A broken pole 5/TRONG TO KAN IN THE AREA 1/20/2015 16:40:52 LIGHTINING STRIKE ON THE JOHNS ISLAND 116k/ TRANSMISSION 1/20/2015 16:40:52 LIGHTINING STRIKE ON THE JOHNS ISLAND 116k/ TRANSMISSION 1/20/2015 16:31:47 TRANSMISSION BLIKK 1/20/2015 16:31:47 TRANSMISSION BLIKK DLE TO LIGHTINING STRIKE ON THE JOHNS ISLAND 116k/ LINE 1/20/2015 16:31:47 TRANSMISSION BLIKK 1/20/2015 16:31:47 TRANSMISSION BLIKK DLE TO LIGHTINING STRIKE ON THE JOHNS ISLAND 116k/ LINE 1/20/2015 16:31:47 TRANSMISSION BLIKK DLE TO LIGHTINING STRIKE ON THE JOHNS ISLAND 116k/ LINE 1/20/2015 16:31:31 - LOW votage at multiple subs in Moncks Comer and Goose Creek due to an adjacent transmission feeder fault. A broken pole 3/12/2015 15:31:31 - LOW votage at multiple subs in Moncks Comer and Goose Creek due to an adjacent transmission feeder fault. A broken pole 3/12/2015 15:31:31 - LINE 13/LINE Malding assigned to utage. Tree on line line LINE 	
47/2015 08 22:00 Tow voltage at multiple subs in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken pole. 87/2015 15:40:21 UNIT NO STRICE ON THE JOHNS ISLAND 116 VIT RANSMISSION Strick Cold not see an outage or direct operation. 87/2015 15:40:21 UNIT NIG STRICE ON THE JOHNS ISLAND 116 VIT RANSMISSION Strick Cold not see an outage or direct operation. 87/2015 15:40:21 UNIT NIG STRICE ON THE JOHNS ISLAND 116 VIT RANSMISSION Strick Cold Not S	
STRONG THUNDERSTORM IN THE AREA 1222013 08.114 This was a 2004 voltage - Line between Jefferies and Cross - tree caused, BEC did not see an outage or direct operation. 1202015 154.052 LIGHTINING STRIKE ON THE JOHNS ISLAND 115KV TRANSMISSION STRONG STORMS IN AREA SATTEE COOPER JEFREIS TO HARLEVILLE OPERATED 8/13/2014 08.15.03 TRANSMISSION BLINK 1202015 15.31.47 TRANSMISSION BLINK 1202015 15.31.47 TRANSMISSION BLINK DUE TO LIGHTINING STRIKE ON THE JOHNS ISLAND 115KV LINE 1202015 15.03.81 -Low voltage at multiple table in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken pole 3/12/015 15.03.83 - Low voltage at multiple table in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken pole 3/12/015 15.03.83 - Low voltage at multiple table in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken pole 3/12/015 15.03.83 - Low voltage at multiple table in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken pole 3/12/015 15.03.83 - Low voltage at multiple tables in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken pole 3/12/015 23.31 LPM 6/13/Mile Maldiad assigned to outge. 	
1122/2013 10:4104 This was a 230k outage – Line between Jefferes and Cross – tree caused, BEC did not see an outage or direct operation. 4202015 15:40:20 LIGHTINIO STIKLE ON THE JOHNS ISLAND TISK TRANSMISSION STRONG STORAUS IN AREA SANTEE COOPER JEFFRIES TO HARLEYVILLE OPERATED 312/2015 15:31:30 TRANSMISSION BLINK 4202015 15:31:30 TRANSMISSION BLINK 4202015 15:31:31 (Jow voltage at multiple subs in Moncks Comer and Goose Creek due to an adjacent transmission feeder fault. A broken pol 312/2015 15:31:30 Toxo voltage at multiple subs in Moncks Comer and Goose Creek due to an adjacent transmission feeder fault. A broken pol 312/2015 15:30:30 Toxo voltage at multiple subs in Moncks Comer and Goose Creek due to an adjacent transmission feeder fault. A broken pol 312/2015 15:30:31 Toxo voltage at multiple subs in Moncks Comer and Goose Creek due to an adjacent transmission feeder fault. A broken pol 312/2015 15:30:31 Toxo voltage at multiple subs in Moncks Comer and Goose Creek due to an adjacent transmission feeder fault. A broken pol 312/2015 15:30:12 23:31 TIP M fi3:Miles Malard assigned to cultage. Tree on line line St. George to Comes Feeder. ————————————————————————————————————	
4/202015 15.40.52 LIGHTNING STRIKE ON THE JOHNS ISLAND 115K TRANSMISSION 4/202015 15.31.47 TRANSMISSION BLINK 4/202015 15.31.47 TRANSMISSION BLINK DUE TO LIGHTNING STRIKE ON THE JOHNS ISLAND 115K/ LINE 4/202015 15.31.47 TRANSMISSION BLINK DUE TO LIGHTNING STRIKE ON THE JOHNS ISLAND 115K/ LINE 4/202015 15.31.47 TRANSMISSION BLINK DUE TO LIGHTNING STRIKE ON THE JOHNS ISLAND 115K/ LINE 4/202015 15.31.47 TRANSMISSION BLINK DUE TO LIGHTNING STRIKE ON THE JOHNS ISLAND 115K/ LINE 4/202015 15.31.47 TRANSMISSION BLINK DUE TO LIGHTNING STRIKE ON THE JOHNS ISLAND 115K/ LINE 4/202015 15.31.47 TRANSMISSION BLINK DUE TO LIGHTNING STRIKE ON THE JOHNS ISLAND 115K/ LINE 4/202015 15.31.47 TRANSMISSION BLINK DUE TO LIGHTNING STRIKE ON THE JOHNS ISLAND 115K/ LINE 5/2015 15.31.17 M 613 Mike Malard assigned to outage. Tree on line line SL George to Cames Feeder. 10/2012 2.33.4 FW JANTEE COOPER LINE ROPPED TRANSMISSION DUE TO FIRE AT EDISTO SUB. FOUND NEXT DAY ATTEMP Bawr du tree on transmission line on Sangare tap. Partial lockdo on Cames ob SI George 115 line. 11/72014 20.43.7 SEVERE THUNDERSTORM 10/172014 09.40.48 TREE FELL ON TRANSMISSION LINE BETWEEN DORCHESTER AND ST GEOURDE RESULTED IN SANTEE COOPER TR 10/172014 09.40.49 TREE FELL ON TRANSMISSION LINE BETWEEN DORCHESTER AND ST GROUNDER BESULTED IN SANTEE COOPER TR 10/172014 09.40.49 TREE FELL ON TRANSMISSION LINE BETWEEN DORCHESTER AND ST GROUNDER BESULTED IN SANTEE COOPER TR 10/172014 09.40.49 TREE FELL ON TRANSMISSION LINE BETWEEN DORCHESTER AND ST GROUNDER BESULTED IN SANTEE COOPER TR 10/172014 09.40.49 TREE FELL ON TRANSMISSION LINE BETWEEN DORCHESTER AND ST GROUNDER BESULTED IN SANTEE COOPER TR 10/172014 09.40.49 TREE FELL ON TRANSMISSION LINE BETWEEN DORCHESTER AND ST GROUNDER BESULTED IN SANTEE COOPER TR 10/172014 09.40.49 TREE MALUES 10/172014 09.40.49 TREE MARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115K/ TRANSMISSION LOOP WA 10/142014 13.43.42 TREE SERVERS AT THE TIME TRANSMISSION OUTAGE THE 115K/ TRANSMISSION LOOP WA 10/142014 13.43.42 TREE SERVERS AT THE TIM	
STRONG STORAUS IN AREA SANTEE COOPER JEFFRIES TO HARLEYVILLE OPERATED #13/2014 06:15:03 TRANSMISSION BLINK #2420215 15:32:13 TRANSMISSION BLINK UNE 4220215 15:32:13 TRANSMISSION BLINK DUE TO LIGHTNING STRIKE ON THE JOHNS ISLAND 115kv LINE #31/22015 15:32:13 TRANSMISSION BLINK #2420215 15:32:13 TRANSMISSION BLINK UNE AND A COMPARIANCE AND A COMPARIANCE AND A DATA TRANSMISSION BLINK #2420215 15:32:13 TRANSMISSION BLINK UNE AND A DATA TRANSMISSION BLINK UNE AND A DATA TRANSMISSION BLINK #31/22015 15:08:33 'Low voltage at multiple subs in Moncks Comer and Goose Creek due to an adjacent transmission feeder fault. A broken pole #31/22015 15:08:33 'Low voltage at multiple subs in Moncks Comer and Goose Creek due to an adjacent transmission feeder fault. A broken pole #31/22015 25:23 T1PM 18/3Mkk Mallard assigned to outage. Tree on line line SL George to Carnes Feeder. ####################################	
8/3/2014 08:15:33 TRANSMISSION BLINK 4/202015 15:31:47 TRANSMISSION BLINK DUE TO LIGHTNING STRIKE ON THE JOHNS ISLAND 115kv LINE 4/202015 15:31:47 TRANSMISSION BLINK DUE TO LIGHTNING STRIKE ON THE JOHNS ISLAND 115kv LINE 3/12/2015 15:34:13 'Low voltage at multiple subs in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken pole 3/12/2015 15:34:13 'Low voltage at multiple subs in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken pole 3/12/2015 15:34:13 'Low voltage at multiple subs in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken pole 3/12/2015 15:34:11 PM 613-Mike Malard assigned to outage. Tree on line line St. George to Carnes Feeder.	
42/202015 15:31:47 TRANSMISSION BLINK DUE TO LIGHTNING STRIKE ON THE JOHNS ISLAND 115kv LINE 37/202015 15:34:13 "Low voltage at multiple subs in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken pole 37/202015 15:06:33 "Low voltage at multiple subs in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken pole 37/202015 15:06:33 "Low voltage at multiple subs in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken pole 37/202015 25:31:1PM 613:Mkk Mallard assigned to outage. Tree on line Ine SL George to Carnes Feeder. 37/720212 9:23:25 MI N 813/Mkk Mallard assigned to outage. Tree on line Ine SL George to Carnes Feeder. 37/720214 20:25:32:1PM 613:Mkk Mallard assigned to outage. Tree on line Ine SL George to Carnes Feeder. 37/720214 20:457 SevEre THUNDERSTORM 37/72014 09:40:48 TREE FELL ON TRANSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE 10017/2014 09:40:48 TREE FELL ON TRANSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE 10017/2014 09:40:48 TREE FELL ON TRANSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE 10017/2014 09:40:49 TREE FALLURE 10017/2014 09:40:49 TREE FELL ON TRANSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE 1001702014 09:40:49 TREE FELL ON TRANSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE 1001702014 09:40:49 TREE STULING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP VA B PHASE TRANSPORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP VA B PHASE TRANSPORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP VA B PHASE TRANSPORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP VA B PHASE TRANSPORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP VA B PHASE TRANSPORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP VA B PHASE TRANSPORMER BUSHING AT HARLEYS BRIDGE AT TH	
3/12/2015 15:34:13 "Low voltage at multiple subs in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken pole 3/12/2015 15:08:38 "Low voltage at multiple subs in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken pole 3/12/2015 15:08:38 "Low voltage at multiple subs in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken pole 3/12/2015 15:08:38 "Low voltage at multiple subs in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken pole 3/12/2015 15:08:38 "Low voltage at multiple subs in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken pole 3/12/2015 15:08:37 EVERET THUNDERSTORM 1/17/2014 09:40:48 TREE FELL ON TRANSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE 10/17/2014 09:40:40 TREE FELL ON TRANSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE 10/17/2014 09:40:40 TREE FELL ON TRANSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE 10/17/2014 09:40:40 TREE FELL ON TRANSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE 10/17/2014 09:40:40 TREE FELL ON TRANSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE 10/17/2014 09:40:40 TREE FELL ON TRANSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE 10/17/2014 09:40:40 TREE FELL ON TRANSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE 10/17/2014 09:40:40 TREE FELL ON TRANSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE 10/17/2014 09:40:40 TREE FELL ON TRANSMISSION LINE DETWEEN DORCHESTER AND ST GEORGE 10/17/2014 09:40:40 TREE FELL ON TRANSMISSION LINE DETWEEN DORCHESTER AND ST GEORGE 10/17/2014 09:40:40 TREE FELL ON TRANSMISSION DUTAGE THE TINE TRANSMISSION OUTAGE THE TINE/TRANSMISSION LIOP WA 10/17/2014 09:40:40 TREE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE TINK'TRANSMISSION LIOP WA 10/17/2014 15:32 Tree found on line 2 spans down from TEFIS 13/270 10/12/12/12/12/12/12/12/12/12/12/12/12/12/	8/13/2014 08:15:03 TRANSMISSION BLINK
3/12/2015 15:34:13 "Low voltage at multiple subs in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken pole 3/12/2015 15:08:38 "Low voltage at multiple subs in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken pole 3/12/2015 15:08:38 "Low voltage at multiple subs in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken pole 3/12/2015 15:08:38 "Low voltage at multiple subs in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken pole 3/12/2015 15:08:38 "Low voltage at multiple subs in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken pole 3/12/2015 15:08:37 EVERET THUNDERSTORM 1/17/2014 09:40:48 TREE FELL ON TRANSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE 10/17/2014 09:40:40 TREE FELL ON TRANSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE 10/17/2014 09:40:40 TREE FELL ON TRANSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE 10/17/2014 09:40:40 TREE FELL ON TRANSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE 10/17/2014 09:40:40 TREE FELL ON TRANSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE 10/17/2014 09:40:40 TREE FELL ON TRANSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE 10/17/2014 09:40:40 TREE FELL ON TRANSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE 10/17/2014 09:40:40 TREE FELL ON TRANSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE 10/17/2014 09:40:40 TREE FELL ON TRANSMISSION LINE DETWEEN DORCHESTER AND ST GEORGE 10/17/2014 09:40:40 TREE FELL ON TRANSMISSION LINE DETWEEN DORCHESTER AND ST GEORGE 10/17/2014 09:40:40 TREE FELL ON TRANSMISSION DUTAGE THE TINE TRANSMISSION OUTAGE THE TINE/TRANSMISSION LIOP WA 10/17/2014 09:40:40 TREE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE TINK'TRANSMISSION LIOP WA 10/17/2014 15:32 Tree found on line 2 spans down from TEFIS 13/270 10/12/12/12/12/12/12/12/12/12/12/12/12/12/	
3/12/2015 15:06.38 "Low voltage at multiple subs in Moncks Comer and Goose Creek due to an adjacent transmission feeder fault. A broken pole STRONG THUNDERSTORM IN THE AREA Cames 115 to SI George operated. Cause unknkown per: Santee Cooper 30/2012 52:31:19 to 61:53/kite Mallard assigned to outage. Tree on line line SI. George to Carnes Feeder. 30/2012 52:31:19 to 61:53/kite Mallard assigned to outage. Tree on line line SI. George to Carnes Feeder. 30/2012 52:31:19 to 61:53/kite Mallard assigned to outage. Tree on line line SI. George to Carnes Feeder. 30/2012 52:31:19 thunden Sangaree tap. Partial lockout on Carnes to SI George 115 line. 71/72014 09:40:43 TREE FELL ON TRANSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE 10/17/2014 09:40:40 TREE FELL ON TRANSFORMER IN SUBSTATIONITHAT WAS NOT GROUNDED RESULTED IN SANTEE COOPER TR TERE ON LINE BREAKER FAILURE B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV T	4/20/2015 15:31:47 TRANSMISSION BLINK DUE TO LIGHTNING STRIKE ON THE JOHNS ISLAND 115kV LINE
3/12/2015 15:06.38 "Low voltage at multiple subs in Moncks Comer and Goose Creek due to an adjacent transmission feeder fault. A broken pole STRONG THUNDERSTORM IN THE AREA Cames 115 to SI George operated. Cause unknkown per: Santee Cooper 30/2012 52:31:19 to 61:53/kite Mallard assigned to outage. Tree on line line SI. George to Carnes Feeder. 30/2012 52:31:19 to 61:53/kite Mallard assigned to outage. Tree on line line SI. George to Carnes Feeder. 30/2012 52:31:19 to 61:53/kite Mallard assigned to outage. Tree on line line SI. George to Carnes Feeder. 30/2012 52:31:19 thunden Sangaree tap. Partial lockout on Carnes to SI George 115 line. 71/72014 09:40:43 TREE FELL ON TRANSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE 10/17/2014 09:40:40 TREE FELL ON TRANSFORMER IN SUBSTATIONITHAT WAS NOT GROUNDED RESULTED IN SANTEE COOPER TR TERE ON LINE BREAKER FAILURE B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV T	
STRONG THUNDERSTORM IN THE AREA	
Carnes 115 to S1 George operated. Cause unknown per: Santes Cooper	
BITZ2012 523:11 PM 613-MKe Mallard assigned to outage. These on line line St. George to Carnes Feeder. Director 223:23:14 PM 633-MKE ECOOPER DROPPED TRANSMISSION DUE TO FIRE AT EDISTO SUB. FOUND NEXT DAY ATTEMP Baver out line on transmission line on Sangaree tap. Partial lockout on Carnes to St George 115 line. T/17/2014 12:04:57. SEVERE THUNDERSTORM Director 2012 23:35 PM 2012 23:35 PM 2012 23:35 PM 2012 2012 2012 2012 2012 2012 2012 201	
Beaver out tree on transmission line on Sangaree tap. Partial lockout on Carners to SL George 115 Ine. 7/17/2014 12:04:57 SEVERE THUNDERSTORM 10/17/2014 09:40:48 TREE FELL ON TRANSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE EDISTO ELECTRIC INSTALLING NEW TRANSFORMER IN SUBSTATIONTHAT WAS NOT GROUNDED RESULTED IN SANTEE COOPER TR TREE ON LINE BREAKER FAILURE B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING ON HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA 09/25/2016 15:37:32 Tree found on line 2 spans down from TEFIS 137470 Chris Wagner with Santee Cooper called and said they had this line on a hot line work permit (one shot) when the line went out. Looks like the out LOGGER DKOPPED TREE ON THE LINE LUNE D0/19/2016 17:19:12 01/12/2015 13:34:22 SANTEE COOPER TOOK AN OPERATION ON THE N. CHARLESTON 115 KV LINE Cames 115 to S George operated. Cause unknown per Santee Cooper 10/12/2012 10:42:22 TIREA TE EDISTO SUB, (SANTEE COOPER) FOUND OUT NEXT DAY ATTEMPTED THEFT AT SUB. Beaver out tree on transmission line on Sangaree tap. 10/17/2014 09:43:00 TREE FELL ON TRASSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE EDISTO ELECTRIC INSTALLING NEW TRANSFORMER IN SUBSTATIONTHAT WAS NOT GROUNDED RESULTED IN SANTEE COOPER TR 10/17/2014 09:43:00 TREE FELL ON TRASSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE EDISTO ELECTRIC INSTALLING NEW TRANSFORMER IN SUBSTATIONTHAT WAS NOT GROUNDED RESULTED IN SANTEE COOPER TR 10/17/2014 09:43:00 TREE FELL ON TRASSMISSION LI	
Partial lockout on Carnes to St.George 115 line. 7/17/2014 12:04:57 SEVERE THUNDERSTORM 10/17/2014 09:40:48 TREE FELL ON TRANSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE EDISTO ELECTRIC INSTALLING NEW TRANSFORMER IN SUBSTATIONTHAT WAS NOT GROUNDED RESULTED IN SANTEE COOPER TR TREE ON LINE BREAKER FAILURE B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE OCOPER 10/12/21 5 29.42 PM B 613 Milke Maliar assigned to outage. Tree on line line S LGeorge to Carnes Feeder. 10/32/21 10:94.22 FIRE AT EDISTO SUB. (SANTEE COOPER) FOUND OUT NEXT DAY ATTEMPTED THEFT AT SUB. Beaver cut tree on transmission line on Sangaree tap. Partial lockout on Carnes to SL Geaorge 115 line. 17/17/2014 92.43.00 TREE FELL ON TRASSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE EDISTO ELECTRIC INSTALLING NEW TRANSFORMER IN SUBSTATIONTHAT WAS NOT GROUN	10/2/2012 9:23:54 PM SANTEE COOPER DROPPED TRANSMISSION DUE TO FIRE AT EDISTO SUB. FOUND NEXT DAY ATTEMP
Partial lockout on Carnes to St.George 115 line. 7/17/2014 12:04:57 SEVERE THUNDERSTORM 10/17/2014 09:40:48 TREE FELL ON TRANSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE EDISTO ELECTRIC INSTALLING NEW TRANSFORMER IN SUBSTATIONTHAT WAS NOT GROUNDED RESULTED IN SANTEE COOPER TR TREE ON LINE BREAKER FAILURE B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE OCOPER 10/12/21 5 29.42 PM B 613 Milke Maliar assigned to outage. Tree on line line S LGeorge to Carnes Feeder. 10/32/21 10:94.22 FIRE AT EDISTO SUB. (SANTEE COOPER) FOUND OUT NEXT DAY ATTEMPTED THEFT AT SUB. Beaver cut tree on transmission line on Sangaree tap. Partial lockout on Carnes to SL Geaorge 115 line. 17/17/2014 92.43.00 TREE FELL ON TRASSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE EDISTO ELECTRIC INSTALLING NEW TRANSFORMER IN SUBSTATIONTHAT WAS NOT GROUN	Beaver cut tree on transmission line on Sangaree tap.
7/17/2014 12:04:57 SEVERE THUNDERSTORM 10/17/2014 09:40:48 TREE FELL ON TRANSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE EDISTO ELECTRIC INSTALLING NEW TRANSFORMER IN SUBSTATIONTHAT WAS NOT GROUNDED RESULTED IN SANTEE COOPER TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING ON HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING ON HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING ON HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AN HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING ON HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AN HARLEYS BRIDGE AT THE TIME TRANSMISSION UTAGE THE 115KV TRANSMISSION LOOP WA B 172015 15:25:57 'Low voltage at multiple subs in Moncks Comer and Goose Creek due to an adjacent transmission feeder fault. A broken pole 11/12/2015 13:3:42 20/22015 15:25:57 'Low voltage at multiple subs in Moncks Comer and Goose Creek due to an adjacent transmission feeder fault. A broken pole 11/12/2012 10:2:2:2:44 PM 613-Milke Mailard assigned to outage. Tree on line li	
10/17/2014 09:40:48 TREE FELL ON TRANSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE EDISTO ELECTRIC INSTALLING NEW TRANSFORMER IN SUBSTATION THAT WAS NOT GROUNDED RESULTED IN SANTEE COOPER TRY TREE ON LINE BREAKER FAILURE B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA 08/25/2016 15:37:32 Tree found on line 2 spans down from TEFIS 137470 Chris Wagner with Santee Cooper Called and said they had this line on a hot line work permit (one shot) when the line went out. Looks like the out LOGGER DROPPED TREE OO THE LINE 00/919/2016 17:19:15 31/21/2015 15:257 "Low voltage at multiple subs in Moncks Comer and Goose Creek due to an adjacent transmission feeder fault. A broken pole 41/4/2015 13:242 SANTEE COOPER TOOL AN OPERATION ON THE N. CHARLESTON 115 KV LINE Cames 115 to SI George operated. Cause unknkown per: Santee Cooper 10/32012 10:422 FIRE AT EDISTOS SUB. (SANTEE COOPER) FOUND OUT NEXT DAY ATTEMPTED THEFT AT SUB. Beaver cut tree on transmission line on Sangaree tap. 10/17/2014 12:03:09 SEVERE THUNDERSTORM 10/17/2014 12:03:09 SEVERE THUNDERSTORM 10/17/2014 12:03:09 SEVERE THUNDERSTORM 10/17/2014 09:43:00 TREE FELL ON TRASSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE 10/17/2014 09:43:00 TREE FELL ON TRASSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE 10/17/2014 12:03:09 SEVERE THUNDERSTORM 10/17/2014 09:43:00 TREE FELL ON TRASSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE 10/17/2014 09:43:00 TREE FELL ON TRASSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE 10/17/2014 09:43:00 TREE FELL ON TRASSMISSION LIN	
EDISTO ELECTRIC INSTALLING NEW TRANSFORMER IN SUBSTATIONTHAT WAS NOT GROUNDED RESULTED IN SANTEE COOPER TR TREE ON LINE BREAKER FAILURE B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING ON HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA D PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA D PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA D PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA D PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA D PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA D PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV LINE Cames 115 to IC Gorgo operated. Cause unknown per: Santee COOPER 	
EDISTO ELECTRIC INSTALLING NEW TRANSFORMER IN SUBSTATIONTHAT WAS NOT GROUNDED RESULTED IN SANTEE COOPER TR TREE ON LINE BREAKER FAILURE B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING ON HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA D PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA D PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA D PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA D PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA D PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA D PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV LINE Cames 115 to IC Gorgo operated. Cause unknown per: Santee COOPER 	
EDISTO ELECTRIC INSTALLING NEW TRANSFORMER IN SUBSTATIONTHAT WAS NOT GROUNDED RESULTED IN SANTEE COOPER TR TREE ON LINE BREAKER FAILURE B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING ON HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA D PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA D PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA D PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA D PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA D PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA D PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV LINE Cames 115 to IC Gorgo operated. Cause unknown per: Santee COOPER 	10/17/2014 09:40:48 TREE FELL ON TRANSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE
TREE ON LINE BREAKER FAILURE B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME OTHE TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA D PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME OTHE TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA D PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME OTHE TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA D PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME OTHE TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA D D PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA D D D THE LINE 09/19/2016 17:19:15 D THASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA D D D D THE LINE 09/19/2016 17:19:15 D THE CONTEL CONTELLINE 09/19/2016 17:19:15 D THE CONTEL CONTELLINE 09/19/2016 17:19:15 D THE CONTEL CONTELLINE 09/19/2016 17:19:15 D THE CONTEL CONTEL CONTER THE TIME TRANSMISSION UTAGE THE 115KV TRANSMISSION CONTELLINE 00/17/2015 15:25.7 D W VOILage at multiple subs in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken pole d H/14/2015 13:42.2 SANTEE COOPER TOON AN OPERATION ON THE N. CHARLESTON 115 KV LINE Cames 115 to SI George operated. Cause unknkown per: Santee Cooper	
B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME THAT TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA 08/25/2016 15:37:32 Tree found on line 2 spans down from TEFIS 137470 Chris Wagner with Santee Cooper called and said they had this line on a hot line work permit (one shot) when the line went out. Looks like the out LOGGER DROPPED TREE ON THE LINE 09/19/2016 17:19:15 31/22015 15:257 "Low voltage at multiple subs in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken pole 4/14/2015 13:34:22 SANTEE COOPER TOCK AN OPERATION ON THE N. CHARLESTON 115 KV LINE Carries 115 to SI George operated. Cause unknown per. Santee Cooper 10/3/2012 12:244 PM 613-Mike Mallard assigned to outage. Tree on line line St. George to Carnes Feeder. 10/3/2012 10:04:22 FIRE AT EDISTO SUB. (SANTEE COOPER) FOUND OUT NEXT DAY ATTEMPTED THEFT AT SUB. Beaver cut tree on transmission line on Sangaree tap. 10/17/2014 09:43:00 TREE FELL ON TRASSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE EDISTO ELECTRIC INSTALLING NEW TRANSFORMER IN SUBSTATIONTHAT WAS NOT GROUNDED RESULTED IN SANTEE COOPER TR TREE ON LINE BRAKER FAILURE D9/05/2016 00:39:39 SANTEE COOPER TOR DROPPED U B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115K	
B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING ON HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING ON HARLEYS BRIDGE AT THE TIME TANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B0/25/2016 15:37:32 Tree found on line 2 spans down from TEFIS 137470 Chris Wagner with Santee Cooper called and said they had this line on a hot line work permit (one shot) when the line went out. Looks like the out LOGGER DROPPED TREE ON THE LINE 09/19/2016 17:19:15 3/12/2015 15:25:57 'Low voltage at multiple subs in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken pole 4/14/2015 13:3:42: SANTEE COOPER TOOK AN OPERATION ON THE N. CHARLESTON 115 KV LINE Carnes 115 to S1 George operated. Cause unknkown per: Santee Cooper 	
B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME OTHE TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA 08/25/2016 15:37:32 Tree found on line 2 spans down from TEFIS 137470 Chris Wagner with Santee Cooper called and said they had this line on a hot line work permit (one shot) when the line went out. Looks like the out LOGGER DROPPED TREE ON THE LINE 09/19/2016 15:25:57 'Low voltage at multiple subs in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken poid 4/14/2015 13:34:22 S 15:25:57 'Low voltage at multiple subs in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken poid 4/14/2015 13:34:22 S 16:26:27 'Low voltage at multiple subs in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken poid 4/14/2015 13:34:22 Carnes 116 IS 16:26:97 BOY BOY 2000 ER COPER TOOK AN OPERATION ON THE N. CHARLESTON 115 KV LINE Carnes 116 IS 10:26:97 Low voltage at multiple subs in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken poid 4/14/2012 10:04:22 FIRE AT ELINE Santee Cooper	
B PHASE TRANSFORMER BUSHING ON HARLEYS BRIDGE AT THE TIME O THE TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA P0/25/2016 15:37:32 Tree found on line 2 spans down from TEFIS 137470 Chris Wagner with Santee Cooper called and said they had this line on a hot line work permit (one shot) when the line went out. Looks like the out LOGGER DROPPED TREE ON THE LINE 09/19/2016 17:19:15 3/12/2015 15:25:57 'Low voltage at multiple subs in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken pole 4/14/2015 13:34:22 SANTEE COOPER TOOK AN OPERATION ON THE N. CHARLESTON 115 KV LINE Cames 115 to SI George operated. Cause unknown per: Santee Cooper	
B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA 08/25/2016 15:37:32 Tree found on line 2 spans down from TEFIS 137470 Chris Wagner with Santee Cooper called and said they had this line on a hot line work permit (one shot) when the line went out. Looks like the out LOGGER DROPPED TREE ON THE LINE 09/19/2016 17:19:15 3/12/2015 15:25:57 "Low voltage at multiple subs in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken pole 4/14/2015 13:34:22 SANTEE COOPER TOOK AN OPERATION ON THE N. CHARLESTON 115 KV LINE Carnes 115 to SI George operated. Cause unknkown per: Santee Cooper	
09/25/2016 15:37:32 Tree found on line 2 spans down from TEFIS 137470 Chris Wagner with Santee Cooper called and said they had this line on a hot line work permit (one shot) when the line went out. Looks like the out LOGGER DROPPED TREE ON THE LINE 09/19/2016 17:19:15 31/20201 51:25:57 ". Low voltage at multiple subs in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken pole 4/14/2015 13:34:22 SANTEE COOPER TOOK AN OPERATION ON THE N. CHARLESTON 115 KV LINE Carnes 116 to St George operated. Cause unknkown per: Santee Cooper 	
Chris Wagner with Santee Cooper called and said they had this line on a hot line work permit (one shot) when the line went out. Looks like the out LOGGER DROPPED TREE ON THE LINE 09/19/2016 17:19:15 09/19/2016 17:19:15 07/2015 15:255 T "Low voltage at multiple subs in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken pole 4/14/2015 13:34:22 SANTEE COOPER TOOK AN OPERATION ON THE N. CHARLESTON 115 KV LINE Carnes 115 to St George operated. Cause unknkown per: Santee Cooper 	B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA
Chris Wagner with Santee Cooper called and said they had this line on a hot line work permit (one shot) when the line went out. Looks like the out LOGGER DROPPED TREE ON THE LINE 09/19/2016 17:19:15 09/19/2016 17:19:15 07/2015 15:255 T "Low voltage at multiple subs in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken pole 4/14/2015 13:34:22 SANTEE COOPER TOOK AN OPERATION ON THE N. CHARLESTON 115 KV LINE Carnes 115 to St George operated. Cause unknkown per: Santee Cooper 	
LOGGER DROPPED TREE ON THE LINE 09/19/2016 17:19:15 3/12/2015 15:25:57 "Low voltage at multiple subs in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken pole 4/14/2015 13:34:22 SANTEE COOPER TOOK AN OPERATION ON THE N. CHARLESTON 115 KV LINE Cames 115 to St George operated. Cause unknkown per: Santee Cooper 8/17/2012 5:29:44 PM 613-Mike Mallard assigned to outage. Tree on line line St. George to Carnes Feeder.	
3/12/2015 15:25:57 "Low voltage at multiple subs in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken pole 4/14/2015 13:34:22 SANTEE COOPER TOOK AN OPERATION ON THE N. CHARLESTON 115 KV LINE Cames 115 to SI George operated. Cause unknkown per: Santee Cooper 	Chris Wagner with Santee Cooper called and said they had this line on a hot line work permit (one shot) when the line went out. Looks like the out
4/14/2015 13:34:22 SANTEE COOPER TOOK AN OPERATION ON THE N. CHARLESTON 115 KV LINE Carnes 115 to St George operated. Cause unknkown per: Santee Cooper 	
Carnes 115 to St George operated. Cause unknkown per: Santee Cooper 8/17/2012 5:29:44 PM 613-Mike Mallard assigned to outage. Tree on line line St. George to Carnes Feeder. 8/17/2012 5:29:44 PM 613-Mike Mallard assigned to outage. Tree on line line St. George to Carnes Feeder. 8/17/2012 5:29:44 PM 613-Mike Mallard assigned to outage. Tree on line line St. George to Carnes Feeder. 8/17/2014 02:422 FIRE AT EDISTO SUB. (SANTEE COOPER) FOUND OUT NEXT DAY ATTEMPTED THEFT AT SUB. 8/2012 11:203:09 SEVERE THUNDERSTORM 10/17/2014 09:43:00 TREE FELL ON TRASSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE EDISTO ELECTRIC INSTALLING NEW TRANSFORMER IN SUBSTATIONTHAT WAS NOT GROUNDED RESULTED IN SANTEE COOPER TRA TREE ON LINE BREAKER FAILURE 09/05/2015 00:39:39 SANTEE COOPER DROPPED U B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AN MARLEYS BRIDGE	
 8/17/2012 5:29:44 PM 613-Mike Mallard assigned to outage. Tree on line line St. George to Carnes Feeder. 10/3/2012 10:04:22 FIRE AT EDISTO SUB. (SANTEE COOPER) FOUND OUT NEXT DAY ATTEMPTED THEFT AT SUB. Beaver cut tree on transmission line on Sangaree tap. Partial lockout on Carnes to St George 115 line. 7/17/2014 12:03:09 SEVERE THUNDERSTORM 10/17/2014 09:43:00 TREE FELL ON TRASSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE EDISTO ELECTRIC INSTALLING NEW TRANSFORMER IN SUBSTATIONTHAT WAS NOT GROUNDED RESULTED IN SANTEE COOPER TRATE ON LINE BREAKER FAILURE 90/05/2015 00:39:39 SANTEE COOPER DROPPED US B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION	
Beaver cut tree on transmission line on Sangaree tap. Partial lockout on Carnes to St Geaorge 115 line. 7/17/2014 09:43:00 TREE FELL ON TRASSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE EDISTO ELECTRIC INSTALLING NEW TRANSFORMER IN SUBSTATIONTHAT WAS NOT GROUNDED RESULTED IN SANTEE COOPER TR TREE ON LINE BREAKER FAILURE 09/05/2015 00:39:39 SANTEE COOPER DROPPED U B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA 08/25/2016 15:31:14 tree found on line 2 spans down from TEFIS 137470 Chris Wagner with Santee Cooper called and said they had this line on a hot line work permit (one shot) when the line went out. Looks like the out 09/19/2016 17:18:46 LOGGER DROPPED TREE ON LINE	
Partial lockout on Carnes to St Geaorge 115 line. 7/17/2014 12:03:09 SEVERE THUNDERSTORM 10/17/2014 09:43:00 TREE FELL ON TRASSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE EDISTO ELECTRIC INSTALLING NEW TRANSFORMER IN SUBSTATIONTHAT WAS NOT GROUNDED RESULTED IN SANTEE COOPER TR TREE ON LINE BREAKER FAILURE 09/05/2015 00:39:39 SANTEE COOPER DROPPED U B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B 225/2016 15:31:14 tree found on line 2 spans down from TEFIS 137470 Chris Wagner with Santee Cooper called and said they had this line on a hot line work permit (one shot) when the line went out. Looks like the out 09/29/2011 11:07:21 Carnes 115 to St George operated. Cause unknkown per: Santee Cooper Tree on line line St. George to Carnes Feeder. 	10/3/2012 10:04:22 FIRE AT EDISTO SUB. (SANTEE COOPER) FOUND OUT NEXT DAY ATTEMPTED THEFT AT SUB.
7/17/2014 12:03:09 SEVERE THUNDERSTORM 10/17/2014 09:43:00 TREE FELL ON TRASSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE EDISTO ELECTRIC INSTALLING NEW TRANSFORMER IN SUBSTATIONTHAT WAS NOT GROUNDED RESULTED IN SANTEE COOPER TR/ 09/05/2015 00:39:39 SANTEE COOPER DROPPED US B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE TREE TO STEAL B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE TREE TO S	Beaver cut tree on transmission line on Sangaree tap.
7/17/2014 12:03:09 SEVERE THUNDERSTORM 10/17/2014 09:43:00 TREE FELL ON TRASSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE EDISTO ELECTRIC INSTALLING NEW TRANSFORMER IN SUBSTATIONTHAT WAS NOT GROUNDED RESULTED IN SANTEE COOPER TR/ 09/05/2015 00:39:39 SANTEE COOPER DROPPED US B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE TREE TO STEAL B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE TREE TO S	Partial lockout on Carnes to St Geaorge 115 line.
10/17/2014 09:43:00 TREE FELL ON TRASSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE EDISTO ELECTRIC INSTALLING NEW TRANSFORMER IN SUBSTATIONTHAT WAS NOT GROUNDED RESULTED IN SANTEE COOPER TR/ 09/05/2015 00:39:39 SANTEE COOPER DROPPED U B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING ON HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING ON HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA 08/25/2016 15:31:14 tree found on line 2 spans down from TEFIS 137470 Chris Wagner with Santee Cooper called and said they had this line on a hot line work permit (one shot) when the line went out. Looks like the out 09/19/2016 11:107:21 Carnes 115 to St George operated. Cause unknkown per: Santee Cooper Tree on line line St. George to Carnes Feeder.	7/17/2014 12:03:09 SEVERE THUNDERSTORM
EDISTO ELECTRIC INSTALLING NEW TRANSFORMER IN SUBSTATIONTHAT WAS NOT GROUNDED RESULTED IN SANTEE COOPER TRANSFORMER FAILURE 09/05/2015 00:39:39 SANTEE COOPER DROPPED US B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING ON HARLEYS BRIDGE AT THE TIME O THE TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME O THE TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME O THE TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME O THE TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE ON LINE 	
EDISTO ELECTRIC INSTALLING NEW TRANSFORMER IN SUBSTATIONTHAT WAS NOT GROUNDED RESULTED IN SANTEE COOPER TRANSFORMER FAILURE 09/05/2015 00:39:39 SANTEE COOPER DROPPED US B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING ON HARLEYS BRIDGE AT THE TIME O THE TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME O THE TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME O THE TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME O THE TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE ON LINE 	
EDISTO ELECTRIC INSTALLING NEW TRANSFORMER IN SUBSTATIONTHAT WAS NOT GROUNDED RESULTED IN SANTEE COOPER TRANSFORMER FAILURE 09/05/2015 00:39:39 SANTEE COOPER DROPPED US B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING ON HARLEYS BRIDGE AT THE TIME O THE TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME O THE TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME O THE TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME O THE TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE ON LINE 	10/17/2014 09:43:00 TREE FELL ON TRASSMISSION LINE BETWEEN DORCHESTER AND ST GEORGE
TREE ON LINE BREAKER FAILURE 09/05/2015 00:39:39 SANTEE COOPER DROPPED US B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING ON HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING ON HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA 08/25/2016 15:31:14 tree found on line 2 spans down from TEFIS 137470 Chris Wagner with Santee Cooper Called and said they had	
B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING ON HARLEYS BRIDGE AT THE TIME O THE TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME O THE TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME O THE TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA 08/25/2016 15:31:14 tree found on line 2 spans down from TEFIS 137470 Chris Wagner with Santee Cooper called and said they had this line on a hot line work permit (one shot) when the line went out. Looks like the out 09/19/2016 17:18:46 LOGGER DROPPED TREE ON LINE 	
B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING ON HARLEYS BRIDGE AT THE TIME O THE TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME O THE TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA 08/25/2016 15:31:14 tree found on line 2 spans down from TEFIS 137470 Chris Wagner with Santee Cooper called and said they had this line on a hot line work permit (one shot) when the line went out. Looks like the outa 09/19/2016 17:18:46 LOGGER DROPPED TREE ON LINE 	
B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING ON HARLEYS BRIDGE AT THE TIME O THE TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA 08/25/2016 15:31:14 tree found on line 2 spans down from TEFIS 137470 Chris Wagner with Santee Cooper called and said they had this line on a hot line work permit (one shot) when the line went out. Looks like the outa 09/19/2016 17:18:46 LOGGER DROPPED TREE ON LINE 	
B PHASE TRANSFORMER BUSHING ON HARLEYS BRIDGE AT THE TIME O THE TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA 08/25/2016 15:31:14 tree found on line 2 spans down from TEFIS 137470 Chris Wagner with Santee Cooper called and said they had this line on a hot line work permit (one shot) when the line went out. Looks like the outa 09/19/2016 17:18:46 LOGGER DROPPED TREE ON LINE 	
B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA 08/25/2016 15:31:14 tree found on line 2 spans down from TEFIS 137470 Chris Wagner with Santee Cooper called and said they had this line on a hot line work permit (one shot) when the line went out. Looks like the outa 09/19/2016 17:18:46 LOGGER DROPPED TREE ON LINE 	
08/25/2016 15:31:14 tree found on line 2 spans down from TEFIS 137470 Chris Wagner with Santee Cooper called and said they had this line on a hot line work permit (one shot) when the line went out. Looks like the out 09/19/2016 17:18:46 LOGGER DROPPED TREE ON LINE 	
Chris Wagner with Santee Cooper called and said they had this line on a hot line work permit (one shot) when the line went out. Looks like the out 09/19/2016 17:18:46 LOGGER DROPPED TREE ON LINE 	B PHASE TRANSFORMER BUSHING AT HARLEYS BRIDGE AT THE TIME TRANSMISSION OUTAGE THE 115KV TRANSMISSION LOOP WA
Chris Wagner with Santee Cooper called and said they had this line on a hot line work permit (one shot) when the line went out. Looks like the out 09/19/2016 17:18:46 LOGGER DROPPED TREE ON LINE 	
09/19/2016 17:18:46 LOGGER DROPPED TREE ON LINE 	
 	
Tree on line line St. George to Carnes Feeder. 	
Beaver cut tree on transmission line on Sangaree tap. Partial lockout on Carnes to St Geaorge 115 line. 09/28/2016 16:31:26 SANTEE COOPER WAS DOING MAINTANENCE WORK AND KNOCKED OUT THEIR BREAKER. 09/28/2015 14:13:27 SANTEE COOPER OPERATION. CAUSE IS UNDER INVESTIGATION. (SC OCCURENCE CODE 8418) SEPTEMBER 29, 2	Tree on line line St. George to Carnes Feeder.
Beaver cut tree on transmission line on Sangaree tap. Partial lockout on Carnes to St Geaorge 115 line. 09/28/2016 16:31:26 SANTEE COOPER WAS DOING MAINTANENCE WORK AND KNOCKED OUT THEIR BREAKER. 09/28/2015 14:13:27 SANTEE COOPER OPERATION. CAUSE IS UNDER INVESTIGATION. (SC OCCURENCE CODE 8418) SEPTEMBER 29, 2	10/2/2012 9:26:49 PM SANTEE COOPER DROPPED TRANSMISSION DUE TO FIRE AT EDISTO SUB. SOMEONE TRIED TO STEAL
Partial lockout on Carnes to St Geaorge 115 line. 09/28/2016 16:31:26 SANTEE COOPER WAS DOING MAINTANENCE WORK AND KNOCKED OUT THEIR BREAKER. 09/28/2015 14:13:27 SANTEE COOPER OPERATION. CAUSE IS UNDER INVESTIGATION. (SC OCCURENCE CODE 8418) SEPTEMBER 29, 2	
09/28/2016 16:31:26 SANTEE COOPER WAS DOING MAINTANENCE WORK AND KNOCKED OUT THEIR BREAKER. 09/28/2015 14:13:27 SANTEE COOPER OPERATION. CAUSE IS UNDER INVESTIGATION. (SC OCCURENCE CODE 8418) SEPTEMBER 29, 2	
09/28/2015 14:13:27 SANTEE COOPER OPERATION. CAUSE IS UNDER INVESTIGATION. (SC OCCURENCE CODE 8418) SEPTEMBER 29, 2	

Appendix C, Page 56 of 104

4/20/2015 15:35:56 LIGHTNING STRIKE ON THE JOHNS ISLAND 115kv TRANSMISSION

4/20/2015 15:39:34 LIGHTNING STRIKE ON THE JOHNS ISLAND 115kv TRANSMISSION

3/12/2015 15:28:34 "Low voltage at multiple subs in Moncks Corner and Goose Creek due to an adjacent transmission feeder fault. A broken pole SANTEE COOPER HAD A BROKE POLE ON THE JEFFERIES TO CARNES CROSSROADS TRANSMISSION 07/20/2

[
FaultedPole#	outagerecid_1
Phase ABC Verified Open on 41_SIDING	2013-07-02-0116
Phase ABC Verified Open on 41_SIDING	2013-07-15-0765
Phase ABC Verified Open on SW1535988441-B	2013-11-22-0973
Phase ABC Verified Open on 41_SIDING	2016-03-16-1167
Phase ABC Verified Open on SW618929878-A	2011-01-06-0263
Phase ABC Verified Open on SW618929878-A	2011-03-03-0098
Phase ABC Verified Open on SW618929878-A	2011-07-07-0749
Phase ABC Verified Open on SW618929878-A	2011-05-11-0713
Phase ABC Verified Open on SW618929878-A	2011-07-14-1509
Phase ABC Verified Open on SW618929878-A	2011-09-11-0739
Phase ABC Verified Open on OC1531708827	2011-09-20-1328
Phase ABC Verified Open on SW618929878-A	2011-10-18-1393
Phase ABC Verified Open on SW618929878-A	2011-10-19-1552 2011-11-17-1300
Phase ABC Verified Open on SW618929878-A	
Phase ABC Verified Open on SW618929878-A	2011-11-17-1303
Phase ABC Verified Open on SW618929878-A	2011-11-29-1935 2012-01-05-0346
Phase ABC Verified Open on SW618929878-A Phase ABC Verified Open on SW618929878-A	2012-01-05-0348
Phase ABC Verified Open on OC1531708827	
	2012-01-23-1363 2012-02-12-0517
Phase ABC Verified Open on SW618929878 Phase ABC Verified Open on SW618929878	2012-02-12-0517 2012-02-27-1316
	2012-02-27-1316
Phase ABC Verified Open on OC1531708827 Phase ABC Verified Open on AWENDAW_MP	2012-04-13-0620
Phase ABC Verified Open on SW618929878	2012-09-01-0006
Phase ABC Verified Open on OC1531708827	2012-09-25-1016
Phase ABC Verified Open on AWENDAW_MP	2012-03-23-1010
Phase ABC Verified Open on OC1531708827	2013-05-06-0255
Phase ABC Verified Open on AWENDAW_MP	2013-06-03-0151
Phase ABC Verified Open on AWENDAW_MP	2013-06-05-0286
Phase ABC Verified Open on AWENDAW_MP	2013-06-26-2237
Phase ABC Verified Open on AWENDAW_MP	2013-07-24-1138
	2013-08-14-0556
Phase ABC Verified Open on AWENDAW_MP	2013-08-25-1057
Phase ABC Verified Open on AWENDAW_MP	2013-12-03-0066
Phase ABC Verified Open on AWENDAW_MP	2013-12-03-0067
Phase ABC Verified Open on AWENDAW_MP	2013-12-18-0589
Phase ABC Verified Open on OC1531708827	2014-07-24-2135
Phase ABC Verified Open on OC1531708827	2014-09-19-2148
Phase ABC Verified Open on AWENDAW_MP	2015-05-08-0804
Phase ABC Verified Open on OC1531708827	2015-05-15-1120
Phase ABC Verified Open on OC1531708827	2015-05-16-1193
Phase ABC Verified Open on OC1531708827	2015-05-17-1216
Phase ABC Verified Open on AWENDAW_MP	2015-07-03-0278
Phase ABC Verified Open on OH1460503743	2016-09-20-1998
Phase ABC Verified Open on SW662338177-B	2013-08-30-1248
Phase ABC Verified Open on OH-42610481	2013-11-22-0969
Phase ABC Verified Open on BIGGINS	2015-03-12-0415
Phase ABC Verified Open on CAINHOY	2013-04-30-1541
Phase ABC Verified Open on XFMR210035	2016-09-16-1755
Phase ABC Verified Open on OC1865049885	2011-04-23-1841
Phase ABC Verified Open on OC1865049885	2011-04-23-1831
Phase ABC Verified Open on COLLEGE_PARK	2011-09-03-0133
Phase ABC Verified Open on COLLEGE_PARK	2013-03-10-0486
Phase ABC Verified Open on OC275325955	2011-09-11-0742
Phase ABC Verified Open on OC344976902	2012-10-18-0796
Phase ABC Verified Open on OC215251518	2012-10-18-0788
Phase ABC Verified Open on COOPERSTORERD	2013-09-03-0102
Phase ABC Verified Open on COOPERSTORERD	2014-08-13-0553
Phase ABC Verified Open on COOPERSTORERD	2015-03-12-0416
Phase ABC Verified Open on COOPERSTORERD	2016-08-25-3661
Phase ABC Verified Open on CORNING	2013-03-11-0548
Phase ABC Verified Open on CORNING	2013-11-22-0974
Phase ABC Verified Open on CROWFIELD	2011-07-14-1488
Phase ABC Verified Open on OH1376581575 Phase ABC Verified Open on CROWFIELD	2013-11-22-0975 2015-03-12-0435
	2010-00-12-0400

Phase ABC Verified Open on CROWFIELD	2016-07-14-0967
Phase ABC Verified Open on GOOSE_CREEK	2011-07-14-1493
Phase C Verified Open on TR-1865317810	2015-03-13-0475
Phase ABC Verified Open on GOOSE_CREEK	2016-07-14-0968
Phase ABC Verified Open on JAMESTOWN	2015-04-07-0193
Phase ABC Verified Open on JAMESTOWN	2015-07-13-0865
Phase ABC Verified Open on SW-1794710131-B	2013-11-22-0972
Phase ABC Verified Open on JOHNS_ISLAND	2015-04-20-0843
Phase ABC Verified Open on LEBANON	2013-09-03-0100
Phase ABC Verified Open on LEBANON	2014-08-13-0551
Phase ABC Verified Open on LEBANON	2016-08-25-3662
Phase ABC Verified Open on LEGAREVILLE	2015-04-20-0840
Phase ABC Verified Open on LEGAREVILLE	2016-07-14-0969
Phase ABC Verified Open on SW186213-B	2015-03-12-0424
Phase ABC Verified Open on MACEDONIA	2015-03-12-0413
Phase ABC Verified Open on MACEDONIA	2015-07-13-0866
Phase ABC Verified Open on MCQUEEN	2011-08-16-2297
Phase ABC Verified Open on MCQUEEN	2012-08-17-0986
Phase ABC Verified Open on MCQUEEN	2012-10-02-0090
Phase ABC Verified Open on MCQUEEN	2012-11-07-0329
Phase ABC Verified Open on MCQUEEN	2012-11-07-0323
Phase ABC Verified Open on MCQUEEN	2014-07-17-1797
Phase ABC Verified Open on MCQUEEN	2014-09-03-0088
Phase ABC Verified Open on MCQUEEN	2014-09-15-1068
Phase ABC Verified Open on MCQUEEN	2014-09-13-1008
Phase ABC Verified Open on MCQUEEN	2014-12-22-2124
Phase ABC Verified Open on MCQUEEN	2016-07-14-0971
Phase ABC Verified Open on OH1368234708	2016-03-03-0268
Phase ABC Verified Open on OH1368234708	2016-03-03-0326
Phase ABC Verified Open on OH1368234708	2016-03-03-0387
Phase ABC Verified Open on OH1368234708	2016-03-03-0406
Phase ABC Verified Open on OH1368234708	2016-03-03-0431
Phase ABC Verified Open on MCQUEEN	2016-08-25-3660
Phase ABC Verified Open on MCQUEEN	2016-09-21-2047
Phase ABC Verified Open on OH1368234708	2016-09-19-1903
Phase ABC Verified Open on OH1368234708	2016-09-19-1937
Phase ABC Verified Open on MEDWAY	2015-03-12-0421
Phase ABC Verified Open on MOUNT_HOLLY	2015-04-14-0563
Phase ABC Verified Open on NEW_HOPE	2011-08-16-2296
Phase ABC Verified Open on NEW_HOPE	2012-08-17-0994
Phase ABC Verified Open on NEW_HOPE	2012-10-03-0199
Phase ABC Verified Open on NEW_HOPE	2012-11-07-0328
Phase ABC Verified Open on NEW_HOPE	2013-03-11-0601
Phase ABC Verified Open on NEW_HOPE	2014-07-17-1796
Phase ABC Verified Open on NEW_HOPE	2014-09-03-0086
Phase ABC Verified Open on NEW_HOPE	2014-09-15-1066
Phase ABC Verified Open on NEW_HOPE	2014-10-17-0703
Phase ABC Verified Open on NEW_HOPE	2014-12-19-1957
Phase ABC Verified Open on OH-1142665965	2015-09-04-0326
Phase ABC Verified Open on OH-1142665965	2016-03-03-0286
Phase ABC Verified Open on OH-1142665965	2016-03-03-0334
Phase ABC Verified Open on OH-1142665965	2016-03-04-0489
Phase ABC Verified Open on OH-1142665965	2016-03-03-0409
Phase ABC Verified Open on OH-1142665965	2016-03-03-0436
Phase ABC Verified Open on NEW_HOPE	2016-08-25-3654
Phase ABC Verified Open on NEW_HOPE	2016-08-25-3658
Phase ABC Verified Open on OH960514415	2016-09-19-1905
Phase ABC Verified Open on OH-1142665965	2016-09-19-1925
Phase ABC Verified Open on SANGAREE	2011-08-16-2293
Phase ABC Verified Open on SANGAREE	2012-08-17-0988
Phase ABC Verified Open on SANGAREE	2012-10-02-0181
Phase ABC Verified Open on SANGAREE	2012-11-07-0325
Phase ABC Verified Open on SANGAREE	2013-03-11-0600
Phase ABC Verified Open on SANGAREE	2016-09-28-2435
Phase ABC Verified Open on SANTEE	2015-09-28-2415
Phase ABC Verified Open on SANTEE	2016-09-26-2264

2015-04-20-0841
2016-07-14-0970
2015-04-20-0842
2013-09-04-0130
2013-11-22-0970
2015-03-12-0419
2016-08-18-1215
2012-05-17-0927
2015-03-12-0420
2015-07-20-2651

OutageName	Substation	OutageStartTime	OutageEndTime	Customers
AWENDAW MP (SOURCE OPERATION)	AWENDAW MP	1.5.2011 4:46 PM	1.5.2011 4:46 PM	848
AWENDAW MP (SOURCE OUTAGE)	AWENDAW_MP	3.3.2011 11:58 AM	3.3.2011 12:00 PM	842
AWENDAW MP (SOURCE OPERATION)	AWENDAW MP	3.5.2011 4:41 PM	3.5.2011 4:41 PM	850
AWENDAW MP (SOURCE OUTAGE)	AWENDAW MP	5.11.2011 4:21 AM	5.11.2011 5:16 AM	849
AWENDAW MP (SOURCE OPERATION)	AWENDAW_MP	7.13.2011 9:44 PM	7.13.2011 9:44 PM	847
AWENDAW MP (SOURCE OPERATION)	AWENDAW_MP	9.11.2011 5:00 PM	9.11.2011 5:00 PM	838
AWENDAW MP (SOURCE OUTAGE)	AWENDAW_MP	9.19.2011 4:54 PM	9.19.2011 4:57 PM	835
AWENDAW MP (SOURCE OPERATION)	AWENDAW_MP	10.18.2011 10:11 AM	10.18.2011 10:11 AM	834
AWENDAW MP (SOURCE OUTAGE)	AWENDAW_MP	10.19.2011 6:32 PM	10.19.2011 9:48 PM	834
AMWENDAW MP (SOURCE OUTAGE)	AWENDAW_MP	11.17.2011 1:34 PM	11.17.2011 1:35 PM	841
AWENDAW MP (SOURCE OPERATION)	AWENDAW_MP	11.17.2011 2:40 PM	11.17.2011 2:40 PM	841
AWENDAW MP (SOURCE OPERATION)	AWENDAW_MP	11.29.2011 8:34 AM	11.29.2011 8:34 AM	841
AWENDAW MP (SOURCE OPERATION)	AWENDAW_MP	12.29.2011 3:56 PM	12.29.2011 3:56 PM	841
AWENDAW MP (SOURCE OPERATION)	AWENDAW_MP	12.30.2011 10:10 AM	12.30.2011 10:10 AM	841
AWENDAW MP (SOURCE OUTAGE)	AWENDAW_MP	1.23.2012 7:48 PM	1.23.2012 11:12 PM	846
AWENDAW MP (SOURCE OPERATION)	AWENDAW_MP	2.11.2012 9:29 PM	2.11.2012 9:29 PM	847
AWENDAW MP (SOURCE OPERATION)	AWENDAW_MP	2.27.2012 1:26 PM	2.27.2012 1:26 PM	845
AWENDAW MP (SOURCE OPERATION)	AWENDAW_MP	4.13.2012 8:50 AM	4.13.2012 8:50 AM	845
AWENDAW MP (SOURCE OPERATION)	AWENDAW_MP	5.4.2012 7:44 AM	5.4.2012 7:44 AM	847
AWENDAW MP (SOURCE OPERATION)	AWENDAW_MP	9.1.2012 6:02 AM	9.1.2012 6:02 AM	869
AWENDAW MP (SOURCE OUTAGE)	AWENDAW_MP	9.25.2012 9:02 AM	9.25.2012 9:10 AM	869
AWENDAW MP (SOURCE OPERATION)	AWENDAW_MP	4.19.2013 5:58 AM	4.19.2013 5:58 AM	886
AWENDAW MP (SOURCE OUTAGE)	AWENDAW_MP	5.3.2013 6:58 PM	5.3.2013 7:04 PM	885
AWENDAW MP (SOURCE OPERATION)	AWENDAW_MP	6.3.2013 1:40 PM	6.3.2013 1:40 PM	882
AWENDAW MP (SOURCE OUTAGE)	AWENDAW_MP	6.5.2013 4:06 AM	6.5.2013 4:19 AM	884
AWENDAW MP (SOURCE OPERATION)	AWENDAW_MP	6.26.2013 3:07 PM	6.26.2013 3:07 PM	889
AWENDAW MP (SOURCE OPERATION)	AWENDAW_MP	7.24.2013 9:51 AM	7.24.2013 9:51 AM	883
AWENDAW MP (SOURCE OUTAGE)	AWENDAW_MP	8.14.2013 12:30 PM	8.14.2013 2:41 PM	885
AWENDAW MP (SOURCE O/C)	AWENDAW_MP	8.25.2013 9:08 AM	8.25.2013 9:08 AM	888
AWMP (Sourceside) O/C	AWENDAW_MP	12.2.2013 9:02 AM	12.2.2013 9:02 AM	896
AWMP (Sourceside) O/C	AWENDAW_MP	12.2.2013 9:02 AM	12.2.2013 9:02 AM	896
AWMP (SOURCE OUTAGE)	AWENDAW_MP	12.18.2013 7:57 AM	12.18.2013 8:00 AM	896
AWENDAW MP	AWENDAW_MP	7.24.2014 3:52 PM	7.24.2014 4:37 PM	874
AWENDAW MP (SOURCE OUTAGE)	AWENDAW_MP	9.19.2014 3:15 PM	9.19.2014 3:40 PM	877
AWENDAW MP (SOURCE)	AWENDAW_MP	5.7.2015 3:10 PM	5.7.2015 3:19 PM	869
AWENDAW MP (SOURCE)	AWENDAW_MP	5.15.2015 5:00 PM	5.15.2015 5:08 PM	865
AWENDAW MP (SOURCE)	AWENDAW_MP	5.16.2015 4:11 PM	5.16.2015 4:20 PM	866
AWENDAW MP (SOURCE)	AWENDAW_MP	5.17.2015 3:34 PM	5.17.2015 3:42 PM	866
AW-MP (SOURCE)	AWENDAW_MP	7.3.2015 3:12 PM	7.3.2015 3:25 PM	869
AWENDAW MP (SOURCE)	AWENDAW_MP	9.20.2016 8:21 PM	9.20.2016 8:25 PM	858

Interruption CustomerMi CustomerHours 0 0 0 2 1684 28.066666 0 0 0 55 46695 778.25 0 0 0 0 0 0 10 0 0 3 2505 41.75 0 0 0 196 163464 2724.4 0 841 14.016666 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<	Interruption	CustomerMi	CustomerHours
2 1684 28.066666 0 0 0 55 46695 778.25 0 0 0 3 2505 41.75 0 0 0 196 163464 2724.4 0 841 14.016666 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <			
0 0 0 55 46695 778.25 0 0 0 3 2505 41.75 0 0 0 196 163464 2724.4 0 841 14.016666 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 11492 191.533333 0 0 0 0 0 0 0 0 0	-	-	Ĵ
55 46695 778.25 0 0 0 0 0 0 3 2505 41.75 0 0 0 196 163464 2724.4 0 841 14.016666 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13	_		
0 0 0 3 2505 41.75 0 0 0 196 163464 2724.4 0 841 14.016666 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 11492 191.533333 0 0 0 0 0 0 0 0 0 13 11492 191.533333 0 0 0			-
0 0 0 3 2505 41.75 0 0 0 196 163464 2724.4 0 841 14.016666 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 11492 191.533333 0 0 0 0 0 0 0 0 0 13 112390 206.5 1 888 14.8			
3 2505 41.75 0 0 0 196 163464 2724.4 0 841 14.016666 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 11492 191.533333 0 0 0 0 0 0 0 0 0 13 112390 206.5 1 888 14.8 0 0 0	-	-	-
0 0 0 196 163464 2724.4 0 841 14.016666 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 11492 191.533333 0 0 0 0 0 0 13 11492 191.533333 13 12390 206.5 14 888 144.8 0 0 0 0 0 0	-		
196 163464 2724.4 0 841 14.016666 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 11492 191.533333 0 0 0 0 0 0 13 11492 191.533333 0 0 0 13 112390 206.5 14 888 144.8 0 0 0 0 0 0			
0 841 14.016666 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 204 171738 2862.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 11492 191.533333 0 0 0 0 0 0 13 11492 191.533333 13 12390 206.5 13 12390 206.5 14 888 14.8 0 0 0 0 0 0 13 12393 655.5<	-	-	
0 0 0 0 0 0 0 0 0 0 0 0 204 171738 2862.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 11492 191.533333 0 0 0 0 13 11492 191.533333 0 0 0 0 13 11492 191.533333 0 0 0 0 13 112390 206.5 1 888 14.8 0 0 0 0 0 0 0 <			
0 0 0 0 0 0 0 0 0 0 0 0 204 171738 2862.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 11492 191.533333 0 0 0 0 13 11492 191.533333 0 0 0 0 13 11492 191.533333 0 0 0 0 13 112390 206.5 1 888 14.8 0 0 0 0 0 0 0 0 <	_		
0 0 0 0 0 0 204 171738 2862.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 11492 191.533333 0 0 0 0 0 0 0 0 0 0 13 11492 191.533333 0	-	-	-
0 0 0 204 171738 2862.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <	-		
204 171738 2862.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 11492 191.533333 0 0 0 0 0 0 0 0 0 13 112390 206.5 1 888 14.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2			
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 5310 88.5 0 0 0 13 11492 191.533333 0 0 0 13 11492 191.533333 0 0 0 13 112390 206.5 13 12390 206.5 1 888 14.8 0 0 0 0 0 0 13 12390 206.5 1 888 14.8 0 0 0 0 0 0 13 12393 655.5 24 21358 355.966666 9 7821	-	-	-
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 5310 88.5 0 0 0 13 11492 191.533333 0 0 0 13 112390 206.5 13 12390 206.5 1 888 14.8 0 0 0 0 0 0 13 12390 206.5 1 888 14.8 0 0 0 0 0 0 0 0 0 13 12393 655.5 24 21358 355.966666 9 7821 130.35 8 6928			
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 6952 115.866666 0 0 0 0 6 5310 88.5 0 0 0 0 0 0 0 13 11492 191.533333 0 0 0 0 0 0 0 0 13 112390 206.5 1 888 14.8 0 0 0 0 0 0 13 12390 206.5 1 888 14.8 0 0 0 0 0 0 0 13 12390 2065.5 24 21358 355.966666 39330 655.5 24 21358 355.9666666 39 7821 130.35 33333 38 6928 <t< td=""><td>-</td><td>-</td><td>-</td></t<>	-	-	-
0 0 0 0 0 0 0 8 6952 115.866666 0 0 0 0 6 5310 88.5 0 0 0 0 0 0 0 13 11492 191.533333 0 0 0 0 0 0 0 0 0 0 13 112390 206.5 1 888 14.8 14.8 0 13 130.35 355.9666666 9 7821 130.35 355.9666666 8 6928 <t< td=""><td>-</td><td>-</td><td>_</td></t<>	-	-	_
0 0 0 8 6952 115.866666 0 0 0 6 5310 88.5 0 0 0 13 11492 191.533333 0 0 0 13 11492 191.533333 0 0 0 0 0 0 13 12390 206.5 1 888 14.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2688 44.8 45 39330 655.5 24 21358 355.966666 9 7821 130.35 8 6928 115.466666 8	-	-	
8 6952 115.866666 0 0 0 6 5310 88.5 0 0 0 13 11492 191.533333 0 0 0 0 0 0 0 0 0 131 12390 206.5 1 888 14.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 39330 655.5 24 21358 355.966666 9 7821 130.35 8 6920 115.333333 8 6928 115.466666 13 11297 188.283333	-		
0 0 0 6 5310 88.5 0 0 0 13 11492 191.53333 0 0 0 0 0 0 0 0 0 0 0 0 131 12390 206.5 1 888 14.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 39330 655.5 24 21358 355.966666 9 7821 130.35 8 6920 115.33333 8 6928 115.466666 8 6928 115.466666 13 11297 188.283333	-	-	-
6 5310 88.5 0 0 0 13 11492 191.53333 0 0 0 0 0 0 0 0 0 131 12390 206.5 131 12390 206.5 1 888 14.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 39330 655.5 24 21358 355.966666 9 7821 130.35 8 6920 115.33333 8 6928 115.466666 8 6928 115.466666 13 11297 188.283333	_		
0 0 0 13 11492 191.533333 0 0 0 0 0 0 131 12390 206.5 1 888 14.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 133 12393 655.5 24 21358 355.966666 9 7821 130.35 8 6920 115.33333 8 6928 115.466666 8 6928 115.466666 13 11297 188.283333			-
13 11492 191.533333 0 0 0 0 0 0 131 12390 206.5 1 888 14.8 0 0 0 1 888 14.8 0 0 0 0 0 0 0 0 0 2 2688 44.8 45 39330 655.5 24 21358 355.966666 9 7821 130.35 8 6920 115.33333 8 6928 115.466666 8 6928 115.466666 13 11297 188.283333	-		
0 0 0 131 12390 206.5 1 888 14.8 0 0 0 0 0 0 0 0 0 2 2688 44.8 45 39330 655.5 24 21358 355.966666 9 7821 130.35 8 6920 115.33333 8 6928 115.466666 8 6928 115.466666 13 11297 188.283333	-	÷	-
131 12390 206.5 1 888 14.8 0 0 0 0 0 0 0 0 0 2 2688 44.8 45 39330 655.5 24 21358 355.966666 9 7821 130.35 8 6920 115.33333 8 6928 115.466666 13 11297 188.283333		-	
131 12390 206.5 1 888 14.8 0 0 0 0 0 0 0 0 0 2 2688 44.8 45 39330 655.5 24 21358 355.966666 9 7821 130.35 8 6920 115.33333 8 6928 115.466666 13 11297 188.283333	0	0	0
1 888 14.8 0 0 0 0 0 0 2 2688 44.8 45 39330 655.5 24 21358 355.966666 9 7821 130.35 8 6920 115.33333 8 6928 115.466666 13 11297 188.283333	-	-	-
0 0 0 0 0 0 2 2688 44.8 45 39330 655.5 24 21358 355.966666 9 7821 130.35 8 6920 115.33333 8 6928 115.466666 13 11297 188.283333			
2 2688 44.8 45 39330 655.5 24 21358 355.966666 9 7821 130.35 8 6920 115.33333 8 6928 115.466666 8 6928 115.466666 13 11297 188.283333	0		
45 39330 655.5 24 21358 355.966666 9 7821 130.35 8 6920 115.33333 8 6928 115.466666 8 6928 115.466666 13 11297 188.283333	0	0	0
45 39330 655.5 24 21358 355.966666 9 7821 130.35 8 6920 115.33333 8 6928 115.466666 8 6928 115.466666 13 11297 188.283333	2	2688	44.8
24 21358 355.966666 9 7821 130.35 8 6920 115.33333 8 6928 115.466666 8 6928 115.466666 13 11297 188.283333	45		
9 7821 130.35 8 6920 115.333333 8 6928 115.466666 8 6928 115.466666 13 11297 188.283333	24		355.966666
8 6928 115.466666 8 6928 115.466666 13 11297 188.283333	9		
8 6928 115.466666 8 6928 115.466666 13 11297 188.283333	8	6920	115.333333
86928115.4666661311297188.283333	8		115.466666
13 11297 188.283333	8		115.466666
4 2596 43.266666	13		188.283333
	4	2596	43.266666

740

Notes	
	6/2011 14:58:44 TARGETS ON A PHASE TO GROUND CAUSE UNKNOWN 1350 OPERATED PER BILL TURNER
	/3/2011 11:58:57 420-Joe Harvey assigned to outage
57	
5/	/11/2011 04:29:11 511-Kenny Holloway assigned to outage. SCE&G has restored power to their line feeding our Awendaw Mp. T
7/2	14/2011 12:11:31 SCE&G breaker operated.
	/19/2011 17:56:20 511-Kenny Holloway assigned to outage SCE@G breaker# 920912 malfunctioned.
	0/18/2011 11:04:53 Breaker# 1350 operated per: Wenday @ SCE&G Charleston Dispatch.
)/19/2011 19:20:21 SWAPED 18:32:47
	1/17/2011 14:43:29 SCE&G took an operation on their downline.
	L/17/2011 14:45:31 SCE&G operation tree on line
	L/29/2011 10:06:51 90912 operated / cause unknown Per: Wendy @ SCE&G
Load was on	CW-08 while SCE&G had a HLT and no BEC consumer affected. AW MP Source outage 15:56:11 - 16:42:25
11	
1/	/23/2012 19:49:00 507-Terrance Branton assigned to outage 1/23/2012 23:11:26 SCE&G RECLOSERS
2/2	27/2012 13:41:05 Breaker# 1350 operated per: Wendy @ SCE&G Charleston Dispatch.
_,-	
5/4	4/2012 09:11:52 SCE&G Breaker #1350 operated per: Charleston Dispatch
9/:	1/2012 08:18:12 SCE&G HAS A DOWN LINE RECLOSER OUT
SCE&G took a	a dip on their 90912, cause unknown. Per:Wendy @ SCE&G Charleston Dispatch
EVERYTHING	WAS BACK TO NORMAL AT 22:21 5/6/2013 8:01:44 AM 506-Rico Harrell assigned to outage. Crew was assigned a
6/3/2013 16:	:09:41 2 Operations per Wendy @ SCE&G Dispatch
Closed MOAE	B 4:19:32 SCE&G back hot at 9:11:33, Bad insulator near Beehive & Gadsenville Rd.
6/26/2013 15	5:20:15 1350 operated due to T-storm per: James SCE&G Dispatch
7/24/2013 13	3:37:38 SCE&G breaker# 1350 operated per: James @ Charleston Dispatch
CAUSE UNKN	NOWN PER LEVI AT SCE&G. CLOSE IN MOAB AT 12:44 AM TERRACE BRANTON OPEN THE BLADES BACK TO NORMAL AT 2:44:54 P
Breaker failu	re. Bill Turner stated they found high resistance in the auxiliary contacts for that breaker. long operation.
12/3/2013 2:	:28:57 AM A truck hit and brought down primary on a tap off Doar Road per Bill Turner ""Truck ran over an anchor and cut a dow
12/3/2013 2:	:31:19 AM A truck hit and brought down primary on a tap off Doar Road per Bill Turner ""Truck ran over an anchor and cut a dow
SCE&G FOUN	ND A SQUIRREL BEHIND CHARLESTON NATIONAL AT 1200 OLD COURSE LN
-	7/24/2014 16:09:12 507-Terrance Branton assigned to outage. 7/24/2014 4:36:53 PM SCE&G DROPPED US
	/19/2014 15:18:42 507-Terrance Branton assigned to outage. 9/19/2014 17:14:34 SCE&G HAS WIRE TORE DOWN AT SEE WEE B
	:07:41 SCE&G FOUND A TREE ON THEIR 90912 FEEDER TO AWMP 5/8/2015 13:09:38 SCE&G GOT THE 90912 BACK HOT AT 16:52
	15 7:48:45 PM SCE&G FOUND NOTHING BUT SAID IT MIGHT HAVE BEEN TREE LIMBS BRUSHING AGAINST THE LINE5/
	D THERE CREWS RIDE THE LINES THEY SAID THEY FOUND TREE LIMBS BRUSHING AGAINST LINES THEY HAVE THE TREE CREW CUT
	IND TREE ON LINE AT GARDEN HILL RD. LOAD WAS SWAPPED NOW BACK TO NORMAL
	ND A LIMB ON THERE 90912. SYSTEM CONTROL SWAP BACK OVER THE NEXT MORNING.

FaultedPole#	outagerecid_1
Phase ABC Verified Open on SW618929878-A	2011-01-06-0263
Phase ABC Verified Open on SW618929878-A	2011-03-03-0098
Phase ABC Verified Open on SW618929878-A	2011-07-07-0749
Phase ABC Verified Open on SW618929878-A	2011-07-07-0745
Phase ABC Verified Open on SW618929878-A	2011-05-11-0713
Phase ABC Verified Open on SW618929878-A	2011-07-14-1309
Phase ABC Verified Open on OC1531708827	2011-09-20-1328
Phase ABC Verified Open on SW618929878-A	2011-09-20-1328
Phase ABC Verified Open on SW618929878-A	2011-10-18-1393
	2011-10-19-1332
Phase ABC Verified Open on SW618929878-A	
Phase ABC Verified Open on SW618929878-A	2011-11-17-1303
Phase ABC Verified Open on SW618929878-A	2011-11-29-1935
Phase ABC Verified Open on SW618929878-A	2012-01-05-0346
Phase ABC Verified Open on SW618929878-A	2012-01-05-0349
Phase ABC Verified Open on OC1531708827	2012-01-23-1363
Phase ABC Verified Open on SW618929878	2012-02-12-0517
Phase ABC Verified Open on SW618929878	2012-02-27-1316
Phase ABC Verified Open on OC1531708827	2012-04-13-0620
Phase ABC Verified Open on AWENDAW_MP	2012-05-04-0142
Phase ABC Verified Open on SW618929878	2012-09-01-0006
Phase ABC Verified Open on OC1531708827	2012-09-25-1016
Phase ABC Verified Open on AWENDAW_MP	2013-04-19-0756
Phase ABC Verified Open on OC1531708827	2013-05-06-0255
Phase ABC Verified Open on AWENDAW_MP	2013-06-03-0151
Phase ABC Verified Open on AWENDAW_MP	2013-06-05-0286
Phase ABC Verified Open on AWENDAW_MP	2013-06-26-2237
Phase ABC Verified Open on AWENDAW_MP	2013-07-24-1138
	2013-08-14-0556
Phase ABC Verified Open on AWENDAW_MP	2013-08-25-1057
Phase ABC Verified Open on AWENDAW_MP	2013-12-03-0066
Phase ABC Verified Open on AWENDAW_MP	2013-12-03-0067
Phase ABC Verified Open on AWENDAW_MP	2013-12-18-0589
Phase ABC Verified Open on OC1531708827	2014-07-24-2135
Phase ABC Verified Open on OC1531708827	2014-09-19-2148
Phase ABC Verified Open on AWENDAW_MP	2015-05-08-0804
Phase ABC Verified Open on OC1531708827	2015-05-15-1120
Phase ABC Verified Open on OC1531708827	2015-05-16-1193
Phase ABC Verified Open on OC1531708827	2015-05-17-1216
Phase ABC Verified Open on AWENDAW_MP	2015-07-03-0278
Phase ABC Verified Open on OH1460503743	2016-09-20-1998

Appendix 2

BEC System Growth Trends

Appendix C, Page 65 of 104

WUTENoteThe	SUB/KVA	PEAK	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	Max. W/S	Proj. 2007	% over 2002
International 111 123 103 <	41-Siding Sub. #9	WINTER	9802 7564	9764 8779	11485 9152	11465 9682	11977 10127	14505 10920	13506 10193	13756 9119	13125 10952	18060 4935	C to the to	21400 4.33%	10.27%
UNITE Site Site <t< td=""><td></td><td>and the second s</td><td></td><td>1.112</td><td>1.255</td><td>1.184</td><td>1.183</td><td>1.328</td><td>1.325</td><td>1.508</td><td>1.198</td><td>C.L.C.</td><td>1.508</td><td>0000</td><td></td></t<>		and the second s		1.112	1.255	1.184	1.183	1.328	1.325	1.508	1.198	C.L.C.	1.508	0000	
WITE ····································	vendaw MP Sub. #24	SUMMER	3453	3406 2904	4056 2805	3930 2912	4220 3161	482b 3317	3175	3199 3199	3402	473		4.16%	5.25%
UNITE UNIT UNIT <t< td=""><td></td><td>MANTED</td><td>40048</td><td>1.173</td><td>1.446</td><td>1.350</td><td>1.335</td><td>1.455</td><td>1.435</td><td>1.612</td><td>1.434</td><td>17041</td><td>1.612</td><td>00000</td><td></td></t<>		MANTED	40048	1.173	1.446	1.350	1.335	1.455	1.435	1.612	1.434	17041	1.612	00000	
MUTCH	iggins ub.#1	SUMMER	7391	8560	8313	8164	8872	9503	10745	10661	11636	3310		4.08%	7.81%
WILE -				1.137	1.317	1.204	1.118	1.222	1.219	1.221	1.180		1.317		
MWTER 7391 1531 <t< td=""><td>Vinhoy</td><td>WINTER</td><td>1</td><td>1</td><td>1</td><td>1 1</td><td>1 1</td><td>1 1</td><td></td><td>9998 5175</td><td>7540</td><td>9048 1508</td><td></td><td>11000 5 01%</td><td>7 85%</td></t<>	Vinhoy	WINTER	1	1	1	1 1	1 1	1 1		9998 5175	7540	9048 1508		11000 5 01%	7 85%
WWTEN 79:00 73:00 <th< td=""><td>10. #12</td><td>SUMMER</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td></td><td>1770</td><td>1.932</td><td>1.321</td><td>0001</td><td>1.932</td><td>0/ 10.0</td><td>60.</td></th<>	10. #12	SUMMER	1	1	1	1	1		1770	1.932	1.321	0001	1.932	0/ 10.0	60.
Commert False Caline Caline<	Park #1 (1-5)	WINTER	12916	12576	14248	13073	14888	18672	18790	21584	19879	24554		29000	1 010
WITER 1480 1980 <t< td=""><td>up.#4</td><td>SUMMER</td><td>nce/</td><td>1.432</td><td>1.558</td><td>1.238</td><td>1.241</td><td>1.201</td><td>1.345</td><td>1.434</td><td>1.243</td><td>C/04</td><td>1.558</td><td>%27.4</td><td>%.00.1</td></t<>	up.#4	SUMMER	nce/	1.432	1.558	1.238	1.241	1.201	1.345	1.434	1.243	C/04	1.558	%27.4	%.00.1
Sumterx Seale Total Farat Seale Total <	College Park #2 (7-8,11-12)	WINTER	14568	13898	15057	13083	13890	14797	13162	15858	14490	17659		20700	
WMTER 7144 2141 <t< td=""><td>Sub. #4</td><td>SUMMER</td><td>9396</td><td>10066</td><td>9772</td><td>9994</td><td>10326</td><td>10990</td><td>10299</td><td>10365</td><td>10548</td><td>3169</td><td></td><td>4.05%</td><td>7.39%</td></t<>	Sub. #4	SUMMER	9396	10066	9772	9994	10326	10990	10299	10365	10548	3169		4.05%	7.39%
Time: Time: <th< td=""><td>Dark #1 2 #2</td><td>MINTED</td><td>17404</td><td>1.381</td><td>1.541</td><td>1.309</td><td>1.345</td><td>1.346</td><td>31060</td><td>1.530</td><td>3/3/4</td><td>A2213</td><td>1.541</td><td>49700</td><td></td></th<>	Dark #1 2 #2	MINTED	17404	1.381	1.541	1.309	1.345	1.346	31060	1.530	3/3/4	A2213	1.541	49700	
Image: index Image: index<	Sub. #4	SUMMER	17346	18848	18919	20552	22320	26541	24266	25419	26544	7844		4.17%	7.66%
WWEEK				1.405	1.549	1.273	1.289	1.261	1.317	1.473	1.295		1.549		
JUNNER Image JUNNER Image JUNNER Image JUNNER JUNNER <td>(1) #1 (1)</td> <td>WINTER</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1019</td> <td>980</td> <td>1467</td> <td>1058</td> <td>1402</td> <td></td> <td>1650</td> <td>1 500</td>	(1) #1 (1)	WINTER	1	1	1	1	1	1019	980	1467	1058	1402		1650	1 500
01 WWTER - 1344 1739 2266 2064	no# .cinc	SUMMER	I	1	I	1	1	0.443	0.578	1.037	0.694	440	1.037	* 10%	0/ 20-1
SUMMER	ning #2 (2)	WINTER	1	-	1	1	1	1344	1739	2266	2084	2090	• •	2350	
WNTER <	sub. #60	SUMMER	1	1	1	1	1	2410	1954	2071	2174	9	1 004	2.97%	1.57%
SUMMER Simple Simple<	inn #1 & #2	WINTER			-	-	-	2363	2719	3733	3142	3492	1.034	4000	
WITER 3443 1951 17240 1851 17340 1851 17340 1851 17401 26003 1071 26003 2600	sub. #60	SUMMER		I	1	1	-	4708	3649	3486	3699	350		3.45%	1.58%
WWITER 34493 1515 1248 14164 2100 2000 2600 1730 2200 7001 2000 2600 2600 2600 1730 2200 7001 2000 2600 2600 2600 1730 1700 1700 2000 2600								0.502	0.745	1.071	0.849	Contraction of the second second	1.071		
International 1152 1240 1164 1260	field #1 (1-6) ub. #14	SUMMER	24793 15482	19519	21765	19258 16551	21998	22287	15912	21071	22013	25003	1	3.15%	5.15%
WITER 14.27 1780 1201 1704 1812 20401 1701 2470 2700 NUMER 1111 1101 1060 1073 1461 1574 1680 1603 1003 258% A 3050 37319 40966 5652 4010 4264 1505 1497 1606 1507 258% NUMER 4320 37319 40966 5652 4010 4264 1505 1497 1060 1705 258% NUMER 1436 1124 1123 1224 1131 1205 1206 1266 1005 1005 1266 1276 1205 1206 1266 1005 1266				1.1529	1.248	1.164	1.269	1.098	0.733	1.176	1.1118		1.269		
NUMER 15/26 16016 16042 16060 16753 1460 15714 1580 1503	feld #2 (7-11)	WINTER	18427	17800	19201	17094	18612	20407	19844	22284	17512	24572		27000	
WINTER 4320 711 1103 1124 1104 1121 1200 1200 1201 </td <td>ub. #14</td> <td>SUMMER</td> <td>15126</td> <td>1 111</td> <td>1 107</td> <td>16069 1 064</td> <td>16763</td> <td>14941</td> <td>15714</td> <td>15830</td> <td>15073</td> <td>7060</td> <td>1 408</td> <td>2.38%</td> <td>9.04%</td>	ub. #14	SUMMER	15126	1 111	1 107	16069 1 064	16763	14941	15714	15830	15073	7060	1 408	2.38%	9.04%
NUMMER 30606 32.941 34.80 32.82 40.91 32.35 34.80 32.82 11.33 12.23 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.33 12.24 11.44	field #1 & #2	WINTER	43220	37319	40966	36352	40610	42694	31505	43355	39525	49575		55300	
MINTER 1133 1224 1114 1121 1212 0.996 1285 1133 1236 1133 237% WINTER 1450 11820 13050 11756 12346 14363 16171 15927 1607 325% 21700 WINTER 6377 11600 11626 0296 0976 0.871 1593 21700 235% WINTER 6833 8294 9069 8730 8482 9114 9009 1026 10497 1126 235% WINTER 8034 5830 9175 9733 9319 9329 3613 1426 WINTER 19388 6537 1023 0294 0391 1037 1069 1048 1126 <td>ub. #14</td> <td>SUMMER</td> <td>30608</td> <td>32947</td> <td>33480</td> <td>32620</td> <td>34097</td> <td>35237</td> <td>31626</td> <td>33750</td> <td>34873</td> <td>10050</td> <td></td> <td>2.77%</td> <td>6.95%</td>	ub. #14	SUMMER	30608	32947	33480	32620	34097	35237	31626	33750	34873	10050		2.77%	6.95%
WINTER 1400 1102 1103	10 11 11 11 10 10 10 10 10 10 10 10 10 1	CLASS	1100	1.133	1.224	1.114	1.191	1.212	0.996	1.285	1.133	1000	1.285	04700	
0.977 1.125 0.956 0.976 0.887 1.060 1.046 0.938 1.126 1.126 NUNTER 8633 8234 9666 8730 8482 9114 9309 10236 10497 11090 1.126 12800 NUNTER 8033 8234 9669 8730 9433 8556 9175 9703 9319 9319 5933 1280 12800 12800 12800 12800 1280 1416 365%	creek #1 (1-b) Sub. #3	SUMMER	14580	12107	11603	12299	12646	16299	15255	15194	15847	4229		3.25%	6.49%
				0.977	1.125	0.956	0.976	0.881	1.060	1.048	0.938		1.125		
SUMMER 8064 8530 8433 8536 9175 9763 9319 533 534 736% 736% 736% 736 7103 1103 1126 1126 1126 1136 7474 25166 4822 7476 740% <th< td=""><td>Creek #2 (7-10)</td><td>WINTER</td><td>8833</td><td>8294</td><td>6906</td><td>8730</td><td>8482</td><td>9114</td><td>9309</td><td>10236</td><td>10497</td><td>11090</td><td></td><td>12800</td><td></td></th<>	Creek #2 (7-10)	WINTER	8833	8294	6906	8730	8482	9114	9309	10236	10497	11090		12800	
WNTER 2413 0121 1103 1104 1103 1104 <t< td=""><td>Sub. #3</td><td>SUMMER</td><td>8054</td><td>8530</td><td>8433</td><td>8536</td><td>9175</td><td>9763</td><td>9319</td><td>9280</td><td>9319</td><td>593</td><td>1 176</td><td>3.65%</td><td>4.05%</td></t<>	Sub. #3	SUMMER	8054	8530	8433	8536	9175	9763	9319	9280	9319	593	1 176	3.65%	4.05%
UNMER 1938 20037 20036 21821 26062 24574 24174 25166 4822 3<40% NMER 1938 20337 1004 0.983 0.964 0.901 1.037 1.066 1.008 1.104 NMER 11324 15155 13379 13915 15907 1.037 1.066 1.008 2.104 NMER 10320 11323 11932 13379 13915 15907 15019 16666 43708 2.9000 NMTER 7160 6334 6005 5295 13915 15907 1479 1227 1.538 3.6% NMTER 5006 5843 6005 6299 6804 7754 -	Creek #1 & #2	WINTER	23413	20120	22119	20486	20828	23477	25480	26163	25364	30186	071-1	34500	
MNTER 0.975 1104 0.963 0.924 0.901 1.037 1.066 1.00 1.104 2.9000 NUNTER 14364 15155 11836 1537 17956 0.901 19157 22219 20448 24906 29000 SUMMER 10220 11832 11953 12379 1281 1281 1281 2189 21006 24906 29000 MNTER 7160 6334 1236 1224 1281 1281 1281 1283 1479 270 2670 <t< td=""><td>Sub. #3</td><td>SUMMER</td><td>19388</td><td>20637</td><td>20036</td><td>20835</td><td>21821</td><td>26062</td><td>24574</td><td>24474</td><td>25166</td><td>4822</td><td></td><td>3.40%</td><td>6.35%</td></t<>	Sub. #3	SUMMER	19388	20637	20036	20835	21821	26062	24574	24474	25166	4822		3.40%	6.35%
WNTER 14364 1515 18386 16377 17958 20510 19157 22219 20448 24266 23006 23076 1000 20006 24786 29006 29006 29006 29006 29006 29006 29006 29006 29006 29006 2900 10004 907 1479 12.02 11.03 11.03 11.03 11.04 11.03 11.04 11.03 11.04				0.975	1.104	0.983	0.954	0.901	1.037	1.069	1.008		1.104		
SUMMER 10320 11953 13379 13915 15907 15902 15019 16666 4378 3.36% MNTER 7160 1231 1.231 1.231 1.231 1.538 3.36% MNTER 7160 5348 6005 5289 884 7754 -	lin (#1 & #2)	WINTER	14364	15155	18386	16377	17958	20510	19157	22219	20448	24826		29000	
WNTER 7180 1.201 1.203 1.201 1.203 1.201 1.203 1.201 1.203 1.201 1.203 1.201 1.203 1.201 <th2< td=""><td>sub. #21</td><td>SUMMER</td><td>10320</td><td>11832</td><td>11953</td><td>13379</td><td>13915</td><td>15907</td><td>15902</td><td>15019</td><td>16666</td><td>4378</td><td>-</td><td>3.96%</td><td>7.24%</td></th2<>	sub. #21	SUMMER	10320	11832	11953	13379	13915	15907	15902	15019	16666	4378	-	3.96%	7.24%
SUMMER 5006 548 6005 6299 6804 774 1.296 1.296 1.296 1.296 1.296 1.296 1.296 1.296 1.296 1.296 1.296 1.296 1.296 1.296 1.296 1.296 1.206 1000 1010 1010 1010 1010 1010 1010 10100 10100 10100 10100	liger MP	WINTER	7160	6334	7376	7209	7808	10049	207		-		0000-1	0	
MINTER 5531 1228 1150 1146 1296 1296 1296 NUNTER 5531 5385 6046 5601 6050 7169 6934 7596 7409 8731 1040 SUMMER 4400 5601 6050 7169 6934 7596 7020 8731 1040 MINTER 9750 9800 10550 1043 1252 5681 5612 5030 5886 747% 1472 MINTER 9750 9800 10550 1143 1252 1402 13204 1402 1402 1547 1540 1547% 1547% 1540 1540 1540 1540 1540 1540 1547% 1547% 1547% 1547% 1547% 1547% 1547% 1547% 1547% 1547% 1547% 1547% 1547% 1547% 1547% 1556% 1540 1547% 1547% 1547% 1547% 1547% 1547% 1547% 1547%	#11 (Retired)	SUMMER	5006	5848	6005	6269	6804	7754	1	1	-	-	_	1	
WNTER 5581 5365 6046 5601 6500 7169 6934 7566 7409 8731 1400 SUMMER 4400 4836 5063 5060 5222 5681 5512 5403 5866 1322 4,7% WINTER 9750 9807 1103 1,143 1,282 1342 1322 1,402 1,402 WINTER 9750 9807 0550 11143 1,282 1342 13204 1,402 WINTER 9750 9807 0550 10177 1,143 1,282 13204 1,402 1500 WINTER 9596 8675 8321 8886 10337 10432 1145 6446 8889 23764 1500 MINTER 13018 9019 9555 8921 10432 1145 6446 8889 3.75% MINTER 13018 9019 9555 8922 10332 10415 1711 166 3.75%<				1.083	1.228	1.150	1.148	1.296					1.296		
SUMMER 4400 4230 3000 3222 3000 3222 3000 1240 4400 4400 NNTER 9750 8800 1169 11.03 1143 1262 1258 1400 3000 1240 1402 NNTER 9750 8800 10560 10117 1143 1252 13542 13266 13204 1500 NNTER 8596 86/5 8321 8888 10327 10432 11145 6446 8889 2842 3.75% NMMER 13018 9019 9565 8921 10327 10121 1156 1.166 3.75% SUMMER 73018 9019 9565 8921 10391 10105 1.166 3.75% AMMER 13018 9019 9565 8922 10322 1.1145 6446 8889 2842 3.75% AMMER 13018 9019 9555 8922 10302 1.1145 1.1145 1	estown MP	WINTER	5581	5365	6046	5601	6050	7169	6934	7586	7409	8731		10400	100
WNTER 9750 9800 10550 10117 11428 13272 13542 13926 10302 13204 15300 SUMMER 8596 8675 8321 8888 10312 11145 6446 8889 2842 3.75% AMMER 11.30 1.266 1.138 1.106 1.272 1.215 2.460 1.166 3.75% AMMER 13019 9019 9555 8953 1032 1.0211 1.0167 2.169 1.166 AMMER 13016 9019 9655 8953 1032 1.0211 1.0167 2.169 1.176 AMMER 8434 8444 8470 1.166 1.140 1.140 1.140		SUMMER	4400	1.109	1.194	1.103	1.143	1.262	1.258	1.402	1.258	1365	1.402	0/ 14.4	0/ 70- 1
SUMMER 8596 6675 6321 8689 10337 10432 1145 6446 8689 2842 3.75% 3.75% 1.130 1.268 1.138 1.106 1.272 1.215 2.460 1.166 2.160 1.75% 1.401 1.166 2.160 1.400 1.75% 1.215 2.160 1.400 1.400 1.77% 1.211 1.011 1.017 1.211 1.016 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.411 1.411 1.411 1.411 1.411 1.411 1.411 1.400 1.411 1.400	edburg	WINTER	9750	9800	10550	10117	11428	13272	13542	13926	10362	13204		15300	
WINTER 1301 1.200 1.1.30 1.1.00 1.2.12 1.2.15 2.100 1.2.10 WINTER 13018 9019 9655 8652 10306 10025 1.2011 10075 2.100 NINTER 13018 9019 9655 8632 11303 10015 1.2011 10075 1.2011 SUIMMED 6855 8132 10336 10215 1.2011 10276 1.2189 1.4700	Sub.#6	SUMMER	8596	8675	8321	8888	10337	10432	11145	6446	8889	2842		3.75%	8.11%
CIIMMED 6825 7244 6088 7132 7304 8778 8415 8670 10570 1314 4.70%	ins Island	WINTER	13018	9019	9655	8692	10396	10527	10705	12011	10875	12189	7.100	14700	
SUMMEK 0625 (244 0366 /132 /334 02/6 0412 007/0 100/8 1314 4.1376	Suh #32	SIIMMED	COJE		SALES STREET, SALES						TRANSPORT OF THE PARTY OF THE P			100	6 21%

Appendix C, Page 66 of 104

2521 Hamlin #2 0																										Chris est.	CWP	Central (prelim)
100 1		10	4	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	Growth Rate	Growth	a sources and a source of the
1000000000000000000000000000000000000	2501 Digging							11.609		12,915	13,686	17.041	14,734	16,695	15,880	16,962	18,808	18,481	18,308	18,438	16,837	14,629	19,446	20,844	16,463	2.50%	0.250%	
1000 1000	the second s							17,516	17,464	22,473	20,516	22,226	19,326	22,184	19,507	16,140	19,356	19,514	20,200	21,446	19,502	16,688	22,498					
Since Control A.M. A.M. </td <td>THE REPORT OF STREET, STRE</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>15,863</td> <td>14,809</td> <td>19,096</td> <td>16,328</td> <td>15,614</td> <td>13,527</td> <td>14,136</td> <td>24,472</td> <td>16,919</td> <td>17,615</td> <td>17,325</td> <td>16,034</td> <td>13,310</td> <td>17,977</td> <td>17,789</td> <td></td> <td></td> <td></td> <td></td>	THE REPORT OF STREET, STRE									15,863	14,809	19,096	16,328	15,614	13,527	14,136	24,472	16,919	17,615	17,325	16,034	13,310	17,977	17,789				
Bod Colore Fact Table Lab						8,730	8,482	9,114	9,309	10,161	10,446	11,090	9,648	13,261	11,578	11,795	14,321	14,655	16,341	16,705	15,396	11,693	15,178	14,916				
Process parts Unit	1111 - 0 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2							18,672	18,790	21,423	19,738	24,554	21,954	27,204	20,030	20,803	24,358	23,199	25,453	23,442	20,972	17,574	22,818	22,395				
1000000000000000000000000000000000000					15.057				13,162	15,798	14,437	17,659	15,194	19,368	16,784	19,016	20,976	20,772	21,817	21,570	20,438	17,263	22,427	22,079	20,248			
Bits decision (sec.) Unit of the sec.	and which a second second second second second										13,414	16,622	15,731	18,443	16,869	18,430	20,561	19,977	20,049	21,668	20,907	17,067	22,502	22,732				
2000 (absoline) 648 649 7.00 7.00 7.00 8.00		CHEVE STATES				15.258	16.392	17,006	20,530	18,235	17,016	20,451	17,057	19,497	16,978	17,552	18,986	24,121	23,031	20,744	21,228	18,834	24,085	26,108				
2000 2000 <th< td=""><td>Contraction of the second second</td><td></td><td>16</td><td>6.969</td><td>7,439</td><td></td><td>7,727</td><td>9,047</td><td>8,896</td><td>11,444</td><td>9,681</td><td>11,462</td><td>12,321</td><td>13,141</td><td>12,045</td><td>12,248</td><td>11,513</td><td>9,911</td><td>8,644</td><td>10,454</td><td>9,898</td><td>8,305</td><td>10,209</td><td>9,926</td><td></td><td></td><td></td><td></td></th<>	Contraction of the second second		16	6.969	7,439		7,727	9,047	8,896	11,444	9,681	11,462	12,321	13,141	12,045	12,248	11,513	9,911	8,644	10,454	9,898	8,305	10,209	9,926				
2000 000000 0.0000	and the second se	and the second sec						9,627	8,988	10,303	9,655	12,694	10,905	11,167	10,123	11,467	11,468	9,902	12,194	10,438		8,367	11,004					
2310 and biase 5.8 5.96 5.00 7.90 5.97 6.80 7.70 5.70 6.70	STOP 10 10 10 10 10 10 10 10 10 10 10 10 10				11.485	11,465	11,977	14,505	13,506	13,647	13,025	18,060	14,883	17,325	16,461	15,599	18,015	16,491	17,442	17,267	16,345	13,744	17,055				0.025%	
1212 Control 1 0	and the second state of th	and a second				5.601	6.050	7,169	6,934	7,586	7,409	8,731	7,620	8,692	7,413	6,787	7,205	6,773	6,480	8,453	6,451	5,400	8,674	6,398	5,765			
2214 Conventie 1 22.00 22.01 22.00 22.01 22.00		0,0		01000						9,966	7,517	9,048	8,007	9,230	8,424	8,450	9,895	9,331	9,331	9,794	9,201	7,467	9,707					
2114 Converted in 2 16.27 17.00 18.20 20.00 17.00	a service of a service of the servic	1 24.7	23	19 5 19	21.765	19.258	21,998	22,287	11,661	20,982	21,915	25,003	22,362	25,410	19,185	21,490	24,338	21,607	22,303	22,505	20,272	16,880	23,551					
2019 Macheman 0.00 5.08 6.00 5.70 6.30 7.70 7.40 8.40 8.77 7.25 8.77 7.25 8.77 7.25 8.77 7.25 8.77 7.25 8.77 7.25 8.77 7.25 8.77 7.25 8.77 7.25 8.77 7.25 8.77 7.25 8.77 7.25 8.77 7.25 8.77 7.25 8.77 7.25 8.77 7.25 7.25 8.77 7.25	The second second second second second						18.612	20,407	19,844	22,123	17,405	24,572	18,188	18,810	18,608	20,501	26,197	23,959	23,801	23,822	21,938	15,758	17,677	17,880	15,104			
212 is surgare if 12.22 21.24	and the second se							7,790	7,352	8,469	8,197	9,414	8,217	9,368	7,826	9,407	11,177	10,403	10,845	10,874	9,550	7,952	10,041	9,940	9,065			
12100 15290 15.92 15.92 15.92 15.92 15.92 15.91 15.95 15.91 15.95 15.91 15.95 15.91 15.95 15.91 15.95 15.91 15.95 15.91 15.95 15.91 15.95 15.91 15.95 15.91 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>14,191</td><td>20,723</td><td>23,719</td><td>17,281</td><td>13,962</td><td>12,502</td><td>13,623</td><td>14,894</td><td>14,053</td><td>12,242</td><td>13,806</td><td>12,242</td><td>10,128</td><td>15,959</td><td>12,799</td><td>11,047</td><td>0.50%</td><td></td><td></td></th<>										14,191	20,723	23,719	17,281	13,962	12,502	13,623	14,894	14,053	12,242	13,806	12,242	10,128	15,959	12,799	11,047	0.50%		
121 Sundary 125 Sundary 126<	Concerns the amount of the base of the provided of the second s	Charles St. 19		Loton						15,137	10,653	10,657	11,504	13,585	12,870	13,494	18,038	13,795	14,157	14,736	13,607	11,771	15,416	16,053	15,047	3.50%		
2213 Now Hope if I 233 Now Hope if I 233 Now Hope if I 130	111/210 Countransion of Automatical Auto-	 210.00% 									8,605	10,176	9,304	9,928	9,422	11,215	13,693	14,691	16,181	16,934	16,065	13,750	19,600	19,107				
2319 Likew kiope #2 577 6.26 7.37 5.86 5.49 7.11 3.43 3.43 1.00 5.400 5.400 <th< td=""><td></td><td>#1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4,385</td><td>21,053</td><td>20,534</td><td>23,045</td><td>25,875</td><td>20,896</td><td>11,156</td><td>11,493</td><td>10,469</td><td>9,199</td><td>10,758</td><td>11,090</td><td>10,758</td><td></td><td></td><td></td></th<>		#1											4,385	21,053	20,534	23,045	25,875	20,896	11,156	11,493	10,469	9,199	10,758	11,090	10,758			
2350 Conservable 3.438 3.468 4.66 4.50 6.10 6.10 6.10 6.20 6																	8,779	9,224	3,738	3,666	3,459	3,113	3,921	3,834			S 10 5 5 6 5	
2220 Commonwalth 226.77 27.14 27.67 <td>the state and an end of the state of the state of the state of the</td> <td></td> <td>7,645</td> <td>7,475</td> <td>10,026</td> <td>9,401</td> <td>8,932</td> <td>3.00%</td> <td></td> <td></td>	the state and an end of the state of the state of the state of the																				7,645	7,475	10,026	9,401	8,932	3.00%		
13224 Avendedw 3.483 3.484 4.686 3.39 4.286 4.39 5.39 4.89 5.30 5	states and approximate second																	26,477	27,114	27,961	25,929	23,668	32,890					
13:08 13:08 16:07 13:08 16:07 13:08 10:07 23:07 13:08 10:07 23:07 13:08 10:07 23:07 13:08 10:07 23:07 13:08 13:08 13:08 15:07 <th< td=""><td></td><td></td><td>53</td><td>3 406</td><td>4.056</td><td>3,930</td><td>4.220</td><td>4,826</td><td>4,555</td><td>5,156</td><td>4,879</td><td>5,352</td><td>4,974</td><td>5,501</td><td>4,855</td><td>4,870</td><td>5,455</td><td>5,552</td><td>5,591</td><td>5,617</td><td>5,371</td><td>4,663</td><td>6,330</td><td>6,178</td><td>5,579</td><td></td><td></td><td></td></th<>			53	3 406	4.056	3,930	4.220	4,826	4,555	5,156	4,879	5,352	4,974	5,501	4,855	4,870	5,455	5,552	5,591	5,617	5,371	4,663	6,330	6,178	5,579			
2322 20hrs kland 13.018 0.019 0.655 0.647 10.709 1.789 17.28 10.789 17.87 15.83 12.81 12.85 12.81 12.85 12.81 12.85 <td></td> <td></td> <td></td> <td></td> <td></td> <td>15,476</td> <td>16,396</td> <td>19,373</td> <td>19,138</td> <td>22,097</td> <td>9,733</td> <td>14,526</td> <td>12,860</td> <td>14,612</td> <td>12,874</td> <td>14,728</td> <td>16,960</td> <td>16,482</td> <td>17,612</td> <td>17,729</td> <td>15,941</td> <td>15,105</td> <td>19,528</td> <td></td> <td>1.00020</td> <td></td> <td></td> <td></td>						15,476	16,396	19,373	19,138	22,097	9,733	14,526	12,860	14,612	12,874	14,728	16,960	16,482	17,612	17,729	15,941	15,105	19,528		1.00020			
233 (sprevilie) 15,27 13,42 16,227 13,42 16,228 14,48 15,258 16,11 17,11 17,28 17,18 <td>a beaution of the second statement of the second state</td> <td></td> <td></td> <td></td> <td></td> <td>8.692</td> <td>10.396</td> <td>10,527</td> <td>10,705</td> <td>11,910</td> <td>10,789</td> <td>12,189</td> <td>11,236</td> <td>13,235</td> <td>13,192</td> <td>13,847</td> <td>15,794</td> <td>15,659</td> <td>16,449</td> <td>16,372</td> <td>15,149</td> <td>18,184</td> <td>16,969</td> <td>17,355</td> <td></td> <td></td> <td></td> <td></td>	a beaution of the second statement of the second state					8.692	10.396	10,527	10,705	11,910	10,789	12,189	11,236	13,235	13,192	13,847	15,794	15,659	16,449	16,372	15,149	18,184	16,969	17,355				
2353 Watchinalaw 4,711 4,78 5,426 5,41 5,08 6,647 6,38 6,437 7,386 6,646 6,158 6,849 6,854 9,153 6,350 6,842 1,105 1,104 1,307 1,207 1,217 1,218 1,221 1,026 1,428 1,221 1,026 1,237 1,218 1,214 1,224 1,214 1,224 1,1111 1,1111 1,111	0000/124 Graden Vermania (00000000					14,480	15,352	18,914	19,018	21,371	20,555	27,453	22,844	25,434	22,635	26,241	27,961	28,873	29,901	31,219	24,854	25,530	35,769					
2353 Sachrook #1 11,481 11,171 12,874 10,887 11,28 13,266 13,276 10,269 13,281 12,881 12,281 13,077 0.75% 2,380% 1.54% 2357 Sachrook #2 11,219 10,270 11,713 10,244 9,660 10,507 10,100 14,288 12,881 12,082 12,124 10,260 11,218 10,260 11,218 10,260 11,218 10,261 11,218 10,261 11,218 10,261 11,218 10,261 11,218 10,261 11,218 10,261 11,118 10,261 11,118 10,261 11,118 10,261 11,118 10,261 10,381 11,118 10,461 11,285 12,381 10,360 11,154 10,361 10,371 10,383 11,118 10,461 11,285 12,381 10,361 10,381 11,118 10,481 11,385 10,381 10,381 10,381 10,381 10,381 12,381 10,381 10,381 11,281 10,381 10,381	Annual the second of charts are sufficiently of the first hard					5,341	5,938	6,697	6,383	7,335	6,545	8,706	7,180	8,171	7,336	8,106	8,949	8,964	9,153	9,530	8,482		11,055					
2353 Seabrook H2 11,219 10,220 11,713 10,244 9,860 10,097 10,010 12,455 10,599 11,031 10,008 11,031 10,008 10,009 <t< td=""><td></td><td></td><td></td><td></td><td>12,874</td><td>10,687</td><td>11,208</td><td>13,616</td><td>13,278</td><td>14,256</td><td>13,271</td><td>19,016</td><td>14,438</td><td>15,845</td><td>12,861</td><td>14,278</td><td>17,306</td><td>16,973</td><td>17,538</td><td>18,654</td><td>15,480</td><td>14,206</td><td>21,745</td><td></td><td></td><td></td><td></td><td></td></t<>					12,874	10,687	11,208	13,616	13,278	14,256	13,271	19,016	14,438	15,845	12,861	14,278	17,306	16,973	17,538	18,654	15,480	14,206	21,745					
2540 Rxvenel 9,40 10,290 9,449 10,591 9,160 9,989 10,031 10,080 11,111 10,166 8,870 11,115 0,080 11,115 0,080 11,115 0,080 11,115 0,080 11,115 0,080 5,076 <td></td> <td></td> <td></td> <td></td> <td>11,713</td> <td>10,244</td> <td>9,660</td> <td>10,907</td> <td>10,010</td> <td>12,455</td> <td>10,549</td> <td>14,158</td> <td>11,089</td> <td>11,297</td> <td>10,089</td> <td>11,903</td> <td>12,104</td> <td>12,134</td> <td>12,452</td> <td>13,174</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					11,713	10,244	9,660	10,907	10,010	12,455	10,549	14,158	11,089	11,297	10,089	11,903	12,104	12,134	12,452	13,174								
251 Cane Bay 2500 Cooper Store 2580 Cooper Store 2580 Cooper Store 2580 Cooper Store 2580 Cooper Store 2580 Cooper Store 2580 Medway 1 2586 Medway 2 2586 Medway 2 2586 Medway 4 2586 Medway		A CONTRACTOR									9,940	10,290	9,449	10,591	9,160	9,998	10,031	10,090	10,803	11,151	10,166	8,870	10,840	11,154			0.089%	
2580 Cooper Store 2.363 2.719 5.757 6.757 6.767 6.767 6.768 7.687 7.687 6.768 7.687 6.768 7.687 6.768 7.687 6.768 5.227 6.768 5.22 6.768 5.22 6.700 11.00% 0.300% 3.730% 2584 McQueen #1 2 2 0																								01-110-120				
2580 Corning 2.333 2.719 2.333 2.719 2.483 331 504 512 473 473 524 473 328 473 328 473 328 327 473 328 327 13.28 15.67 13.28 13.68 13.28 1	1 - 1 - 1 - 2 - 2 - 4 - 4 - 1 - 1 - 4 - 4 - 4 - 4 - 4 - 4	ore														7,157	9,755	9,785									0.520%	5.27%
2584 McQueen #1 2584 McQueen #2 1,434 1,435 1,639 1,434 1,235 1,639 1,243 1,230 1,344 0.10% 3.730% 2586 Mcdway 1 2586 Mcdway 2 0	- County of American State (Contractor)							2,363	2,719																		0.7000/	
2384 McQueen 42 33.45	2584 McQueen #	#1																										
2586 Medway 1 2586 Medway 2 0<	2584 McQueen #	#2																								0.10%	3.730%	
2586 Medway 2 2586 Medway 3 0<	2586 Medway 1									0		-	-	-	-	•				18,901								
2586 Medway 3 0 <	2586 Medway 2									0			1.50				•			0		21,753						
2586 Medway 4 2506 Medway 4 0,750 9,800 10,550 10,117 11,428 13,272 13,642 13,204 12,01 0 <	2586 Medway 3									0	0	100	0		52		0	1.1		0	100	0						
2506 Jedburg 9,800 10,550 10,117 11,428 13,272 13,842 13,788 10,224 13,204 11,005 10 0 <th< td=""><td>2586 Medway 4</td><td>·1000.000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td>1.00</td><td>0</td><td></td><td></td><td></td><td>2.52</td><td></td><td></td><td>79</td><td></td><td></td><td></td><td></td></th<>	2586 Medway 4	·1000.000									0					1.00	0				2.52			79				
2521 Hamlin #1 14,364 15,155 16,367 17,958 20,510 19,157 22,219 20,486 11,332 12,044 10,332 12,042 10,332 12,042 10,334 11,054 11,056 10,334 11,056 10,334 11,056 10,334 11,056 10,040 0 <th< td=""><td>2506 Jedburg</td><td>9,</td><td>750</td><td>9,800</td><td>10,550</td><td>10,117</td><td>11,428</td><td>13,272</td><td></td><td></td><td></td><td></td><td></td><td>•</td><td>-</td><td></td><td>0</td><td></td><td></td><td>0</td><td></td><td>9.53</td><td></td><td>0</td><td></td><td></td><td></td><td></td></th<>	2506 Jedburg	9,	750	9,800	10,550	10,117	11,428	13,272						•	-		0			0		9.53		0				
2521 Hamlin #2 0	2521 Hamlin #1	14,	364	15,155	18,386	16,377	17,958	20,510	19,157		20,448									0			-				18.000	
2583 Parker Hannlifin 0	2521 Hamlin #2										0	100					13,363			0	1.1			-				
Z593 Cane Bay Middle School 0 <th0< td=""><td>2583 Parker Han</td><td>nnifin</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td>0</td><td>0</td><td>0</td><td></td><td>0</td><td></td><td></td><td>•</td><td>100</td><td>10.53</td><td></td><td></td><td></td><td></td><td></td><td></td></th0<>	2583 Parker Han	nnifin									0		0	0	0		0			•	100	10.53						
2523 Rifle Range Rd. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2593 Cane Bay N	Middle Schoo									0		0	0			0	-		- C -	1.	1.53			2755			
305,288 283,626 316,779 304,515 333,996 374,134 362,765 403,128 375,838 461,995 403,220 453,933 402,195 437,504 518,402 523,691 515,854 534,898 503,698 455,999 598,877 605,769 539,845 -7.64% 10.47% -4.03% 8.83% 10.73% -3.13% 10.01% -7.26% 18.65% -14.68% 11.17% -12.86% 8.07% 15.61% 1.01% -1.52% 3.56% -6.19% -10.46% 23.86% 1.14% -12.21% 3.68% 4.36% 4.26% 3.80% 5.54% 1.44% 4.02% -0.05% 2.82% 2.18% 4.60% 2.40% 4.96% 2.63% -2.74% 2.51% 2.97% 0.18%	2523 Rifle Range	e Rd.								0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
305,288 283,626 316,779 304,515 333,996 374,134 362,765 403,128 375,838 461,995 403,220 453,933 402,195 437,504 518,402 523,691 515,854 534,898 503,698 455,999 598,877 605,769 539,845 -7.64% 10.47% -4.03% 8.83% 10.73% -3.13% 10.01% -7.26% 18.65% -14.68% 11.17% -12.86% 8.07% 15.61% 1.01% -1.52% 3.56% -6.19% -10.46% 23.86% 1.14% -12.21% 3.68% 4.36% 4.26% 3.80% 5.54% 1.44% 4.02% -0.05% 2.82% 2.18% 4.60% 2.40% 4.96% 2.63% -2.74% 2.51% 2.97% 0.18%																												
305,288 283,626 316,779 304,515 333,996 374,194 362,765 405,126 373,636 461,855 465,226 435,035 461,855 465,466 451,664 616,62 626,664 616,62 626,664 616,62 626,674 616,62 626,674 616,62 626,674 616,62 626,674 616,62 626,674 616,62 626,674 616,62 626,674 616,62 626,674 616,62 626,674 616,62 626,674 616,62 626,674 616,62 626,674 616,62 626,674 616,62 626,674 616,67																											16,000 -	
305,288 283,626 316,779 304,515 333,996 374,194 362,765 405,126 373,636 461,855 465,226 435,035 461,855 465,466 451,664 616,62 626,664 616,62 626,664 616,62 626,674 616,62 626,674 616,62 626,674 616,62 626,674 616,62 626,674 616,62 626,674 616,62 626,674 616,62 626,674 616,62 626,674 616,62 626,674 616,62 626,674 616,62 626,674 616,62 626,674 616,62 626,674 616,67					040 770	204 545	222.000	274 124	262.705	402 129	375 839	461 005	403 220	453 933	402 195	437 504	518 402	523.691	515.854	534,898	503,698	455,999	598,877	605,769	539,845			
-7.64% 10.47% -4.03% 8.83% 10.01% -5.13% 10.01% -7.20% 16.05% -14.05% 11.17% -1.200% 0.01% 1.01% 1.05% 2.45% 2.45% 2.45% 2.45% 2.45% 2.45% 2.45% 2.45%		305	288	283,626	316,779	304,515	333,996	3/4,134	302,765	403,128	373,030	401,530	400,220	400,000	102,130	101,004	310,132	20,001										
3.68% $4.36%$ $4.28%$ $3.80%$ $5.54%$ $1.44%$ $4.02%$ $-0.05%$ $2.82%$ $2.18%$ $4.60%$ $2.40%$ $4.96%$ $2.63%$ $-2.74%$ $2.51%$ $2.97%$ $0.18%$				-7.64%	10.47%	-4.03%	8.83%	10.73%	-3.13%	10.01%	-7.26%	18.65%	-14.58%	11.17%	-12.86%	8.07%						1011011	2010010					
2 4 29 2 759/ 2 129/ 3 0 49/ 3 559/ 2 979/ 2 46% 2 54% -0.13% 3.27% 2.51% 2.55%								3.68%	4.36%	4.28%	3.80%	5.54%																
													2.43%	3.75%	2.12%	3.04%	3.56%	2.86%	2.97%	2.46%	2.54%	-0.13%	3.27%	2.51%	2.55%			

Appendix 3

SCE&G - BEC Winter Weather Operating Agreement

Appendix C, Page 68 of 104

McClellanville (Awendaw / Shellmore Road) Electric Delivery Point

Winter Weather Operating Agreement

South Carolina Electric & Gas Company ("SCE&G") provides to South Carolina Public Service Authority ("Santee Cooper") for Central Electric Power Cooperative, Inc. ("CEPC") and Berkeley Electric Cooperative ("BEC") a 23.9 kV point of service on Shellmore Road near Awendaw, SC. This point of service is described as "McClellanville" in the Network Integrated Transmission Service Agreement ("NITSA") between SCE&G and Santee Cooper dated September 15, 2015. CEPC and BEC may act as agents for Santee Cooper with regard to the NITSA. SCE&G also provides Santee Cooper a 115 kV point of service at SCE&G's Hamlin Substation. Santee Cooper takes service from this 115 kV line for the Commonwealth Substation owned by BEC. This point of service is described as "Hamlin/Commonwealth" in the NITSA. Santee Cooper, through the BEC distribution system, has the capability of shifting load between the Hamlin/Commonwealth and McClellanville Delivery Points.

Santee Cooper is authorized to take up to 120 amps per phase at the McClellanville Delivery Point. However, when temperatures in the north Mount Pleasant and McClellanville areas drop to or below 23 °F, the Santee Cooper electrical demand at the McClellanville Delivery Point would be expected to exceed the amount authorized by SCE&G.

When temperatures are forecasted to drop to or below 23 °F, or when Santee Cooper or BEC anticipate its electrical demand may exceed 120 amps per phase for any reason, Santee Cooper or BEC and SCE&G's Distribution Dispatch will discuss the anticipated situation and BEC will effect switching operations on its distribution system to reduce electric load at the McClellanville Delivery Point. Either party may initiate the call to begin the switching operations.

Once temperatures have risen above 23 °F, or electric demand at the McClellanville Delivery Point is anticipated to be below 120 amps per phase, BEC may return its distribution system to the normal electrical configuration by first notifying SCE&G's Distribution Dispatch and then effecting the necessary switching operations.

If Santee Cooper or BEC takes no action to reduce the load at the McClellanville Delivery Point as described above, SCE&G reserves the right to perform switching operations to separate the Santee Cooper McClellanville load from the SCE&G system until BEC performs the necessary switching operations on its distribution system to reduce its load below 120 amps per phase.

SCE&G and Santee Cooper or BEC will monitor loads in the north Mount Pleasant and McClellanville area and may revise the temperature criteria when Santee Cooper load exceeds 120 amps per phase as necessary to protect the integrity of SCE&G's distribution system.

Appendix C, Page 69 of 104

Contact Information:

For day-ahead or day-of switching operations:

SCE&G Distribution Dispatch 803-217-2422 <u>distributiondispatch@scana.com</u>

Santee Cooper (notifications only) 843-761-4030 <u>trn@santeecooper.com</u>

Contact Information for all other purposes:

SCE&G, Manager Transmission Support Matt Hammond 803-217-2175 mhammond@scana.com

Santee Cooper, Manager System Control Stony Martin 843-761-8000, x5297 <u>srmartin@santeecooper.com</u>

South Carolina Electric & Gas Company

Name: _____

Print:

Date: _____

South Carolina Public Service Authority

Name: Muluel Cham

Print: Michael C- Brown

SCPSDate: LEGAL APPROVED AS TO LEGALITY AND FORM S. R. PELCHER

01.04.17

BEC System Control 843-761-6277 systemcontrol@bec.coop

BEC, Manager of Engineering & Technical Services Jeff Coleman 843-509-2971 jeffc@bec.ccop

Berkeley Electric Cooperative

Name:

Print: _____

Date:

Central Electric Power Cooperative, Inc.

Name: Jeh Print:

Date: 1-5-

Appendix C, Page 70 of 104

Appendix 4

Central Electric 2012 CWP

Appendix C, Page 71 of 104

M E M O R A N D U M

TO: Ron Calcaterra

FROM: Buck Springs

SUBJECT: Need to include the McClellanville delivery point transmission project (RUS 740C #849) as "Carry Forward" in the 2013-2016 Construction Work Plan.

DATE: September 1, 2012

This transmission project was submitted to RUS in the 2009-2012 CWP dated September 1, 2009. The project is scheduled for completion in December 2015 and is in the routing phase. The project is considered "In Progress" due to the allocation of time and materials. This project is being included in the 2013-2016 Construction Work Plan.

ESTIMATED PROJECT COSTS

<u>740C</u>	Project Name	ROW	Construction	Engineering	<u>Overall</u>
849	McClellanville (Buck Hall)	\$1,600,000	\$7,500,000	\$3,320,000	\$12,420,000

ENVIRONMENTAL STATUS

A Preliminary Draft Environmental Impact Study (PDEIS) for the 115 kV McClellanville Transmission Project was submitted to RUS on November 15, 2013. The Final Environmental Impact Statement (FEIS) is tentatively scheduled to be submitted to RUS in August 2014. RUS environmental approval for the McClellanville project is expected in January 2015. The Louis Berger Group, Inc. is the contractor preparing the EIS reports for Central Electric A Generic Environmental Report detailing Central Electric Power Cooperative's commitment to preserving the environment consistent with RUS guidelines is included in Section II.B. of this Construction Work Plan.

RECOMMENDATION

It is recommended that the project be put in the 2013-2016 Construction Work Plan.

McClellanville 115kV Transmission Projects

Appendix C, Page 74 of 104

MEMORANDUM

TO: Ron Calcaterra

FROM: Michael C Smith and Buck Springs

SUBJECT: Need for Rescheduling on Transmission construction to the proposed McClellanville (formally Buck Hall) delivery point.

DATE: February 5, 2007

This transmission project was originally scheduled to go into service in January 2002. It has been delayed in response to the sensitivity of the area and because of compliance requirements with state and federal procedures.

The station is still called for by the member coop and the transmission line is now an open project. It is Centrals opinion that the transmission line to the distribution station is still justified and that the following analysis is still applicable.

RECOMMENDATION

It is recommended that service to the proposed McClellanville 115 kV delivery point be constructed as planned.

MEMORANDUM

TO: Ron Calcaterra

FROM: Buck Springs

SUBJECT: Transmission construction to the proposed McClellanville (formally known as Buck Hall) delivery point.

DATE: May 14, 2001

The proposed McClellanville delivery point is being designed for 115 kV operation. It will be located approximately one half mile Northeast of the existing McClellanville metering point in Berkeley Electric Cooperatives system (attachment #1). The planned in service date for this station is January 2002. The McClellanville substation is included as part of Berkeley Cooperative's Construction Work Plan submitted to RUS on February 26, 1999(attachment #2). Funds for the transmission required to serve the McClellanville substation are not included in previous loan applications. Attachment #3 provides a load flow printout of the area around the proposed delivery point under 2002 loading conditions.

The initial station loading will be 5 MW, all from the existing McClellanville metering point, which will be retired. The station will be designed with an installed transformer base capacity of 15 MVA. The load is expected to be 6.24 MW by 2010.

Options for serving this new delivery point are limited by the lack of transmission infrastructure in the area. The only three possible options, attachment #1, are via a 115 kV tap from the Bell Isle delivery point, a 115 kV tap from the Northwest around Jamestown, or from the Cainhoy delivery point from the Southwest.

Attachment #4 provides a load flow printout of McClellanville served under 2002 loading conditions from the Bell Isle delivery point. In this case, service is within the designed parameter of 95% voltage criteria, to the new delivery point. Attachment #5&6 demonstrate that under a 2002 loading condition and a first contingency, supplied power is still within the 90% voltage criteria, to the new delivery point.

Attachment #4A provides a load flow printout of McClellanville served under 2002 loading conditions from the Jamestown delivery point. In this case, service is within the designed parameter of 95% voltage criteria, to the new delivery point. Attachment s #5A&6A demonstrate that under a 2002 loading condition and a first contingency, supplied power is still within the 90% voltage criteria, to the new delivery point.

Attachment #7 provides a load flow printout of McClellanville served under 2002 loading conditions from the Cainhoy delivery point. In this case, service is within the designed parameter of 95% voltage criteria, to the new delivery point. This is considered a radial service with no alternative service.

Appendix C, Page 76 of 104

Attachment #8 is a load flow printout of the same configuration as attachment #4, but under 2010 loading conditions. This case demonstrates that service, in 2010 and under normal conditions is well within the 95% voltage criteria. Attachment Is #9&10 demonstrate that under a 2010 loading condition and a first contingency, supplied power is still within the 90% voltage criteria, to the new delivery point. The radial configuration, in 2010, results in loading on the most critical line section (795 ACSR out of the Winyah 115/230 kV generating station) of 52% of normal capacity. The normal capacity of 795 ACSR is 179 MVA at 115 kV.

Attachment #8A is a load flow printout of the same configuration as attachment #4A, but under 2010 loading conditions. This case demonstrates that service, in 2010 and under normal conditions is well within the 95% voltage criteria. Attachment 3 #9A&10A demonstrate that under a 2010 loading condition and a first contingency, supplied power is still within the 90% voltage criteria, to the new delivery point. The radial configuration, in 2010, results in loading on the most critical line section (477 ACSR out of the Georgetown 115/230 kV switching station) of 26% of normal capacity. The normal capacity of 477 ACSR is 133 MVA at 115 kV.

Attachment #11 is a load flow printout of the same configuration as attachment #7, but under 2010 loading conditions. This case demonstrates that service, in 2010 and under normal conditions is well within the 95% voltage criteria. This is considered a radial service with no alternative service.

OBSERVATIONS

There is very little transmission infrastructure in the area around the proposed McClellanville delivery point.

Options for serving this new delivery point are limited by the transmission system in the area. The only three options, attachment #1, are via a 115 kV tap from the Bell Isle delivery point, a 115 kV tap from the Northwest near Jamestown, or from the Cainhoy delivery point from the Southwest. The service from Bell Isle would require 16 miles of 795 ACSR 115 kV transmission. The service from Jamestown would require 24 miles of 795 ACSR 115 kV transmission. The service from Cainhoy would require 24 miles of 795 ACSR 115 kV transmission.

All three tap points are considered strong sources with generation plants nearby providing excellent reliability.

The Belle Isle and Jamestown tap points have the advantage of being part of a looped transmission 115 kV system and both have an alternate source of service. The Belle Isle tap point has approximately eight mile less of transmission to construct over the other options.

Planned system improvements in the area will insure adequate service to the new delivery point through the forecasted year 2010.

RECOMMENDATION

It is recommended that service to the McClellanville 115 kV delivery point be provided via a tap from the Bell Isle delivery point. A 115 kV tap from Jamestown would be the next best alternative.

ATTACHMENT # 2

McCLELLANVILLE-BEC SUBSTATION Substation #25 (Proposed)

4.19.1 <u>Technical Data</u>

a. Voltage Rating: 115-14.4/24.94 kV

b. Primary Protection: Circuit Switcher

c. Power Transformers: One (1) 3Ø 15/28 MVA

d. Voltage Regulators: Nine (9) 1Ø 288 kVA

e. Number Outgoing Feeders: Circuits 1, 2 & 3

f. Feeder Protection: Three (3) Electronic Reclosers

g. OCR By-Pass: Blades

h. Maximum Fault Current, 3Ø, Secondary Side: 4340 Amps (Zero Source Impedance Assumed)

4.19.2 Design Data

Projected Substation Demand by Feeder

Feeder Number	<u>Peak kW</u>	<u>Remarks</u>
1	1849	2003 Peak = *
2	1580	
3	5636	
Total	9,065	

4.19.3

Construction Requirements

- a. Substation This new station will be required in 2006 to replace the Awendaw Metering Point. The new station will be equipped with one (1) three phase 15 MVA transformer which is to be purchased. Nine (9) 288 kVA voltage regulators are to be purchased for feeder regulation. A circuit switcher will be required for primary protection and three (3) electronic reclosers for feeder protection. A control house, along with SCADA equipment, is to be purchased for this station. See page 246 for associated costs.
- b. Line Construction Detailed on page 154.
- c. Line Voltage Regulators None required.
- d. Sectionalizing Equipment Five (5) single phase hydraulic OCR's and two (2) Air Break Switches will be required for the distribution system.
- e. Capacitors None required.
- * New Station No historical data available.

Appendix C, Page 79 of 104

4.19.0

MCCLELLANVILLE-BEC SUBSTATION SC 25 BE SUBSTATION SC 25 SUBSTATION SC 25 SUBSTATION <th 2<="" colspan="2" sc="" th=""><th></th><th></th><th></th><th>SYSTI</th><th>em im</th><th>PROVEMENT</th><th>S, DIS</th><th>SYSTEM IMPROVEMENTS, DISTRIBUTION LINE</th><th>ц Ш</th><th></th><th></th><th></th><th></th></th>	<th></th> <th></th> <th></th> <th>SYSTI</th> <th>em im</th> <th>PROVEMENT</th> <th>S, DIS</th> <th>SYSTEM IMPROVEMENTS, DISTRIBUTION LINE</th> <th>ц Ш</th> <th></th> <th></th> <th></th> <th></th>					SYSTI	em im	PROVEMENT	S, DIS	SYSTEM IMPROVEMENTS, DISTRIBUTION LINE	ц Ш				
SECTION ICAT EXERTING POLICIOR PROPOGED CONDUCTOR PROPOGED CONDUCTOR RECONDUCTOR EXERTING COST EXERTING RECONDUCTOR PROPOGED CONDUCTOR RECONDUCTOR RECONT 3 TOTAL CONTRACT RECONT 3 RECONTACT RECONTACT <threcontact< th=""> <threcontact< th=""> <threcon< th=""><th></th><th></th><th>Mc</th><th>CLELLANVILL SUI</th><th>E-BE(B. #25</th><th>C SUBSTATIO</th><th>z</th><th></th><th>- *</th><th>62</th><th>C 25 BER</th><th>KELEY</th><th></th></threcon<></threcontact<></threcontact<>			Mc	CLELLANVILL SUI	E-BE(B. #25	C SUBSTATIO	z		- *	62	C 25 BER	KELEY			
OCCSA MCABBANIle SU., I.2.3. MCABBANIle SU., I.2.3. MCABBANIle SU., Internation Mon 3 7.00.415 KM 0.10 51:300.000 51:30.000 5	\vdash	SECTION	CKT. No.		EXIS	TING CONDUCTOR WIRE SIZE	PROF PHASE	OSED CONDUCTOR WIRE SIZE	MILES		EXT. COST (NEAREST \$100)	YEAR	REMARKS		
15410-15245 1-2 1-3 1-40. IC Commenties in Tob/RdL. 3 400 ACBR 1-3 9117,000 8177,000	Ē	02525, 02524, 02523, 02538	1,2,3,4	McCleitanville Sub., Exit Citt's		ena	6		0.10		\$130.100				
(5666-116600 i South Santae Rd. Conv. 2 400 ACSR 3 400 ACSR 0.39 843,100 816,600 I <td>÷</td> <td>15410-15348 02527-02537</td> <td>1,2</td> <td>Hwy. 17 Conversion to Toby Rd.</td> <td>e</td> <td>40 ACSR</td> <td></td> <td>Double Circuit 477 ACSR</td> <td>1.28</td> <td>\$141,100</td> <td>\$177.800</td> <td>2006</td> <td></td>	÷	15410-15348 02527-02537	1,2	Hwy. 17 Conversion to Toby Rd.	e	40 ACSR		Double Circuit 477 ACSR	1.28	\$141,100	\$177.800	2006			
Image: constraint of the state of	5)	15668-15880	ж ж	South Santee Rd. Conv.	5	4/0 ACSR	6	40 ACSR	0.39	5 43.100	\$16.800	2006			
Image: Second 1 and Second 2 and Second			•												
Image: Normal and Sector Sec															
Image: Normal and Second 1 and Sec															
Image: Normal state of the state o	<u> </u>				:										
Image: Notice of the state of the													-		
FIRST 12 MONTHS NOTES NOTES REMA INCLUDED IN PRIOR WORK PLAN BUT NOT CONSTRUCTED INCLUDED IN PRIOR WORK PLAN BUT NOT PLAN INCLUDED IN PRIOR WORK PLAN FIRST 12 MONTHS SECOND 12 MONTHS FOURTH 12 MONTHS FOURTH 12 MONTHS INCLUDED IN PRIOR WORK PLAN															
Included in Prior work PLAN BUT NOT CONSTRUCTED NOTES REMA • INCLUDED IN PRIOR WORK PLAN BUT NOT CONSTRUCTED Date Pade • INCLUDED IN PRIOR WORK PLAN BUT NOT CONSTRUCTED Date Date • INCLUDED IN PRIOR WORK PLAN BUT NOT CONSTRUCTED Date Pade • INCLUDED IN PRIOR WORK PLAN BUT NOT CONSTRUCTED Date Pade • INCLUDED IN PRIOR WORK PLAN BUT NOT CONSTRUCTED Date Pade • INCLUDED IN PRIOR WORK PLAN BUT NOT CONSTRUCTED Date Pade • INCLUDED IN PRIOR WORK PLAN BUT NOT CONSTRUCTED EQUITIN 12 MONTHS Pade • INLES COST MILES COST MILES • INLES 0.00 9.00 0.00 9.010 0.010															
NOTES REMA INCLUDED IN PRIOR WORK PLAN BUT NOT CONSTRUCTED REMA INCLUDED IN PRIOR WORK PLAN BUT NOT CONSTRUCTED DATE INCLUDED IN PRIOR WORK PLAN BUT NOT CONSTRUCTED DATE INCLUDED IN PRIOR WORK PLAN BUT NOT CONSTRUCTED DATE INCLUDED IN PRIOR WORK PLAN BUT NOT CONSTRUCTED DATE INCLUDED IN PRIOR WORK PLAN BUT NOT CONSTRUCTED DATE INCLUDED IN PRIOR WORK PLAN BUT NOT THAT NOT															
INCLUDED IN PRIOR WORK PLAN BUT NOT CONSTRUCTED INCLUDED IN PRIOR PLAN BUT NOT PLAN INCLUDED IN PRIOR PLAN BUT NOT PLAN INCLUDED IN PRIOR PLAN INCLUDED IN PRIOR PLAN INCLUDED IN PRIOR PLAN INC				2	OTES						DELLAD	3			
INCLUDED IN PRIOR WORK PLAN BUT NOT CONSTRUCTED DATE INCLUDED IN PRIOR WORK PLAN BUT NOT CONSTRUCTED DATE EXECUTED IN PRIOR WORK PLAN BUT NOT CONSTRUCTED PAGE INCLUDED IN PRIOR WORK PLAN BUT NOT CONSTRUCTED PAGE INCLUDED IN PRIOR WORK PLAN BUT NOT CONSTRUCTED PAGE INCLUDED IN PRIOR WORK PLAN BUT NOT PLAN FOURTH 12 MONTHS INCLUDED IN PRIOR WORK PLAN BUT NOT PLAN FOURTH 12 MONTHS INCLUDED IN PRIOR WORK PLAN BUT NOT PLAN FOURTH 12 MONTHS INCLUDED IN PRIOR WORK PLAN PLAN FOURTH 12 MONTHS INCLUDED IN PRIOR WORK PLAN PLAN FOURTH 12 MONTHS INCLUDED IN PRIOR PLAN FOURTH 12 MONTHS INCLUDED IN PRIOR PLAN FOURTH 12 MONTHS INCLUDED IN PRIOR PLAN FOURTH 12 MONTHS												2			
FIRST 12 MONTHS SECOND 12 MONTHS THIRD 12 MONTHS FOURTH 12 MONTHS PAGE FOST MILES COST MILES COST MILES 0.10 6 0.0 0.0 0.0 0.0 0.10 0.10			•	NCLUDED IN PRIOR WORK		IT NOT CONSTRUCTED					DATE	Aim-At			
FIRST 12 MONTHS SECOND 12 MONTHS THIRD 12 MONTHS FOURTH 12 MONTHS PAGE FIRST 12 MONTHS SECOND 12 MONTHS THIRD 12 MONTHS FOURTH 12 MONTHS MILES												3- Dire			
FIRST 12 MONTHS SECOND 12 MONTHS THIRD 12 MONTHS FOURTH 12 MONTHS COST MILES COST MILES 0.00 \$0 0.10 \$130,100 0.00 \$0 TIE LINES 0.10											PAGE	1 of 1			
FIRST 12 MONTHS SECOND 12 MONTHS THIRD 12 MONTHS FOURTH 12 MONTHS COST MILES COST MILES COST COST MILES COST MILES COST \$0 0.00 \$0 0.10 \$130,100 0.00 \$0 TIE LINES 0.10															
FIRST 12 MONTHS SECOND 12 MONTHS THIRD 12 MONTHS FOURTH 12 MONTHS FOURTH 12 MONTHS COST MILES COST MILES COST MILES MILES MILES 0.10 MILES 0.10															
MILES COST MILES	똶	12 MONTHS	3	ECOND 12 MONTHS		HIRD 12 MONTHS	ñ	DURTH 12 MONTHS				GRAND TOTAL			
0.00 \$10 0.10 \$130,100 0.00 \$00 THE LINES	╉	COST	MILES	COST	MILES	COST	MILES	COST			MILES	S	COST		
	╋	8	8.8	85	0.10 4 85	\$130,100 \$164 PM	8.0	8	- 3	IE LINES	0.10	8	\$130,100		
t 75 524 700	╉╌	9	80	3 5	1 75	000'tert	8	3 5	3	TOTAL	1.05		4124,000		

Appendix C, Page 80 of 104

ATTACHMENT#2 (COVT)

ATTACHMENT #2((ONT.)

3.4.0 SUBSTATIONS - ADDITIONS AND CHANGES

3.4.1 New Substations - Category 400

CFR Code:	*420.0	Estimated Cost:	\$1,662,100
Substation:	Commonwealth	Construction Period:	2007

This new station will be required in 2007 to replace the existing Hamlin MP. The new station will be equipped with one (1) three phase 24 MVA transformer which is to be purchased. Fifteen (15) 432 kVA voltage regulators are to be purchased for feeder regulation. One (1) circuit switcher will be required for primary protection and five (5) electronic reclosers for feeder protection. A control house, along with SCADA equipment, is to be purchased for this station. See page 242 for associated costs.

CFR Code:	450.0	Estimated Cost:	\$1,290,300
Substation:	Cooper Store Rd.	Construction Period:	2005

This new station will be required in 2005 to reduce the service area of Lebanon, Mt. Holly and Whitesville Substations. The new station will be equipped with one (1) three phase 15 MVA transformer which is to be purchased. Twelve (12) 250 kVA voltage regulators are to be purchased for feeder regulation. A circuit switcher will be required for primary protection and four (4) electronic reclosers for feeder protection. A control house, along with SCADA equipment, is to be purchased for this station. See page 243 for associated costs.

CFR Code:	*425.0	Estimated Cost:	\$1,294,100
Substation:	McClellanville-BEC	Construction Period:	2006

This new station will be required in 2006 to replace the Awendaw MP. The new station will be equipped with one (1) three phase 15 MVA transformer which is to be purchased. Nine (9) 288 kVA voltage regulators are to be purchased for feeder regulation. A circuit switcher will be required for primary protection and three (3) electronic reclosers for feeder protection. A control house, along with SCADA equipment, is to be purchased for this station. See page 246 for associated costs.

CFR Code:	*499.0	Estimated Cost:	\$919,000
Substation:	Mobile Substation	Construction Period:	2004

A 30 MVA mobile will be required to provide service to all the existing stations in the event of a transformer failure. This unit will be equipped with a primary voltage of 115 kV and dual secondary voltages of 7.2/12.47 kV and 14.4/24.94 kV. See page 246 for associated cost.

CFR Code:	432.0	Estimated Cost:	\$1,219,000
Substation:	New Johns Island	Construction Period:	2005

This new station will be required in 2005 to replace the old Johns Island Substation and reduce the service area of the Stono Substation. The new station will be equipped with one (1) three phase 15 MVA transformer which is to be obtained from Seabrook 1. Twelve (12) 288 kVA voltage regulators are to be purchased for feeder regulation. A circuit switcher will be required for primary protection and four (4) electronic reclosers for feeder protection. A control house, along with SCADA equipment, is to be purchased for this station. See page 247 for associated costs.

* Repeated from Previous Construction Work Plan

 PTI INTERACTIVE POWER SYSTEM SIMULATOR--PSS/E
 THU, FEB 08 2007 16:14

 2002 CASE1:EXISTING SYSTEM AROUND THE PROPOSED BUCK HALL
 RATING

 DELIVERY POINT.
 SET A

 OUTPUT FOR ZONE 25 [BERKELEY]
]

DELI	VERY POI	INT.								SET A							
			OUTPUI	FOR	ZONE 25	[BERKELEY	.]										
8US 719	719 (5WINYAH	230.00	скт	MW	MVAR	MVA	%I		-43.04	X	- LOSSES	sx	x	AREA	~X X	ZONEX
TO	709 f	5CHARITY	230.00	1	177,7	54.6	185,9	22	234.60KV			MW		144			BERKELEY
TO		HEMING2	230.00		232.4	12.3	232.7							144 144			SC-EA SC-NO
TO	713 6	JEFF	230.00	1	55.0	8.6	55.7					0.10		144			SC-EA
то		CAMPFLD	230.00		323,7	5.2	323.8							144			SC-EA
TO TO		WINYAH	115.00		71.2	0.7			1.0000LK			0.00		144			BERKELEY
TO		2WINY 2 2WINY 3	22,000		-295.0 -295.0	-26,4 -25,4			1.0000LK					144			SC-EA
то		2WINY 4	22.000		-270.0	-29.8			1.0000LK					144 144		122	SC-EA SC-EA
				-			2/110	00	1100000			0.00	23.12	144	SC.	122	SC-LA
BUS 767	767 3	GTNREA	115.00	CKT	MW	MVAR	MVA	8I		-46.53	X		X	x	AREA	X X	ZONEX
то	LOAD-PO				10.7	4.6	11.7		116.10KV			MW	MVAR	144	SC	25	BERKELEY
TO	770 3	GTWN S	115.00	1	9.2	-23.4	25.1	14				0.01	0.05	144	sc	25	BERKELEY
TO	859 3	GTN CT	115,00	1	-19.9	18.8	27.4	15				0.02		144			BERKELEY
BUS	770 3	GTWN S	115.00	C. 2017	MW	MVAR	1073	a .	1 0112007	46.50							
770	770 3	GTHN 3	115.00	, ĈUI	114	MAR	MVA	81 81	1.0113P0	-46.59	x	· LOSSES	x	x	AREA	x x	ZONEX
									116.30KV			MW	MVAR	144	SC	25	BERKELEY
	SHUNT				0.0	-58.3	58.3									25	DOMABUBI
то		GTNREA	115.00		-9.2	23.3	25.0					0.01		144 :			BERKELEY
то то		GTN ST IPCOPMP	115.00 115.00		121.6 81.0	36.5	127.6 81.1					1.21		144			SC-EA
TO		IPCOSW	115.00		34.0	-3.5 12.4	36.2					0.32 0.17		144 144		122	
то	789 3		115.00		-25.8	2.8	25.9					0.44		144		122	SC-EA
TO		SAMPIT	115.00		-12.9	7.4	14.9					0.02		144		122	
TO		WINYAH	115.00		-138.5	-10.2	138.8					0.66	5.82	144	SC		BERKELEY
TO TO	1213 3	DUNBAR	115.00		-136.2	-9.0	136.5					0.44		144			SC-EA
TO		CAMPFLD	115.00 115.00		4.5 81.3	1.4 -4.7	4.7 81.4					0.00		144			SC-EA
	1000	0.5.1.1.2.2	115.00	*	01.0		01.4	01				0.09	3.19	144 3	50	122	SC-EA
BUS 845	845 3	WINYAH	115.00	CKT	MW	MVAR	MVA	8I		-44.24						x x	ZONEX
то	710 6	W T NIV B U	220.00	1	-1. 0	0 7	71.0	~~	117.30KV			MW		144 5			BERKELEY
то		WINYAH GTWN S	230.00		-71.2 139.1	0.7 15.6	140.0		1.0000UN			0.00		144 9			BERKELEY
то		BL ISL+	115.00		84.5	13.4	65.6					0.19		144 s 144 s			BERKELEY BERKELEY
то	1213 3		115.00		142.5	18.3	143.7					0.22		144 \$		122	
TO	1478 1	2WINY 1	22,000	1	-295.0	-48.1			1.0000LK					144 9		122	
BUS	060.0	C 111 0m	115 00	ov													
859	639 3	GTN CT	115.00	CKT	MW	MVAR	MVA	¥1	1.00/9PU	-46.39	x	LOSSES	x	x	AREA	x x	ZONEX
•••									115.91KV			MW	MVAR	144 5	SC.	25	BERKELEY
то	767 3	GTNREA	115.00	1	19.9	-18.9	27.5	15				0.02		144			BERKELEY
TO		GTN CT	34,500		11.9	5.1			0,9870RG	30.00LM		0.00	0.76	144 \$	SC SC	122	
TO		GTN CT	34.500		12.0	5.2			0.9870RG	30.00LM		0.00		144 8		122	
TO TO		MRYVIL+ 2GTN CT	115.00 12,470		-69.6 14.7	-5.2 7.9	69.6		0.9530LK	20.001		0.11		144 5			BERKELEY
TO		2GIN CI 2GIN CI	12.470		11.0	5.9			0.9530LK	30.00LM 30.00LM		0.00		144 S 144 S		122 122	
				-		••••	10.00	• •		20100M		0,00	0.00			122	JC-EA
BUS 1167	1167 3	BL ISL+	115.00	CKT	MW	MVAR	MVA	81		-44.90						x x	
ŤO	845 2	WINYAH	115.00	,	-84.3	-12.6	85.3	47	116.83KV			MW		144 9		25 1	BERKELEY
TO		MRYVIL+	115.00		77.8	10.3	78.5					0.19 0.26		144 9		25 1	BERKELEY
TO	1198 3		115.00		6.5	2.3	7.0					0.00		144 5		25 1 25 1 25 1	BERKELEY
		ERACTIVE P				RPSS/E		J, I	FEB 08 200								
		XISTING SY	STEM AR	OUND	THE PROP	OSED BUCK	HALL			RATING							
DEPLA	ÆRY POI	NT.	OUTDIT	FOP	ZONE 25	[BERKELEY	1			SET A							
			UQ IPUI	FUR	AQUE ZO		L										
BUS 1173	1173 3	MRYVIL	115.00	CKT	MW	MVAR	MVA	ŝI	1.0101PU	-45.90	x	LOSSES	~X	x	AREA	x x	ZONEX
									116.16KV			MW	MVAR	144 5	SC	25 1	BERKELEY
TO		MRYVIL+	115.00		-7.8	-3.7		5				0.00	0,00	144 5	SC		BERKELEY
TO	1233 1	2MRYVIL	12.470	1	7.8	3.7	8.7	43	0.9526LK	30.00LK	K ·	0.00	0.42	144 5	SC	122 :	SC-EA
BUS	1174 2	MRYVIL+	115.00	CVT	MW	MVAR	1075	Q. 7	1 010300	45 00	~	Loconc	v	v		X X	
1174	11/4 3	AKIVIL	115.00	ÇKI	FIN	MVAR	NVA	51	1.0103P0	~45.89	x	LUSSES	X	x	AREA	x x	ZONEX
									116.18KV			MW		144 s		25 1	BERKELEY
TO		GTN CT	115.00		69.7	5.6	69.9					0.11		144 \$			BERKELEY
TO TO	1167 3 1173 3	BL ISL+	115.00		-77.5 7.6	~9.3 3.7	78.1 8.7	43 5				0.26 0.00		144 S 144 S			BERKELEY BERKELEY
10	1113 3	SKIVIL	113.00	1	1.0	2.7	0.1	5				0.00	0.00	144 3	sc.	25 1	JERNELE I
BUS	1198 3	BL ISL	115.00	CKT	MW	MVAR	MVA	81	1.0158PU	-44.91	x	LOSSES	X	x	AREA	x x	ZONEX
1198																	
TO -	OND. DO				<i>e</i>	2 4			116.82KV			MW	MVAR	144 5	sc	25 I	BERKELEY
	.OAD-P <u>O</u> 1167 31	BL ISL+	115.00	1	6.5 -6.5	2.4 -2.4	7.0 7.0	4				0,00	0.00	144 5	SC .	25 t	BERKELEY
10	1107 3	LULT	110.00	*	0.5			~				0.00	0.00	144 5	~~	25 2	and the life l
BUS	1391 3	CHARITY	115.00	CKT	MW	MVAR	MVA	βI	1.0153PU	-47.28	x	LOSSES	x	х	AREA	X X	ZONEX
1391																	
TO	700 4	CHARITY	230.00	,	-15.7	-7.1	173	11	116.76KV 1.0000UN			MW 0.00		144 S		25 H 122 S	BERKELEY
TO		CHARITY	230,00		-15.8	-7.1			1.0000UN			0.00		144 S		122 5	
TO	1418 3		115.00		22.4	10.3	24.6					0.01		144 8			BERKELEY
TO		CHARI#2	115.00		1.5	1.6	2.2					0.00		144 S		122 9	
	1101 0																

Attachment #3

TO	1541	3CAINHY+	115.00	1	7.7	2.2	8.0	4			0.00	0.00	144	sc		25	BERKELEY
BUS 1418	1418	3MGIND	115.00	скт	MW	MVAR	MVA	81	1.0137PU	-47.41	X LOSSES	x	x	AREA	x	x	ZONEX
									116.58KV		MW	MVAR	144	sc		25	BERKELEY
TO	1391	3CHARITY	115.00	1	-22.4	-10.4	24.6	14			0.01	0.07					BERKELEY
TO	1419	13MGIND	13,600	1	11.2	5.2	12.4	41	0.9820RG		0.00	0.66	144	sc			BERKELEY
TO	1419	13MGIND	13,800	2	11.2	5.2	12.3	40	0.9820RG		0.00		144				BERKELEY
BUS 1419	1419	13MGIND	13.800	скт	MW	MVAR	MVA	# I	1.0103PU	-50.26	X LOSSES	x	x	AREA	X	x	ZONEX
									13.941KV		MW	MVAR	144	SC		25	BERKELEY
TO L	OAD-P(2			22.4	9,0	24.1										
TO	1418	BMGIND	115.00	1	-11.2	-4.5	12.1	40	1.0000UN		0.00	0.66	144	SC		25	BERKELEY
TO	1418	3MGIND	115,00	2	-11.2	-4.5	12.0	40	1.0000UN		0.00	0.66	144	SC			BERKELEY
BUS 1541	1541	3CAINHY+	115,00	СКТ	MW	MVAR	MVA	8 I	1.0153PU	-47.28	X LOSSES	x	x	AREA	х	x	ZONEX
									116.76KV		MW	MVAR	144	sc		25	BERKELEY
TO	1391	3CHARITY	115.00	1	-7,7	-2.2	8.0	4			0.00	0.00	144	SC			BERKELEY
то	1542	3CAINHOY	115.00	1	7.7	2.2	8.0	4			0.00	0.00	144	SC			BERKELEY
BUS 1542	1542	3CAINHOY	115.00	CKT	MW	MVAR	MVA	%I	1.0153PU	-47.29	X LOSSES	x	x	AREA	x	x	ZONEX
									116.76KV		MW	MVAR	144	sc		25	BERKELEY
	OAD-P(7.7	2.2	8.0										
TO	1541	3CAINHY+	115.00	1	-7.7	-2.2	8.0	4			0.00	0.00	144	SC		25	BERKELEY

Attachment 4A

PTI INTERACTIVE POWER SYSTEM SIMULATOR--PSS/E TUE, AUG 05 2003 14:52 2002 CASE5A:BUCK HALL SERVED FROM THE JAMESTOWN DELIVERY RATING POINT. SET A

OUTPUT FOR ZONE 25 [BERKELEY]

BUS	710	6WINYAH	120		OVT	MW	MVAR	MVA	£ T	1.0200PU -4	13.24	719
BUS	/19	OWINIAH	230	144	CVI	1+1+4	PIVAR	(IVA	.0 T	234.60KV	10.23	,10
TO	709	6CHARITY	230		1	177.0	54.7	185.3	23			
то		6HEMING2			1	232.0	12.3	232.3	29			
то		6JEFF	230		1	54.7	8.6	55.4	7			
то		6CAMPFLD		-		324.0	5.2	324.1	66			
то		3WINYAH				72.3	0.8	72.3	24	1.0000LK		
то	1452	12WINY 22	22.0	144	1	-295.0	-26.4	296.2	92	1.0000LK		
то	1453	12WINY 32	22.0	144	1	-295.0	-25.4	296.1	92	1.0000LK		
то	1454	12WINY 42	22.0	144	1	-270.0	-29.8	271.6	85	1.0000LK		
BUS	767	3GTNREA	115	AREA	CKT	MW	MVAR	MVA	\$I	1.0096PU -4	46.76	767
				144						116.10KV		
то	LOAD-1	₽Q				10.7	4.6	11.7				
TO	770	3GTWN S	115	144	1	9.4	-23.4	25.2	14			
то	859	3GTN CT	115	144	1	-20.1	18.8	27.6	15			
BUS	770	3GTWN S	115	AREA	CKT	MW	MVAR	MVA	۶I	1.0113PU -	46.82	770
				144						116.30KV		
TO	SHUNT					0.0	-58.3	58.3				
то	767											
	/0/	3GTNREA	115	144	1	-9.3	23.3	25.1	14			
TO			115 115		1 1	-9.3 121.6	23.3 38.5	25.1 127.6				
TO TO	778		115	144					95			
	778 785	3GTN ST	115 115	144	1	121.6	38.5	127.6	95 60			
то	778 785 786	3GTN ST 3IPCOPMP	115 115 115	144 144	1 1	121.6 80.6	38.5 -3.4	127.6 80.7	95 60 34			
TO TO	778 785 786 789	3GTN ST 3IPCOPMP 3IPCOSW	115 115 115 115	144 144 144 144	1 1 1	121.6 80.6 33.8	38.5 -3.4 12.4	127.6 80.7 36.0 26.0	95 60 34			
TO TO TO	778 785 786 789 830	3GTN ST 3IPCOPMP 3IPCOSW 3JEFF 3SAMPIT	115 115 115 115	144 144 144 144 144	1 1 1 1	121.6 80.6 33.8 -25.9 -10.7	38.5 -3.4 12.4 2.8	127.6 80.7 36.0 26.0 12.7	95 60 34 19 9			
TO TO TO TO	778 785 786 789 830 845	3GTN ST 3IPCOPMP 3IPCOSW 3JEFF 3SAMPIT	115 115 115 115 115 115	144 144 144 144 144	1 1 1 1	121.6 80.6 33.8 -25.9 -10.7	38.5 -3.4 12.4 2.8 6.9	127.6 80.7 36.0 26.0 12.7 139.3	95 60 34 19 9 58			
То То То То То	778 785 786 789 830 845 1213	3GTN ST 3IPCOPMP 3IPCOSW 3JEFF 3SAMPIT 3WINYAH 3VVV+	115 115 115 115 115 115 115	144 144 144 144 144 144	1 1 1 1 1	121.6 80.6 33.8 -25.9 -10.7 -138.9	38.5 -3.4 12.4 2.8 6.9 -10.1	127.6 80.7 36.0 26.0 12.7 139.3	95 60 34 19 9 58			
То То То То То То	778 785 786 789 830 845 1213 1217	3GTN ST 3IPCOPMP 3IPCOSW 3JEFF 3SAMPIT 3WINYAH 3VVV+	115 115 115 115 115 115 115 115	144 144 144 144 144 144 144 144	1 1 1 1 1 1	121.6 80.6 33.8 -25.9 -10.7 -138.9 -136.6	38.5 -3.4 12.4 2.8 6.9 -10.1 -8.9	127.6 80.7 36.0 26.0 12.7 139.3 136.9	95 60 34 19 9 58 57			
То То То То То То	778 785 786 789 830 845 1213 1217	3GTN ST 31PCOPMP 31PCOSW 3JEFF 3SAMPIT 3WINYAH 3VVV+ 3DUNBAR	115 115 115 115 115 115 115 115	144 144 144 144 144 144 144 144	1 1 1 1 1 1 1	121.6 80.6 33.8 -25.9 -10.7 -138.9 -136.6 4.5	38.5 -3.4 12.4 2.8 6.9 -10.1 -8.9 1.4	127.6 80.7 36.0 26.0 12.7 139.3 136.9 4.7	95 60 34 19 58 57 3			
То То То То То То	778 785 786 789 830 845 1213 1217 1323	3GTN ST 31PCOPMP 31PCOSW 3JEFF 3SAMPIT 3WINYAH 3VVV+ 3DUNBAR	115 115 115 115 115 115 115 115 115	144 144 144 144 144 144 144 144	1 1 1 1 1 1 1	121.6 80.6 33.8 -25.9 -10.7 -138.9 -136.6 4.5 80.8	38.5 -3.4 12.4 2.8 6.9 -10.1 -8.9 1.4	127.6 80.7 36.0 26.0 12.7 139.3 136.9 4.7	95 60 34 19 58 57 3 60	1.0111PU -	45.50	787
То То То То То То То То	778 785 786 789 830 845 1213 1217 1323 787	3GTN ST 3IPCOPMP 3IPCOSW 3JEFF 3SAMPIT 3WINYAH 3VVV+ 3DUNBAR 3CAMPFLD 3JAMTWN	115 115 115 115 115 115 115 115 115	144 144 144 144 144 144 144 144 144 144	1 1 1 1 1 1 1 1 CKT	121.6 80.6 33.8 -25.9 -10.7 -138.9 -136.6 4.5 80.8 MW	38.5 -3.4 12.4 2.8 6.9 -10.1 -8.9 1.4 -4.6 MVAR	127.6 80.7 36.0 26.0 12.7 139.3 136.9 4.7 81.0	95 60 34 19 9 58 57 3 60 % I	116.28KV	45.50	787
TO TO TO TO TO TO BUS	778 785 786 789 830 845 1213 1217 1323 787 801	3GTN ST 31PCOPMP 31PCOSW 3JEFF 3SAMPIT 3WINYAH 3VVV+ 3DUNBAR 3CAMPFLD 3JAMTWN 3MACDON	115 115 115 115 115 115 115 115 115 115	144 144 144 144 144 144 144 144 144 144	1 1 1 1 1 1 1 1 1 1 1 1	121.6 80.6 33.8 -25.9 -10.7 -138.9 -136.6 4.5 80.8 MW -33.2	38.5 -3.4 12.4 2.8 6.9 -10.1 -8.9 1.4 -4.6 MVAR 2.4	127.6 80.7 36.0 26.0 12.7 139.3 136.9 4.7 81.0 MVA 33.3	95 60 34 19 9 58 57 3 60 %I 25	116.28KV	45.50	787
TO TO TO TO TO TO TO BUS	778 785 786 789 830 845 1213 1217 1323 787 801 830	3GTN ST 31PCOPMP 31PCOSW 3JEFF 3SAMPIT 3WINYAH 3UNYAH 3UNBAR 3CAMPFLD 3JAMTWN 3MACDON 3SAMPIT	115 115 115 115 115 115 115 115 115 115	144 144 144 144 144 144 144 144 144 144	1 1 1 1 1 1 1 1 1 1 1 1 1 1	121.6 80.6 33.8 -25.9 -10.7 -138.9 -136.6 4.5 80.8 MW -33.2 20.3	38.5 -3.4 12.4 2.8 6.9 -10.1 -8.9 1.4 -4.6 MVAR 2.4 -4.6	127.6 80.7 36.0 26.0 12.7 139.3 136.9 4.7 81.0 MVA 33.3 20.8	95 60 34 19 9 58 57 3 60 &1 25 15	116.28KV		
TO TO TO TO TO TO BUS	778 785 786 789 830 845 1213 1217 1323 787 801 830	3GTN ST 31PCOPMP 31PCOSW 3JEFF 3SAMPIT 3WINYAH 3VVV+ 3DUNBAR 3CAMPFLD 3JAMTWN 3MACDON	115 115 115 115 115 115 115 115 115 115	144 144 144 144 144 144 144 144 144 144	1 1 1 1 1 1 1 1 1 1 1 1	121.6 80.6 33.8 -25.9 -10.7 -138.9 -136.6 4.5 80.8 MW -33.2	38.5 -3.4 12.4 2.8 6.9 -10.1 -8.9 1.4 -4.6 MVAR 2.4	127.6 80.7 36.0 26.0 12.7 139.3 136.9 4.7 81.0 MVA 33.3	95 60 34 19 9 58 57 3 60 &1 25 15	116.28KV 0.9526LK	45.50 30.00L	

PTI INTERACTIVE POWER SYSTEM SIMULATOR--PSS/E TUE, AUG 05 2003 14:52 2002 CASE5A:BUCK HALL SERVED FROM THE JAMESTOWN DELIVERY RATING POINT. SET A

OUTPUT FOR ZONE 25 [BERKELEY]

					PUT I							
D110	700	TEPE	115	AREA	വസ	MW	MVAR	MVA	% Í	1.0200PU	-43.31	789
BUS	789	3JEFF	115	144	CKI	1.144				117.30KV		
то	713	6JEFF	230		1	40.4	17.1	43.9	29	1.0000 UN		
то					2	40.6	17.2	44.1	29	1.0000UN		
TO	768	3RUSSVL+	115	144	1	47.9	12.0	49.4	36			
то	770	3GTWN S	115	144	1	26.3	-4.2	26.7	20			
то	794	3 LEBNON	115	144	1	26.9	13.0	29.9	16			
то	801	3MACDON	115	144	1	40.0	0.1	40.0	29			
TO	804	3MCWS	115	144	1	107.3	20.9	109.3	60			
TÖ	870	3GAPAC +	115	144	1	21.7	3.9	22.0	20			
TO	1163	OJEFF 3	34.5	144	1	15.2	3.5	15.6	38	1.0121RG	30.00L	ĸ
TO	1253	12JEFF 1	12.5	144	l	1.9	0.5	2.0	25	1.0000LK	30.001	ĸ
TO	1368	3BIGGNS+	115	144	1	111.7	22.6	113.9	62			
TO	1466	12JEFFH11	13.8	144	1	-30.0	-8.9	31.3		1.0000LK		
TO		12JEFFH2;			1	-30.0	-9.4	31.4		1.0000LK		
то		12JEFFH3			1	-30.0	-9.4	31.4		1.0000LK		
TO		12JEFFH4			1	-30.0	-9.4	31.4		1.0000LK		
TO		12JEFFH6			1	-8.0	-3.3	8.7		1.0000LK		
то		12JEFFS1			1	0.0	0.0	0.0		1.0000LK		
TO		12JEFFS2			1	-46.0	-5.0	46.3	-	1.0000LK		
то		12JEFFS3			1	-153.0	-30.6	156.0 156.0		1.0000LK		
TO	14/4	12JEFFS4	18.0	144	T	-153.0	-30.6	120.0	60	1.0000LK		
BUS	801	3MACDON	115	AREA	СКТ	MW	MVAR	MVA	%т	1.0161PU	-44.11	801
200	001	512102001	122	144					• -	116.85KV		
то	LOAD-!	PO										
то						6.4	2.5	6.9				
	787	3JAMTWN	115	144	1	6.4 33.4	2.5 -2.5	6.9 33.5	25			
то				144 144					25 29			
то		3 JAMTWN				33.4	-2.5	33.5				
to BUS	789	3 JAMTWN	115	144	1	33.4 -39.8	-2.5	33.5	29		-46.58	830
	789	3JAMTWN 3JEFF	115	144	1	33.4 -39.8	-2.5 0.0	33.5 39.8	29			830
BUS	789	3JAMTWN 3JEFF 3SAMPIT	115	144 AREA	1	33.4 -39.8	-2.5 0.0	33.5 39.8 MVA	29	1.009990		830
BUS	789 830 LOAD-1	3JAMTWN 3JEFF 3SAMPIT	115	144 AREA 144	1	33.4 -39.8 MW	-2.5 0.0 MVAR	33.5 39.8 MVA 10.1	29	1.0099PU 116.13KV		830
BUS TO	789 830 LOAD-: 770	3JAMTWN 3JEFF 3SAMPIT PQ	115 115 115	144 AREA 144	1 CKT	33.4 -39.8 MW 9.5	-2.5 0.0 MVAR 3.4	33.5 39.8 MVA 10.1 13.0	29 %I	1.0099PU 116.13KV		830
BUS TO TO	789 830 LOAD-: 770	3JAMTWN 3JEFF 3SAMPIT PQ 3GTWN S	115 115 115	i 144 AREA 144 144	1 . CKT 1	33.4 -39.8 MW 9.5 10.7	-2.5 0.0 MVAR 3.4 -7.3	33.5 39.8 MVA 10.1 13.0	29 %I 10	1.0099PU 116.13KV		830
BUS TO TO	789 830 LOAD 770 787	3JAMTWN 3JEFF 3SAMPIT PQ 3GTWN S	115 115 115 115	i 144 AREA 144 i 144 i 144	1 . CKT 1 1	33.4 -39.8 MW 9.5 10.7 -20.2	-2.5 0.0 MVAR 3.4 -7.3	33.5 39.8 MVA 10.1 13.0 20.6	29 %I 10 15	1.0099PU 116.13KV		
BUS TO TO TO	789 830 LOAD 770 787	3JAMTWN 3JEFF 3SAMPIT PQ 3GTWN S 3JAMTWN	115 115 115 115	i 144 AREA 144 i 144 i 144	1 . CKT 1 1	33.4 -39.8 MW 9.5 10.7 -20.2	-2.5 0.0 MVAR 3.4 -7.3 3.9	33.5 39.8 MVA 10.1 13.0 20.6	29 %I 10 15	1.0099FU 116.13KV	-44.46	
BUS TO TO TO	769 830 LOAD-: 770 787 845	3JAMTWN 3JEFF 3SAMPIT PQ 3GTWN S 3JAMTWN	115 115 115 115	 144 AREA 144 144 144 AREA AREA 144 	1 . CKT 1 1	33.4 -39.8 MW 9.5 10.7 -20.2	-2.5 0.0 MVAR 3.4 -7.3 3.9	33.5 39.8 MVA 10.1 13.0 20.6	29 %I 10 15 %I	1.0099FU 116.13KV 1.0200FU	-44.46	
BUS TO TO TO BUS	789 830 LOAD 770 787 845 719	3JAMTWN 3JEFF 3SAMPIT PQ 3GTWN S 3JAMTWN 3WINYAH	115 115 115 115 115 230	 i 144 i AREA i 144 i 144 i 144 i AREA i 144 i 144 	1 CKT 1 1 CKT 1	33.4 -39.8 MW 9.5 10.7 -20.2 MW	-2.5 0.0 MVAR 3.4 -7.3 3.9 MVAR 0.8	33.5 39.8 MVA 10.1 13.0 20.6 MVA	29 %I 10 15 %I 24	1.0099PU 116.13KV 1.0200PU 117.30KV 1.0000UN	-44.46	
BUS TO TO TO BUS TO	789 830 LOAD-: 770 787 845 719 770	3JAMTWN 3JEFF 3SAMPIT PQ 3GTWN S 3JAMTWN 3WINYAH 6WINYAH	115 115 115 115 115 230 115 115	 144 AREA 144 	1 CKT 1 1 CKT 1 1 1	33.4 -39.8 MW 9.5 10.7 -20.2 MW	-2.5 0.0 MVAR 3.4 -7.3 3.9 MVAR 0.8	33.5 39.8 MVA 10.1 13.0 20.6 MVA 72.3	29 %I 10 15 %I 24 58	1.0099PU 116.13KV 1.0200PU 117.30KV 1.0000UN	-44.46	
BUS TO TO BUS TO TO TO	789 830 LOAD-: 770 787 845 719 770 1167 1213	3JAMTWN 3JEFF 3SAMPIT PQ 3GTWN S 3JAMTWN 3WINYAH 6WINYAH 3GTWN S 3BL ISL+ 3VVV+	115 115 115 115 115 230 115 115	 i 144 i AREA 144 i 144 	1 CKT 1 1 CKT 1 1 1 1 1	33.4 -39.8 MW 9.5 10.7 -20.2 MW -72.3 139.6 84.7 143.0	-2.5 0.0 MVAR 3.4 -7.3 3.9 MVAR 0.8 15.5 13.4 18.2	33.5 39.8 MVA 10.1 13.0 20.6 MVA 72.3 140.4 85.8 144.1	29 %I 10 15 %I 24 58 47 59	1.0099FU 116.13KV 1.0200FU 117.30KV 1.0000UN	-44.46	
BUS TO TO BUS TO TO	789 830 LOAD-: 770 787 845 719 770 1167 1213	3JAMTWN 3JEFF 3SAMPIT PQ 3GTWN S 3JAMTWN 3WINYAH 6WINYAH 3GTWN S 3BL ISL+	115 115 115 115 115 230 115 115	 i 144 i AREA 144 i 144 	1 CKT 1 1 CKT 1 1 1 1 1	33.4 -39.8 MW 9.5 10.7 -20.2 MW -72.3 139.6 84.7	-2.5 0.0 MVAR 3.4 -7.3 3.9 MVAR 0.8 15.5 13.4	33.5 39.8 MVA 10.1 13.0 20.6 MVA 72.3 140.4 85.8 144.1	29 %I 10 15 %I 24 58 47 59	1.0099FU 116.13KV 1.0200FU 117.30KV 1.0000UN	-44.46	
BUS TO TO TO BUS TO TO TO TO	789 830 LOAD 770 787 845 719 770 1167 1213 1478	3JAMTWN 3JEFF 3SAMPIT PQ 3GTWN S 3JAMTWN 3WINYAH 6WINYAH 3GTWN S 3BL ISL+ 3VVV+ 12WINY 1	115 115 115 115 230 115 115 232	 i 144 i AREA 144 i 144 	1 1 1 1 1 1 1 1 1 1 1 1 1 1	33.4 -39.8 MW 9.5 10.7 -20.2 MW -72.3 139.6 84.7 143.0 -295.0	-2.5 0.0 MVAR 3.4 -7.3 3.9 MVAR 0.8 15.5 13.4 18.2 -47.9	33.5 39.8 MVA 10.1 13.0 20.6 MVA 72.3 140.4 85.8 144.1 298.9	29 %I 10 15 %I 24 58 47 59 93	1.0099PU 116.13KV 1.0200PU 117.30KV 1.0000UN 1.0000LK	- 44 . 46	845
BUS TO TO BUS TO TO TO	789 830 LOAD 770 787 845 719 770 1167 1213 1478	3JAMTWN 3JEFF 3SAMPIT PQ 3GTWN S 3JAMTWN 3WINYAH 6WINYAH 3GTWN S 3BL ISL+ 3VVV+	115 115 115 115 230 115 115 232	 i 144 i AREA 144 i 144 	1 1 1 1 1 1 1 1 1 1 1 1 1 1	33.4 -39.8 MW 9.5 10.7 -20.2 MW -72.3 139.6 84.7 143.0 -295.0	-2.5 0.0 MVAR 3.4 -7.3 3.9 MVAR 0.8 15.5 13.4 18.2	33.5 39.8 MVA 10.1 13.0 20.6 MVA 72.3 140.4 85.8 144.1	29 %I 10 15 %I 24 58 47 59 93	1.0099PU 116.13KV 1.0200PU 117.30KV 1.0000UN 1.0000LK 1.0079PU	- 44 . 46 - - - 46 . 62	845
BUS TO TO TO BUS TO TO TO TO	789 830 LOAD-: 770 787 845 719 770 1167 1213 1478 859	3JAMTWN 3JEFF 3SAMPIT PQ 3GTWN S 3JAMTWN 3WINYAH 6WINYAH 3GTWN S 3BL ISL+ 3VVV+ 12WINY 1	115 115 115 115 115 230 115 115 22.0	 i 144 i AREA 144 i 144 	1 1 1 1 1 1 1 1 1 1 1 1 1 1	33.4 -39.8 MW 9.5 10.7 -20.2 MW -72.3 139.6 84.7 143.0 -295.0	-2.5 0.0 MVAR 3.4 -7.3 3.9 MVAR 0.8 15.5 13.4 18.2 -47.9	33.5 39.8 MVA 10.1 13.0 20.6 MVA 72.3 140.4 85.8 144.1 298.9 MVA	29 %I 10 15 %I 24 58 47 59 93 %I	1.0099PU 116.13KV 1.0200PU 117.30KV 1.0000UN 1.0000LK 1.0079PU 115.91KV	- 44 . 46 - - - 46 . 62	845

 TO
 1151 OGTN
 CT34.5 144
 1
 11.9
 5.1
 12.9
 32 0.9807RG
 30.00LK

 TO
 1151 OGTN
 CT34.5 144
 2
 12.0
 5.2
 13.1
 32 0.9807RG
 30.00LK

 TO
 1231
 12GTN
 CT12.5
 144
 1
 14.7
 7.9
 16.7
 55
 0.9530LK
 30.00LK

 TO
 1231
 12GTN
 CT12.5
 144
 2
 11.0
 5.9
 12.5
 41
 0.9530LK
 30.00LK

TO 1174 3MRYVIL+ 115 144 1 -69.8 -5.1 70.0 39

Appendix C, Page 85 of 104

PTI INTERACTIVE POWER SYSTEM SIMULATOR -- PSS/E TUE, AUG 05 2003 14:56 2002 CASE5B:SAME AS CASE5A BUT JEFFERIES TO MACEDONIA LINE RATING SECTION OPEN. SET A

OUTPUT FOR ZONE 25 [BERKELEY]

Attachment

5A

BUS	719	6WINYAH	230	AREA	CKT	MW	MVAR	MVA	۶I	1.0200PU -	43.48	719
				144						234.60KV		
то	709	6CHARITY	230	144	1	167.9	54.7	176.6	22			
то	712	6HEMING2	230	144	l	229.1	12.9	229.5	28			
то	713	6JEFF	230	144	1	43.7	9.1	44.7	5			
TO	730	6CAMPFLD	230	144	1	330.0	6.0	330.1	68			
то	845	3WINYAH	115	144	1	89.2	1.2	89.2	29	1.0000LK		
TO	1452	12WINY 2	22.0	144	1	-295.0	-27.2	296.3	92	1.0000LK		
TO	1453	12WINY 3	22.0	144	1	-295.0	-26.2	296.2	92	1.0000LK		
то	1454	12WINY 4	22.0	144	1	-270.0	-30.6	271.7	85	1.0000LK		
BUS	767	3GTNREA	115	AREA	CKT	MŴ	MVAR	MVA	% I	1.0089PU	-47.39	767
				144						116.03KV		
TO	LOAD-1	PQ				10.7	4.6	11.7				
TO	770	3GTWN S	115	144	1	12.4	-23.1	26.2	15			
TO	859	3GTN CT	115	144	1	-23.1	18.5	29.6	16			
BUS	770	3GTWN S	115	AREA	CKT	MM	MVAR	MVA	¥Ι	1.0106PU	-47.46	770
				144						116.22KV		
	SHUNT					0.0	-58,2	58.2				
TO		3GTNREA	_	144	1	-12.4	23.0	26.1	14			
то	-	3GTN SI			1	121.6	38.6	127.6	95			
то	• -	3 I PCOPMP			1	74.4	-3.2	74.5	55			
TO		31PCOSW		144	1	30.0	13.0	32.7	31			
TÒ		3JEFF		144	1	-32.4	4.8	32.8	24			
TO		3SAMPIT			1	29.0	6.5	29.7	22			
TO		3WINYAH			1	-145.8	-11.3	146.2	61			
TO		3VVV+		144	1	-143.5	-10.1	143.8				
TO		3DUNBAR			1	4.5	1.4	4.7	3			
TO	1323	3CAMPFLI	115	144	1	74.5	-4.4	74.6	56			
						100			o	A		
BUS	787	3 JAMTWN	115	AREA	CKI	MW	MVAR	MVA	*1	0.9975PU	-48.93	787
mA	0.01			144		<i>.</i> .	1 7		_	114.71KV		
TO		3MACDON		144	1	6.4	1.7	6.6	5			
TO		3SAMPIT		144	1	-19.3	-4.0	19.7	15			.,
то		12JAMTWN			1	7.9	3.2	8.5		0.9526LK	30.001	чK
то	1660	BUCKHALI	, 115	1	1	5.0	-0.9	5.1	3			

PTI INTERACTIVE POWER SYSTEM SIMULATOR -- PSS/ETUE, AUG 05 200314:562002 CASE5B:SAME AS CASE5A BUT JEFFERIES TO MACEDONIA LINERATINGSECTION OPEN.SET A

OUTPUT FOR ZONE 25 [BERKELEY]

BUS	789	3JEFF	115	AREA	CKT	MW	MVAR	MVA	¥Ι	1.0200PU	-43.02	789
				144						117.30KV		
то	713	6JEFF	230	144	1	49.3	17.2	52.2	34	1.0000UN		
то	713	6JEFF	230	144	2	49.5	17.3	52.4	34	1.0000UN		
TO	768	3RUSSVL+	115	144	1	49.2	12.0	50.7	37			
то	770	3GTWN S	115	144	1	33.1	-5.3	33.6	25			
то	794	3 LEBNON	115	144	1	29.0	12.7	31.7	17			
то	804	3MCWS	115	144	l	111.8	20.6	113.7	62			
то	870	3GAPAC +	115	144	1	25.2	2.7	25.3	23			
TO	1163	OJEFF	34.5	144	1	15.2	3.5	15.6	38	1.0121RG	30.00LH	¢
TO	1253	12JEFF	12.5	144	1	1.9	0.5	2.0	25	1.0000LK	30.00L	ĸ
TO	1368	3BIGGNS+	115	144	1	115.7	22.3	117.8	65			
то	1466	12JEFFH1	13.8	144	1	-30.0	-8.9	31.3	90	1.0000LK		
TO	1467	12JEFFH2	13.8	144	1	-30.0	-9.4	31.4	91	1.0000LK		
TO	1468	12JEFFH3	13.8	144	1	-30,0	-9.4	31.4	91	1.0000LK		
TO	1469	12JEFFH4	13.8	144	1	-30.0	-9.4	31.4	91	1.0000LK		
то	1470	12JEFFH6	13.8	144	1	-8.0	-3.3	8.7	75	1.0000LK		
TO	1471	12JEFFS1	13.8	144	1	0.0	0.0	0.0	0	1.0000LK		
TO	1472	12JEFFS2	18.0	144	1	-46.0	-5.0	46.3	82	1.0000LK		
то	1473	12JEFFS3	18.0	144	1	-153.0	-29.1	155.7	83	1.0000LK		
TO	1474	12JEFFS4	18.0	144	1	-153.0	-29.1	155.7	83	1.0000LK		
BUS	801	3MACDON	115	AREA	CKT	MW	MVAR	MVA	ŧΙ	0.9947PU	-49.18	801
				144						114.39KV		
TO	LOAD-	PQ				64	2.5	6.9				
						0.1	2.5	0.9				
то	787	3JAMTWN	115	144	1				5			
						-6.4	-2.5	6.9				
to BUS		3JAMTWN 3SAMPIT		AREA				6.9		1.0055PU		830
BUS	830	3SAMPIT				-6.4 MW	-2.5 MVAR	6.9 MVA				830
BUS TO	830 LOAD-	3SAMPIT PQ	115	AREA 144	СКТ	-6.4 MW 9.5	-2.5 MVAR 3.4	6.9 MVA 10.1	%I	1.0055PU 115.63KV		830
BUS TO TO	830 LOAD- 770	3SAMPIT PQ 3GTWN S	115 115	AREA 144 144	СКТ 1	-6.4 MW 9.5 -28.9	-2.5 MVAR 3.4 -6.6	6.9 MVA 10.1 29.6	%I 22	1.0055PU 115.63KV		830
BUS TO	830 LOAD- 770	3SAMPIT PQ	115 115	AREA 144	СКТ 1	-6.4 MW 9.5	-2.5 MVAR 3.4	6.9 MVA 10.1	%I 22	1.0055PU 115.63KV		830
BUS TO TO TO	830 LOAD- 770 787	3SAMPIT PQ 3GTWN S 3JAMTWN	115 115 115	AREA 144 144 144	СКТ 1 1	-6.4 MW 9.5 -28.9 19.4	-2.5 MVAR 3.4 -6.6 3.2	6.9 MVA 10.1 29.6 19.7	%I 22 15	1.0055PU 115.63KV		
BUS TO TO	830 LOAD- 770 787	3SAMPIT PQ 3GTWN S	115 115 115	AREA 144 144 144 AREA	СКТ 1 1	-6.4 MW 9.5 -28.9 19.4	-2.5 MVAR 3.4 -6.6 3.2	6.9 MVA 10.1 29.6 19.7	%I 22 15	1.0055PU 115.63KV 1.0200PU		
BUS TO TO TO BUS	830 LOAD- 770 787 845	3SAMPIT PQ 3GTWN S 3JAMTWN 3WINYAH	115 115 115 115	AREA 144 144 144 AREA 144	CKT 1 1 CKT	-6.4 MW 9.5 -28.9 19.4 MW	-2.5 MVAR 3.4 -6.6 3.2 MVAR	6.9 MVA 10.1 29.6 19.7 MVA	%I 22 15 %I	1.0055PU 115.63KV 1.0200PU 117.30KV		
BUS TO TO TO BUS TO	830 LOAD- 770 787 845 719	3SAMPIT PQ 3GTWN S 3JAMTWN 3WINYAH 6WINYAH	115 115 115 230	AREA 144 144 144 AREA 144 144	CKT 1 CKT 1	-6.4 MW 9.5 -28.9 19.4 MW	-2.5 MVAR 3.4 -6.6 3.2 MVAR 1.2	6.9 MVA 10.1 29.6 19.7 MVA 89.2	%I 22 15 %I 29	1.0055PU 115.63KV 1.0200PU 117.30KV 1.0000UN		
BUS TO TO TO BUS TO	830 LOAD- 770 787 845 719 770	3SAMPIT PQ 3GTWN S 3JAMTWN 3WINYAH 6WINYAH 3GTWN S	115 115 115 230 115	AREA 144 144 144 AREA 144 144	CKT 1 CKT 1 1	-6.4 MW 9.5 -28.9 19.4 MW -89.2 146.5	-2.5 MVAR 3.4 -6.6 3.2 MVAR 1.2 17.3	6.9 MVA 10.1 29.6 19.7 MVA 89.2 147.6	%I 22 15 %I 29 61	1.0055PU 115.63KV 1.0200PU 117.30KV 1.0000UN		
BUS TO TO TO BUS TO TO	830 LOAD- 770 787 845 719 770 1167	3SAMPIT PQ 3GTWN S 3JAMTWN 3WINYAH 6WINYAH 3GTWN S 3BL ISL+	115 115 115 230 115	AREA 144 144 144 AREA 144 144 144	скт 1 скт 1 1 1	-6.4 MW 9.5 -28.9 19.4 MW -89.2 146.5 87.8	-2.5 MVAR 3.4 -6.6 3.2 MVAR 1.2 17.3 14.0	6.9 MVA 10.1 29.6 19.7 MVA 89.2 147.6 88.9	%I 22 15 %I 29 61 49	1.0055PU 115.63KV 1.0200PU 117.30KV 1.0000UN		
BUS TO TO BUS TO TO TO	830 LOAD- 770 787 845 719 770 1167 1213	3SAMPIT PQ 3GTWN S 3JAMTWN 3WINYAH 6WINYAH 3GTWN S 3BL ISL+ 3VVV+	115 115 115 230 115 115 115	AREA 144 144 144 144 144 144 144	CKT 1 CKT 1 1 1 1	-6.4 MW 9.5 -28.9 19.4 MW -89.2 146.5 87.8 149.9	-2.5 MVAR 3.4 -6.6 3.2 MVAR 1.2 17.3 14.0 20.1	6.9 MVA 10.1 29.6 19.7 MVA 89.2 147.6 88.9 151.2	%I 22 15 %I 29 61 49 62	1.0055PU 115.63KV 1.0200PU 117.30KV 1.0000UN	-44.98	
BUS TO TO TO BUS TO TO	830 LOAD- 770 787 845 719 770 1167 1213	3SAMPIT PQ 3GTWN S 3JAMTWN 3WINYAH 6WINYAH 3GTWN S 3BL ISL+	115 115 115 230 115 115 115	AREA 144 144 144 144 144 144 144	CKT 1 CKT 1 1 1 1	-6.4 MW 9.5 -28.9 19.4 MW -89.2 146.5 87.8 149.9	-2.5 MVAR 3.4 -6.6 3.2 MVAR 1.2 17.3 14.0 20.1	6.9 MVA 10.1 29.6 19.7 MVA 89.2 147.6 88.9 151.2	%I 22 15 %I 29 61 49 62	1.0055PU 115.63KV 1.0200PU 117.30KV 1.0000UN	-44.98	
BUS TO TO BUS TO TO TO TO	830 LOAD- 770 787 845 719 770 1167 1213 1478	3SAMPIT PQ 3GTWN S 3JAMTWN 3WINYAH 6WINYAH 3GTWN S 3BL ISL+ 3VVV+ 12WINY 1	115 115 115 230 115 115 115 22.0	AREA 144 144 144 144 144 144 144 144	CKT 1 1 CKT 1 1 1 1	-6.4 MW 9.5 -28.9 19.4 MW -89.2 146.5 87.8 149.9 -295.0	-2.5 MVAR 3.4 -6.6 3.2 MVAR 1.2 17.3 14.0 20.1 -52.5	6.9 MVA 10.1 29.6 19.7 MVA 89.2 147.6 88.9 151.2 299.6	%I 222 155 %I 299 61 499 62 93	1.0055PU 115.63KV 1.0200PU 117.30KV 1.0000UN	- 44 . 98	845
BUS TO TO BUS TO TO TO	830 LOAD- 770 787 845 719 770 1167 1213 1478	3SAMPIT PQ 3GTWN S 3JAMTWN 3WINYAH 6WINYAH 3GTWN S 3BL ISL+ 3VVV+	115 115 115 230 115 115 115 22.0	AREA 144 144 144 144 144 144 144 144	CKT 1 1 CKT 1 1 1 1	-6.4 MW 9.5 -28.9 19.4 MW -89.2 146.5 87.8 149.9 -295.0	-2.5 MVAR 3.4 -6.6 3.2 MVAR 1.2 17.3 14.0 20.1	6.9 MVA 10.1 29.6 19.7 MVA 89.2 147.6 88.9 151.2 299.6	%I 222 155 %I 299 61 499 62 93	1.0055PU 115.63KV 1.0200PU 117.30KV 1.0000UN 1.0000LK 1.0074PU	- 44 . 98	845
BUS TO TO BUS TO TO TO TO	830 LOAD- 770 845 719 770 1167 1213 1478 859	3SAMPIT PQ 3GTWN S 3JAMTWN 3WINYAH 6WINYAH 3GTWN S 3BL ISL+ 3VVV+ 12WINY 1	115 115 115 230 115 115 115 22.0	AREA 144 144 144 144 144 144 144 144 144 14	CKT 1 1 CKT 1 1 1 1 2 CKT	-6.4 MW 9.5 -28.9 19.4 MW -89.2 146.5 87.8 149.9 -295.0	-2.5 MVAR 3.4 -6.6 3.2 MVAR 1.2 17.3 14.0 20.1 -52.5 MVAR	6.9 MVA 10.1 29.6 19.7 MVA 89.2 147.6 88.9 151.2 299.6 MVA	%I 22 15 %I 29 61 49 62 93 %I	1.0055PU 115.63KV 1.0200PU 117.30KV 1.0000UN 1.0000LK 1.0074PU 115.85KV	- 44 . 98	845
BUS TO TO BUS TO TO TO TO BUS	830 LOAD- 770 787 845 719 770 1167 1213 1478 859 767	3SAMPIT PQ 3GTWN S 3JAMTWN 3WINYAH 6WINYAH 3GTWN S 3BL ISL+ 3VVV+ 12WINY 1 3GTN CT	115 115 115 230 115 115 115 22.0	AREA 144 144 144 144 144 144 144 144 144 14	CKT 1 1 CKT 1 1 1 1 1 2 CKT 1	-6.4 MW 9.5 -28.9 19.4 MW -89.2 146.5 87.8 149.9 -295.0 MW	-2.5 MVAR 3.4 -6.6 3.2 MVAR 1.2 17.3 14.0 20.1 -52.5 MVAR -18.6	6.9 MVA 10.1 29.6 19.7 MVA 89.2 147.6 88.9 151.2 299.6 MVA 29.7	%I 22 15 %I 29 61 49 62 93 %I 16	1.0055PU 115.63KV 1.0200PU 117.30KV 1.0000UN 1.0000LK 1.0074PU 115.85KV	- 44 . 98	845
BUS TO TO BUS TO TO TO TO BUS	830 LOAD- 770 787 845 719 770 1167 1213 1478 859 767 1151	3SAMPIT PQ 3GTWN S 3JAMTWN 3WINYAH 6WINYAH 3GTWN S 3BL ISL+ 3VVV+ 12WINY 1 3GTN CT 3GTN CT	115 115 115 230 115 115 222.0 7 115 115 7 115 7 34.5	AREA 144 144 144 144 144 144 144 144 144 14	CKT 1 1 CKT 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-6.4 MW 9.5 -28.9 19.4 MW -89.2 146.5 87.8 149.9 -295.0 MW 23.2	-2.5 MVAR 3.4 -6.6 3.2 MVAR 1.2 17.3 14.0 20.1 -52.5 MVAR -18.6	6.9 MVA 10.1 29.6 19.7 MVA 89.2 147.6 88.9 151.2 299.6 MVA 29.7 12.9	<pre>%I 222 15 %I 299 61 49 62 93 %I 16 32</pre>	1.0055PU 115.63KV 1.0200PU 117.30KV 1.0000UN 1.0000LK 1.0074PU 115.85KV	-44.98 -47.22 30.001	845 859 .K
BUS TO TO BUS TO TO TO BUS TO	830 LOAD- 770 787 845 719 770 1167 1213 1478 859 767 1151 1151	3SAMPIT PQ 3GTWN S 3JAMTWN 3WINYAH 6WINYAH 3GTWN S 3BL ISL+ 3VVV+ 12WINY 1 3GTN CT 3GTNREA 0GTN CT	115 115 115 230 115 . 115 115 222.0 . 115 . 115 . 22.0 . 115 . 115 . 234.5 . 334.5	AREA 144 144 144 144 144 144 144 144 144 14	CKT 1 1 CKT 1 1 1 1 1 1 1 1 1 1 1 1 1	-6.4 MW 9.5 -28.9 19.4 MW -89.2 146.5 87.8 149.9 -295.0 MW 23.2 11.9	-2.5 MVAR 3.4 -6.6 3.2 MVAR 1.2 17.3 14.0 20.1 -52.5 MVAR -18.6 5.1	6.9 MVA 10.1 29.6 19.7 MVA 89.2 147.6 88.9 151.2 299.6 MVA 29.7 12.9 13.1	<pre>%I 22 15 %I 29 61 49 62 93 %I 16 32 32</pre>	1.0055PU 115.63KV 1.0200PU 117.30KV 1.0000LK 1.0000LK 1.0074PU 115.85KV 0.9807RG 0.9807RG	-44.98 -47.22 30.001	845 859 .K
BUS TO TO BUS TO TO TO BUS TO TO TO	830 LOAD- 770 787 845 719 770 1167 1213 1478 859 767 1151 1151 1174	3SAMPIT PQ 3GTWN S 3JAMTWN 3WINYAH 6WINYAH 3GTWN S 3BL ISL+ 3VVV+ 12WINY 1 3GTN CT 3GTNREA 0GTN CT 0GTN CT	115 115 115 230 115 230 115 220 7 115 220 7 115 115 220 7 115 234.5 234.5 234.5	AREA 144 144 144 144 144 144 144 144 144 14	CKT 1 1 CKT 1 1 1 1 1 1 1 1 1 1 1 1 1	-6.4 MW 9.5 -28.9 19.4 MW -89.2 146.5 87.8 149.9 -295.0 MW 23.2 11.9 12.0	-2.5 MVAR 3.4 -6.6 3.2 MVAR 1.2 17.3 14.0 20.1 -52.5 MVAR -18.6 5.1 5.2	6.9 MVA 10.1 29.6 19.7 MVA 89.2 147.6 88.9 151.2 299.6 MVA 29.7 12.9 13.1 73.0	<pre>%I 22 15 %I 29 61 49 62 93 %I 16 32 32 40</pre>	1.0055PU 115.63KV 1.0200PU 117.30KV 1.0000LK 1.0000LK 1.0074PU 115.85KV 0.9807RG 0.9807RG	-44.98 -47.22 30.001 30.001	845 859 K K
BUS TO TO TO BUS TO TO TO BUS TO TO	830 LOAD- 770 787 845 719 770 1167 1213 1478 859 767 1151 1151 1151 1174 1231	3SAMPIT PQ 3GTWN S 3JAMTWN 3WINYAH 6WINYAH 3GTWN S 3BL ISL+ 3VVV+ 12WINY 1 3GTN CT 3GTNREA 0GTN CT 3GTNREA	115 115 115 230 115 230 115 220 7 115 220 7 115 115 220 7 115 115 234.5 5 34.5 7 115	AREA 144 144 144 144 144 144 144 144 144 14	CKT 1 1 CKT 1 1 1 1 1 1 2 1 1	-6.4 MW 9.5 -28.9 19.4 MW -89.2 146.5 87.8 149.9 -295.0 MW 23.2 11.9 12.0 -72.8	-2.5 MVAR 3.4 -6.6 3.2 MVAR 1.2 17.3 14.0 20.1 -52.5 MVAR -18.6 5.1 5.2 -5.5 7.9	6.9 MVA 10.1 29.6 19.7 MVA 89.2 147.6 88.9 151.2 299.6 MVA 29.7 12.9 13.1 73.0 16.7	<pre>%I 22 15 %I 29 61 49 62 93 %I 16 32 32 40 55</pre>	1.0055PU 115.63KV 1.0200PU 117.30KV 1.0000UN 1.0000LK 1.0074PU 115.85KV 0.9807RG 0.9807RG	-44.98 -47.22 30.001 30.001 30.001	845 859 .K .K

RATING Attachment 5A

Appendix C, Page 87 of 104

 PTI INTERACTIVE POWER SYSTEM SIMULATOR -- PSS/E
 TUE, AUG 05 2003
 15:00

 2002 CASESC:SAME AS CASESA BUT GEORGETOWN TO SAMPIT LINE
 RATING

 SECTION OPEN.
 SET A

 OUTPUT FOR ZONE 25 (BERKELEY)
 SET A

Attachment 6A

BUS	719	GWINYAH	230	AREA	CKT	MW	MVAR	AVM	۶I	1.0200PU -43.30 719
				144						234.60KV
то	70 9	6CHARITY	230	144	1	174.6	54,7	182.9	23	
то	712	6HEMING2	230	144	1	231.2	12.2	231.5	28	
то	713	6JEFF	230	144	1	51.7	8.8	52.4	6	
TÒ	730	6CAMPFLD	230	144	1	325.7	4.5	325.7	67	
то	845	3WINYAH	115	144	1	76.9	0.9	76.9	25	1.0000LK
то	1452	12WINY 22	22.0	144	l	-295.0	-26.2	296.2	92	1.0000LK
TO	1453	12WINY 32	22.0	144	1	-295.0	-25.2	296.1	92	1.0000LK
TO	1454	12WINY 42	22.0	144	1	-270.0	-29.6	271.6	85	1.0000LK
BUS	767	3GTNREA	115	AREA	CKT	MW	MVAR	MVA	% I	1.0100PU -46.93 767
				144						116.15KV
TO	LOAD-I	PQ				10.7	4.6	11.7		
то	770	3GTWN S	115	144	1	10.1	-24.3	26.3	15	
то	859	3GTN CT	115	144	1	-20.9	19.7	28.7	16	
BUS	770	3GTWN S	115	AREA	CKT	MW	MVAR	MVA	ŧΙ	1.0118PU -46.99 770
				144						116.36KV
то	SHUNT					0.0	-58.4	58.4		
то	767	3GTNREA	115	144	1	-10.1	24.2	26.2	14	
TO	778	3GTN ST	115	144	1	121.6	38.5	127.6	95	
TO	785	3 I PCOPMP	115	144	1	79.0	-2.9	79.0	59	
то	786	31PCOSW	115	144	1	32.8	12.8	35.2	33	
то	789	3JEFF	115	144	1	-27.6	3.6	27.9	21	
TO	845	3WINYAH	115	144	1	-140.8	-8.2	141.1	58	
TO	1213	3VVV+	115	144	1	-138.5	-7.0	138.7	57	
TO	1217	3DUNBAR	115	144	1	4.5	1.3	4.7	3	
то	1323	3CAMPFLD	115	144	1	79.2	-4.1	79.3	59	I
BUS	787	3 JAMTWN	115	AREA	. CKT	MW	MVAR	MVA	¥ I	1.0071PU -44.64 787
BUS	787	3 JAMTWN	115	AREA 144	. СКТ	MW	MVAR	MVA	\$I	1.0071PU -44.64 787 115.81KV
BUS TO	-	3JAMTWN 3MACDON			. CKT 1	- 22.4	MVAR			115.81KV
_	801		115	144						115.81KV
то	801 830	3MACDON	115 115	144 144 144	1	-22.4	-4.7	22.9	17 7	115.81KV

PTI INTERACTIVE POWER SYSTEM SIMULATOR -- PSS/ETUE, AUG 05 200315:002002 CASESC:SAME AS CASESA BUT GEORGETOWN TO SAMPIT LINERATINGSECTION OPEN.SET A

OUTPUT FOR ZONE 25 [BERKELEY]

BUS	789	3JEFF	115	AREA	CKT	MW	MVAR	MVA	ŧI	1.0200PU	-43.22	789
				144						117.30KV		
то	713	6JEFF	230	144	1	42.9	17.1	46.2	30	1,0000UN		
то	713	6JEFF	230	144	2	43.0	17.2	46.4	30	1.0000UN		
то	768	3RUSSVL+	115	144	1	48.3	12.0	49.8	37			
то	770	3GTWN S	115	144	1	28.1	-4.8	28.6	21			
то	794	3 LEBNON	115	144	1	27.5	12.9	30.4	17			
то	801	3MACDON	115	144	1	29.0	6.5	29.7	22			
то	804	3MCWS	115	144	1	108.6	20.8	110.5	61			
то	870	3GAPAC +	115	144	ı	22.6	3.6	22.9	21			
то	1163	OJEFF	34.5	144	1	15.2	3.5	15.6	38	1.0121RG	30.00L1	к
TO	1253	12JEFF	12.5	144	1	1.9	0.5	2.0	25	1.0000LK	30.00L	ĸ
тŌ	1368	3BIGGNS+	115	144	1	112.8	22.5	115.0	63			
то	1466	12JEFFH1	13.8	144	1	-30.0	-8.9	31.3	90	1.0000LK		
то	1467	12JEFFH2	13.8	144	1	-30.0	-9.4	31.4	91	1.0000LK		
то	1468	12JEFFH3	13.8	144	1	-30.0	-9.4	31.4	91	1.0000LK		
то	1469	12JEFFH4	13.8	144	1	-30.0	-9.4	31.4	91	1.0000LK		
TO	1470	12JEFFH6	13.8	144	1	-8.0	-3.3	8.7	75	1.0000LK		
TO	1471	12JEFFS1	13.8	144	1	0.0	0.0	0.0	0	1.0000LK		
то	1472	12JEFFS2	18.0	144	1	-46.0	-5.0	46.3	82	1.0000LK		
то	1473	12JEFFS3	18.0	144	1	-153.0	-33.2	156.6	83	1.0000LK		
то	1474	12JEFFS4	18.0	144	1	-153.0	-33.2	156.6	83	1.0000LK		
BUS	801	3MACDON	115	AREA	CKT	MW	MVAR	MVA	ξI	1.0148PU	-43.77	801
				144						116.70KV		
то	LOAD-	PQ				6.4	2.5	6.9				
то	787	3JAMTWN	115	144	1	22.5	4.1	22.9	17			
то	789	3JEFF	115	144	1	-28.9	-6.6	29.7	22			
BUS	830											
		3SAMPIT	115		CKT	MW	MVAR	AVM	% I	1.0021PU	-45.08	830
		3SAMPIT	115	AREA 144	СКТ				£1	1.0021PU 115.24KV	-45.08	830
	LOAD-	PQ		144		9.5	3,4	10.1			-45.08	830
TO TO				144					% I 8		-45.08	830
то	787	PQ 3JAMTWN	115	144 144	1	9.5 -9.5	3,4 -3.4	10.1 10.1	8	115.24KV		
	787	PQ	115	144 144 AREA	1	9.5	3,4	10.1	8	115.24KV 1.0200PU		
to BUS	787 845	PQ 3JAMTWN 3WINYAH	115 115	144 144 AREA 144	1 CKT	9,5 -9.5 MW	3.4 -3.4 MVAR	10.1 10.1 MVA	8 %I	115.24KV 1.0200PU 117.30KV		
to BUS TO	787 845 719	PQ 3JAMTWN 3WINYAH 6WINYAH	115 115 230	144 144 AREA 144 144	1 CKT 1	9.5 -9.5 MW -76.9	3.4 -3.4 MVAR 0.9	10.1 10.1 MVA 76.9	8 %1 25	115.24KV 1.0200PU		
TO BUS TO TO	787 845 719 770	PQ 3JAMTWN 3WINYAH 6WINYAH 3GTWN S	115 115 230 115	144 144 AREA 144 144 144	1 CKT 1 1	9.5 -9.5 MW -76.9 141.5	3.4 -3.4 MVAR 0.9 13.7	10.1 10.1 MVA 76.9 142.2	8 %1 25 58	115.24KV 1.0200PU 117.30KV		
TO BUS TO TO TO	787 845 719 770 1167	PQ 3JAMTWN 3WINYAH 6WINYAH 3GTWN S 3BL ISL+	115 115 230 115 115	144 144 AREA 144 144 144	1 CKT 1 1	9.5 -9.5 MW -76.9 141.5 85.5	3.4 -3.4 MVAR 0.9 13.7 12.5	10.1 10.1 MVA 76.9 142.2 86.4	8 %1 25 58 47	115.24KV 1.0200PU 117.30KV		
TO BUS TO TO TO TO	787 845 719 770 1167 1213	PQ 3JAMTWN 3WINYAH 6WINYAH 3GTWN S 3BL ISL+ 3VVV+	115 115 230 115 115 115	144 144 144 144 144 144 144	1 CKT 1 1 1	9.5 -9.5 MW -76.9 141.5 85.5 144.9	3.4 -3.4 MVAR 0.9 13.7 12.5 16.5	10.1 10.1 MVA 76.9 142.2 86.4 145.8	8 %1 25 58 47 60	115.24KV 1.0200PU 117.30KV 1.0000UN		
TO BUS TO TO TO	787 845 719 770 1167 1213	PQ 3JAMTWN 3WINYAH 6WINYAH 3GTWN S 3BL ISL+	115 115 230 115 115 115	144 144 144 144 144 144 144	1 CKT 1 1 1	9.5 -9.5 MW -76.9 141.5 85.5	3.4 -3.4 MVAR 0.9 13.7 12.5 16.5	10.1 10.1 MVA 76.9 142.2 86.4	8 %1 25 58 47 60	115.24KV 1.0200PU 117.30KV		
TO BUS TO TO TO TO	787 845 719 770 1167 1213 1478	PQ 3JAMTWN 3WINYAH 6WINYAH 3GTWN S 3BL ISL+ 3VVV+ 12WINY 1	115 115 230 115 115 115 .22.0	144 144 144 144 144 144 144 144	1 CKT 1 1 1 1	9.5 -9.5 MW -76.9 141.5 85.5 144.9 -295.0	3.4 -3.4 MVAR 0.9 13.7 12.5 16.5 -43.6	10.1 10.1 MVA 76.9 142.2 86.4 145.8 298.2	8 %1 25 58 47 60 93	115.24KV 1.0200PU 117.30KV 1.0000UN 1.0000LK	-44.59	845
TO BUS TO TO TO TO	787 845 719 770 1167 1213 1478	PQ 3JAMTWN 3WINYAH 6WINYAH 3GTWN S 3BL ISL+ 3VVV+	115 115 230 115 115 115 .22.0	144 144 144 144 144 144 144 144 144	1 CKT 1 1 1 1	9.5 -9.5 MW -76.9 141.5 85.5 144.9 -295.0	3.4 -3.4 MVAR 0.9 13.7 12.5 16.5	10.1 10.1 MVA 76.9 142.2 86.4 145.8	8 %1 25 58 47 60 93	115.24KV 1.0200PU 117.30KV 1.0000UN 1.0000LK 1.0083PU	-44.59	845
TO BUS TO TO TO TO BUS	787 845 719 770 1167 1213 1478 859	PQ 3JAMTWN 3WINYAH 6WINYAH 3GTWN S 3BL ISL+ 3VVV+ 12WINY 1 3GTN CT	115 115 230 115 115 22.0	144 144 144 144 144 144 144 144 144 144	1 CKT 1 1 1 1 CKT	9.5 -9.5 MW -76.9 141.5 85.5 144.9 -295.0 MW	3.4 -3.4 MVAR 0.9 13.7 12.5 16.5 -43.6 MVAR	10.1 10.1 MVA 76.9 142.2 86.4 145.8 298.2 MVA	8 %1 25 47 60 93 %1	115.24KV 1.0200PU 117.30KV 1.0000UN 1.0000LK 1.0083PU 115.95KV	-44.59	845
TO BUS TO TO TO TO BUS	787 845 719 770 1167 1213 1478 859 767	PQ 3JAMTWN 3WINYAH 6WINYAH 3GTWN S 3BL ISL+ 3VVV+ 12WINY 1 3GTN CT 3GTN CT	115 230 115 115 22.0 7 115 115	144 144 144 144 144 144 144 144 144 144	1 CKT 1 1 1 1 CKT	9.5 -9.5 MW -76.9 141.5 85.5 144.9 -295.0 MW 20.9	3.4 -3.4 MVAR 0.9 13.7 12.5 16.5 -43.6 MVAR -19.8	10.1 10.1 MVA 76.9 142.2 86.4 145.8 298.2 MVA 28.8	8 %1 25 58 47 60 93 %1 16	115.24KV 1.0200PU 117.30KV 1.0000UN 1.0000LK 1.0083PU 115.95KV	-44.59	845
TO BUS TO TO TO BUS TO	787 845 719 770 1167 1213 1478 859 767 1151	PQ 3JAMTWN 3WINYAH 6WINYAH 3GTWN S 3BL ISL+ 3VVV+ 12WINY 1 3GTN CT 3GTNREA 0GTN CT	115 115 230 115 115 22.0 115 115 115 534.5	144 144 144 144 144 144 144 144 144 144	1 CKT 1 1 1 1 1 CKT 1 1	9.5 -9.5 MW -76.9 141.5 85.5 144.9 -295.0 MW 20.9 11.9	3.4 -3.4 MVAR 0.9 13.7 12.5 16.5 -43.6 MVAR -19.8 5.1	10.1 10.1 MVA 76.9 142.2 86.4 145.8 298.2 MVA 28.8 12.9	8 %1 25 58 47 60 93 %1 16 32	115.24KV 1.0200PU 117.30KV 1.0000UN 1.0000LK 1.0083PU 115.95KV 0.9807RG	-44.59 -46.77 30.001	845 859 .K
TO BUS TO TO TO TO BUS TO TO	787 845 719 770 1167 1213 1478 859 767 1151	PQ 3JAMTWN 3WINYAH 6WINYAH 3GTWN S 3BL ISL+ 3VVV+ 12WINY 1 3GTN CT 3GTNREA 0GTN CT 0GTN CT	115 115 230 115 115 22.0 7 115 115 115 115 115 314.5	144 144 144 144 144 144 144 144 144 144	1 CKT 1 1 1 1 CKT 1 1 2	9.5 -9.5 MW -76.9 141.5 85.5 144.9 -295.0 MW 20.9 11.9 12.0	3.4 -3.4 MVAR 0.9 13.7 12.5 16.5 -43.6 MVAR -19.8 5.1 5.2	10.1 10.1 MVA 76.9 142.2 86.4 145.8 298.2 MVA 28.8 12.9 13.1	8 %1 25 58 47 60 93 %1 16 32 32	115.24KV 1.0200PU 117.30KV 1.0000UN 1.0000LK 1.0083PU 115.95KV	-44.59 -46.77 30.001	845 859 .K
TO BUS TO TO TO BUS TO	787 845 719 770 1167 1213 1478 859 767 1151 1151 1174	PQ 3JAMTWN 3WINYAH 6WINYAH 3GTWN S 3BL ISL+ 3VVV+ 12WINY 1 3GTN CT 3GTNREA 0GTN CT	115 115 230 115 115 222.0 7 115 734.5 734.5 734.5	144 144 144 144 144 144 144 144 144 144	1 CKT 1 1 1 1 CKT 1 1 2 1	9.5 -9.5 MW -76.9 141.5 85.5 144.9 -295.0 MW 20.9 11.9 12.0 -70.5	3.4 -3.4 MVAR 0.9 13.7 12.5 16.5 -43.6 MVAR -19.8 5.1 5.2	10.1 10.1 MVA 76.9 142.2 86.4 145.8 298.2 MVA 28.8 12.9 13.1 70.7	8 %1 25 58 47 60 93 %1 16 32 32 39	115.24KV 1.0200PU 117.30KV 1.0000UN 1.0000LK 1.0083PU 115.95KV 0.9807RG	-44.59 -46.77 30.001 30.001	845 859 .K .K
TO BUS TO TO TO BUS TO TO TO	787 845 719 770 1213 1478 859 767 1151 1151 1151 1174 1231	PQ 3JAMTWN 3WINYAH 6WINYAH 3GTWN S 3BL ISL+ 3VVV+ 12WINY 1 3GTN CT 3GTNREA 0GTN CT 3GTN CT 3MRYVL+	115 115 230 115 115 22.0 7 115 7 115 7 34.5 7 34.5 7 34.5 7 115	144 144 144 144 144 144 144 144 144 144	1 CKT 1 1 1 1 CKT 1 2 1 1	9.5 -9.5 MW -76.9 141.5 85.5 144.9 -295.0 MW 20.9 11.9 12.0 -70.5	3.4 -3.4 MVAR 0.9 13.7 12.5 16.5 -43.6 MVAR -19.8 5.1 5.2 -4.2 7.9	10.1 10.1 MVA 76.9 142.2 86.4 145.8 298.2 MVA 28.8 12.9 13.1 70.7 16.7	8 %1 25 58 47 60 93 %1 16 32 32 39 55	115.24KV 1.0200PU 117.30KV 1.0000UN 1.0000LK 1.0083PU 115.95KV 0.9807RG 0.9807RG	-44.59 -46.77 30.001 30.001 30.001	845 859 .K .K

Attachment 6A

Appendix C, Page 89 of 104

Attachment 6A

١

PTI INTERACTIVE POWER SYSTEM SIMULATOR -- PSS/ETUE, AUG 05 200315:002002 CASESC: SAME AS CASESA BUT GEORGETOWN TO SAMPIT LINERATINGSECTION OPEN.SET A

OUTPUT FOR ZONE 25 [BERKELEY]

									о т	1 01 0001 45 06 1167
BUS	1167	3BL ÍSL+	115	AREA 144	CKT	MM	MVAR	MVA		1.0160PU -45.26 1167 116.84KV
TO	845	3WINYAH	115		1	-85.3	-11.7	86.1	47	
TO	1174	3MRYVIL+	115	144	1	78.7	9.4	79.3	44	
то	1198	3BL ISL	115	144	1	6.5	2.3	7.0	4	
BUS	1173	3MRYVIL	115	AREA	СКТ	MW	MVAR	MVA	%I	1.0104PU -46.28 1173
				144						116.20KV
то	1174	3MRYVIL+	115	144	1	-7.8	-3.7	8.7	5	
то	1233	12MRYVIL	12.5	144	1	7.8	3.7	8.7	43	0.9526LK 30.00LK
BUS	1174	3MRYVIL+	115	AREA	CKT	MW	MVAR	MVA	ŧΙ	1.0105PU -46.27 1174
				144						116.21KV
TO	859	3GTN CT	115	144	1	70.7	4.6	70.8	39	
то	1167	3BL ISL+	115	144	1	-78.5	-8.4	78.9	44	
TO	1173	3MRYVIL	115	144	1	7.8	3.7	8.7	5	
BUS	1198	3BL ISL	115	AREA	CKT	MW	MVAR	MVA	%Ι	1.0159PU -45.27 1198
				144						116.83KV
то	LOAD-I	PQ				6.5	2.4	7.0		
TO	1167	3BL ISL+	115	144	1	-6.5	-2.4	7.0	4	
BUS	1391	3CHARITY	115		CKT	MW	MVAR	MVA	%Ι	1.0154PU -47.47 1391
				144	_					116.77KV
то		6CHARITY			1	-15.7	-7.0	17.2		0.9748UN
TO		6CHARITY			2	-15.8	-7.0	17.3		0.9748UN
то		3MGIND		144	1	22.4	10.3	24.6	14	
TO		3CHARI#2			1	1.5	1.5	2.2	1	
TO	1541	3CAINHY+	112	144	1	7.7	2.2	8.0	4	
BUS	1410	3MGIND	116	AREA	OVT	MW	MVAR	MVA	۹. т	1.0138PU -47.60 1418
803	1410	SPIGIND	110	144	ĊKI	1-144	MVAR	MVA	71	116.59KV
то	1391	3CHARITY	115		1	-22.4	-10.4	24.6	14	
то		13MGIND			1	11.2	5.2	12.4		0.9820RG
TO		13MGIND	-		2	11.2	5.2	12.3		0.9820RG
	1110		1370		-		0.0		•••	
BUS	1419	13MGIND	13.8	AREA	СКТ	MW	MVAR	MVA	۶I	1.0103PU -50.45 1419
				144						13.942KV
TO	LOAD-1	PQ				22.4	9.0	24.1		
		- 3MGIND	115	144	1	-11.2	-4.5	12.1	40	0.9820UN
TO	1418	3MGIND	115	144	2	-11.2	-4.5	12.0	40	0.9820UN
BUS	1541	3CAINHY+	115	AREA	CKT	MW	MVAR	MVA	۶I	1.0154PU -47.47 1541
				144						116.77KV
то	1391	3CHARITY	115	144	1	-7.7	-2.2	8.0	4	
TO	1542	3CAINHOY	115	144	1	7.7	2.2	8.0	4	
BUS	1542	3CAINHOY	115	AREA	CKT	MW	MVAR	MVA	₿I	1.0153PU -47.48 1542
				144						116.77KV
TO	LOAD-	PQ				7.7	2.2	8.0		
TO	1541	3CAINHY+	115	144	1	-7.7	-2.2	8.0	4	

PTI INTERACTIVE POWER SYSTEM SIMULATORPSS/E	TUE,	AUG 05	2003	15:	00
2002 CASE5C: SAME AS CASE5A BUT GEORGETOWN TO SAMPIT LINE	3			RATI	NG
SECTION OPEN.				SET	Α
OUTPUT FOR ZONE 25 [BERKELEY]					
BUS 1660 BUCKHALL 115 AREA CKT MW MVAR MVA	%I 1	.0058PU	J-45.	02 16	60

BUS	1660 BUCKHALL	115	AREA	CKT	MW	MVAR	MVA	۶I	1.0058PU	-45.02	1660
			1						115.67KV		
то	LOAD- PQ				5.0	1.0	5.1				
то	787 3JAMTWN	115	144	1	-5.0	-1.0	5.1	3			

PTI INTERACTIVE POWER SYSTEM SIMULATOR--PSS/E TUE, AUG 05 2003 15:08 2010 CASE9A:BUCK HALL SERVED FROM THE JAMESTOWN DELIVERY RATING POINT. SET A

OUTPUT FOR ZONE 25 [BERKELEY]

709 6CHARITY 230 AREA CKT MW MVAR MVA %I 0.9800PU -26.06 709 BUS 225.40KV 144 703 6AMOCO 230 144 1 73.6 19.9 76.2 16 TO 713 6JEFF 230 144 1 -266.3 -21.3 267.2 57 TO 719 GWINYAH 230 144 1 -111.6 -96.7 147.7 19 то 18.2 12 0.9621RG TO 1391 3CHARITY 115 144 1 16.6 7.4 16.7 7.4 18.3 12 0.9621RG TO 1391 3CHARITY 115 144 2 282.8 TO 1423 6NUCOR 230 144 1 64.8 290.1 62 TO 12011 6WILLIAM 230 1 1 -11.7 18.3 21.8 3 719 GWINYAH 230 AREA CKT MW MVAR MVA %I 1.0200PU -23.71 719 BUS 234.60KV 144 709 6CHARITY 230 144 1 112.2 89.7 143.7 18 то 712 6HEMING2 230 144 1 263.4 77.9 274.6 34 TO 230 144 1 -96.1 51.7 109.1 13 713 6JEFF то 730 6CAMPFLD 230 144 1 425.9 -8.1 426.0 87 TO 845 3WINYAH 115 144 1 134.6 2.7 134.6 44 1.0000LK то TO 1452 12WINY 222.0 144 1 -285.0 -71.0 293.7 91 1.0000LK TO 1453 12WINY 322.0 144 1 -285.0 -70.0 293.5 91 1.0000LK TO 1454 12WINY 422.0 144 1 -270.0 -72.5 279.6 87 1.0000LK MVAR MVA %I 1.0107PU -28.68 767 767 3GTNREA 115 AREA CKT MW BUS 144 116.23KV TO LOAD-PO 12.0 5.1 13.1 16.1 -29.9 34.0 19 TO 770 3GTWN S 115 144 1 859 3GTN CT 115 144 1 -28.2 24.8 37.5 21 TO 770 3GTWN S 115 AREA CKT MW MVAR MVA %I 1.0129PU -28.78 770 BUS 116.48KV 144 0.0 -117.0 117.0 TO SHUNT 767 3GTNREA 115 144 1 -16.1 29.9 33.9 19 то 38.5 127.6 95 TO 778 3GTN ST 115 144 1 121.6 785 3IPCOPMP 115 144 1 112.9 -3.5 113.0 84 TO TO 786 3IPCOSW 115 144 1 30.0 19.0 35.5 33 789 3JEFF 115 144 1 -52.4 13.7 54.1 40 TO 830 3SAMPIT 115 144 1 -34.6 18.2 39.1 29 то 845 3WINYAH 115 144 1 -163.5 -1.1 163.5 68 TΩ TO 1213 3VVV+ 115 144 1 -160.9 0.2 160.9 66 49.2 7.0 49.6 27 TO 1217 3DUNBAR 115 144 1 TO 1323 3CAMPFLD 115 144 1 113.7 -4.9 113.8 84

 BUS
 787
 3 JAMTWN
 115
 AREA
 CKT
 MW
 MVAR
 MVA
 % I
 1.0089PU
 -25.52
 787

 144
 144
 116.03KV
 116.03KV
 116.03KV

 TO
 801
 3MACDON
 115
 144
 1
 -61.4
 10.2
 62.3
 46

 TO
 830
 3SAMPIT
 115
 144
 1
 45.9
 -13.4
 47.9
 36

 TO
 1444
 12JAMTWN12.5
 144
 1
 9.2
 3.9
 10.0
 50
 0.9526LK
 30.00LK

 TO
 1660
 BUCKHALL
 115
 1
 1
 6.2
 -0.7
 6.3
 3

Attachment 8A

PTI INTERACTIVE POWER SYSTEM SIMULATOR--PSS/ETUE, AUG 05 200315:082010 CASE9A:BUCK HALL SERVED FROM THE JAMESTOWN DELIVERYRATINGPOINT.SET A

Attachment 8A

OUTPUT	FOR	ZONÉ	25	[BERKELEY]

BUS	789	3JEFF	115	AREA	CKT	MW	MVAR	MVA	۶I	1.0200PU	-21.43	789
				144						117.30KV		
то	713	6JEFF	230	144	1	-5.2	41.0	41.3	27	1.0000UN		
то	713	6JEFF	230	144	2	-5.2	41.2	41.5	27	1.0000UN		
то	768	3RUSSVL+	115	144	1	68.1	17.9	70.5	52			
TO	770	3GTWN S	115	144	1	54.2	-9.9	55.1	41			
то	794	3 LEBNON	115	144	1	51.9	14.2	53.8	29			
то	801	3MACDON	115	144	1	70.5	-4.0	70.6	52			
TO	804	3MCWS	115	144	1	108.8	23.8	111.4	61			
то	870	3GAPAC +	115	144	1	48.0	0.4	48.0	44			
TO	1163	OJEFF	34.5	144	1	17.6	4.0	18.1	44	1.0121RG	30.00L	ĸ
то	1253	12JEFF	12.5	144	1	2.2	0.6	2.2	27	1.0000LK	30.00L	К
TO	1368	3BIGGNS+	115	144	1	115.1	25.7	117.9	65			
то	1466	12JEFFH1	13.8	144	1	-30.0	-8.9	31.3	90	1.0000LK		
TO	1467	12JEFFH2	13.8	144	1	-30.0	-9.4	31.4	91	1.0000LK		
TO	1468	12JEFFH3	13.8	144	1	-30.0	-9.4	31.4	91	1.0000LK		
то	1469	12JEFFH4	13.8	144	1	-30.0	-9.4	31.4	91	1.0000LK		
то	1470	12JEFFH6	13.8	144	1	-8.0	-3.3	8.7	75	1.0000LK		
TO	1471	12JEFFS1	.13.8	144	1	-46.0	-5.0	46.3	82	1.0000LK		
то	1472	12JEFFS2	18.0	144	1	-46.0	-5.0	46.3	82	1.0000 lk		
то	1473	12JEFFS3	18.0	144	1	-153.0	-52.1	161.6	86	1.0000LK		
TO	1474	12JEFFS4	18.0	144	1	-153.0	-52.1	161.6	86	1.0000LK		
BUS	801	3MACDON	115	AREA	СКТ	MW	MVAR	MVA	۶I	1.0147PU	-22.86	801
				144						116.69KV		
то	LOAD-	PQ				7.8	3.1	8.4				
то	787	3 JAMTWN	115	144	1	62.2	-8.3	62.8	47			
то	789	3JEFF	115	144	l	-70.0	5.2	70.2	52			
BUS	830	3SAMPIT	115	AREA	CKT	MW	MVAR	MVA	₹I	1.0099PU	-28.00	830
				144						116.14KV		
то	LOAD-	PQ				10.6	3.9	11.3				
TO	770	3GTWN S	115	144	1	34.7	-18.2	39.2	29			
то	787	3 JAMTWN	115	144	1	-45.4	14.3	47.6	35			
BUS	845	3WINYAH	115	AREA	CKT	MW	MVAR	MVA	% I	1.0200PU	-25.98	845
				144						117.30KV		
TO	719	6WINYAH	230	144	1	-134.6	2.7	134.6	44	1.0000UN		
то	770	3GTWN S	115	144	1	164.4						
TO	1167	3BL ISL	+ 115	144	1	97.0	10.7	97.6	53			
то		3VVV+		144			11.8	168.6				
то	1478	12WINY	122.0	144	1	-295.0	-33.9	296.9	92	1.0000LK		
BUS	859	3GTN C	r 115		. СКТ	MW	MVAR	MVA	% I	1.0086PU 115.99KV		859
то	767	3GTNREA	116	144	1	28.2	-24.8	37.6	21			
TO		OGTN C			1	11.9	-24.8			0.9870RG	30.00	ΓR
TO TO		OGIN C				12.0	5.2			0.9870RG		
TO		3MRYVIL				-80.4	-0.8	80.4				
то		12GTN C				16.2	8.8			0.9530LK	30.00	LK
то		12GTN C				12.1	6.6			0.9530LK		
-0					-							

Appendix C, Page 93 of 104

PTI INTERACTIVE POWER SYSTEM SIMULATOR--PSS/ETUE, AUG 05 200315:082010 CASE9A:BUCK HALL SERVED FROM THE JAMESTOWN DELIVERYRATINGPOINT.SET A

OUTPUT FOR ZONE 25 [BERKELEY]

BUS	1167	3BL ISL+	115		CKT	MW	MVAR	MVA	%Ι	1.0160PU -26.74 1167 116.84KV
				144		06.0	0.0	07.0	53	110.040
то			115			-96.8	-9.6	97.3		
TO		3MRYVIL+			1	89.4	7.0	89.7		
то	1198	3BL ISL	115	144	1	7.3	2.6	7.8	4	
					_					A ALAFERT OF AL 1173
BUS	1173	3MRYVIL	115		CKT	MW	MVAR	MVA	81	1.0105PU -27.91 1173
				144						116.21KV
то	1174	3MRYVIL+	115	144	1	-8.6	-4.2		5	
то	1233	12MRYVIL1	12.5	144	1	8.6	4.2	9.5	47	0.9526LK 30.00LK
BUS	1174	3MRYVIL+	115	AREA	CKT	MW	MVAR	MVA	¥Ι	1.0106PU -27.89 1174
				144						116.22KV
то	859	3GTN CT	115	144	1	80.5	1.4	80.5	45	
то	1167	3BL ISL+	115	144	l	-89.1	-5.6	89.3	49	
то	1173	3MRYV1L	115	144	1	8.6	4.1	9.5	5	
BUS	1198	3BL ISL	115	AREA	CKT	MW	MVAR	MVA	% I	1.0159PU -26.75 1198
				144						116.83KV
TO	LOAD-1	PQ				7.3	2.7	7.8		
то	1167	3BL ISL+	115	144	1	-7.3	-2.7	7.8	4	
BUS	1391	3CHARITY	115	AREA	CKT	MW	MVAR	MVA	۶I	1.0152PU -26.50 1391
BUS	1391	3CHARITY	115	AREA 144	CKT	MW	MVAR	MVA	%Ι	1.0152PU -26.50 1391 116.74KV
BUS TO		3CHARITY 6CHARITY		144	CKT	MW -16.6	MVAR	MVA 18.1		
	709		230	144 144					12	116.74KV
то	709 709	6CHARITY	230 230	144 144 144	1	-16.6	-7.3	18.1	12	116.74KV 0.9621UN 0.9621UN
Т0 Т0 Т0	709 709 1418	6CHARITY 6CHARITY 3MGIND	230 230 115	144 144 144 144	1 2	-16.6 -16.7 22.4	-7.3 -7.3 10.3	18 .1 18.2	12 12	116.74KV 0.9621UN 0.9621UN
то то то то	709 709 1418 1491	6CHARITY 6CHARITY 3MGIND 3CHARI#2	230 230 115 115	144 144 144 144 144	1 2 1 1	-16.6 -16.7 22.4 1.5	-7.3 -7.3 10.3 1.5	18.1 18.2 24.6 2.2	12 12 14 1	116.74KV 0.9621UN 0.9621UN
Т0 Т0 Т0	709 709 1418 1491	6CHARITY 6CHARITY 3MGIND	230 230 115 115	144 144 144 144 144	1 2 1	-16.6 -16.7 22.4	-7.3 -7.3 10.3	18.1 18.2 24.6	12 12 14	116.74KV 0.9621UN 0.9621UN
TO TO TO TO	709 709 1418 1491 1541	6CHARITY 6CHARITY 3MGIND 3CHARI#2 3CAINHY+	230 230 115 115 115	144 144 144 144 144 144	1 2 1 1	-16.6 -16.7 22.4 1.5 9.4	-7.3 -7.3 10.3 1.5 2.7	18.1 18.2 24.6 2.2 9.8	12 12 14 1 5	116.74KV 0.9621UN 0.9621UN
то то то то	709 709 1418 1491 1541	6CHARITY 6CHARITY 3MGIND 3CHARI#2	230 230 115 115 115	144 144 144 144 144 144 144	1 2 1 1	-16.6 -16.7 22.4 1.5	-7.3 -7.3 10.3 1.5	18.1 18.2 24.6 2.2	12 12 14 1 5	116.74KV 0.9621UN 0.9621UN 1.0152PU -26.50 1541
TO TO TO TO TO BUS	709 709 1418 1491 1541 1541	6CHARITY 6CHARITY 3MGIND 3CHARI#2 3CAINHY+ 3CAINHY+	230 230 115 115 115 115	144 144 144 144 144 144 AREA 144	1 2 1 1 2	-16.6 -16.7 22.4 1.5 9.4 MW	-7.3 -7.3 10.3 1.5 2.7 MVAR	18.1 18.2 24.6 2.2 9.8 MVA	12 12 14 1 5 %1	116.74KV 0.9621UN 0.9621UN 1.0152PU -26.50 1541 116.74KV
TO TO TO TO TO BUS	709 709 1418 1491 1541 1541 1391	6CHARITY 6CHARITY 3MGIND 3CHARI#2 3CAINHY+ 3CAINHY+ 3CHARITY	230 230 115 115 115 115	144 144 144 144 144 144 AREA 144	1 2 1 1 2	-16.6 -16.7 22.4 1.5 9.4 MW	-7.3 -7.3 10.3 1.5 2.7 MVAR -2.7	18.1 18.2 24.6 2.2 9.8 MVA 9.8	12 12 14 1 5 %1	116.74KV 0.9621UN 0.9621UN 1.0152PU -26.50 1541 116.74KV
TO TO TO TO TO BUS	709 709 1418 1491 1541 1541 1391	6CHARITY 6CHARITY 3MGIND 3CHARI#2 3CAINHY+ 3CAINHY+	230 230 115 115 115 115	144 144 144 144 144 144 AREA 144	1 2 1 1 2	-16.6 -16.7 22.4 1.5 9.4 MW	-7.3 -7.3 10.3 1.5 2.7 MVAR	18.1 18.2 24.6 2.2 9.8 MVA	12 12 14 1 5 %1	116.74KV 0.9621UN 0.9621UN 1.0152PU -26.50 1541 116.74KV
TO TO TO TO TO BUS TO	709 709 1418 1491 1541 1541 1541 1391 1542	6CHARITY 6CHARITY 3MGIND 3CHARI#2 3CAINHY+ 3CAINHY+ 3CAINHY+	230 230 115 115 115 115 115	144 144 144 144 144 144 144 144 144	1 2 1 1 2	-16.6 -16.7 22.4 1.5 9.4 MW -9.4 9.4	-7.3 -7.3 10.3 1.5 2.7 MVAR -2.7 2.7	18.1 18.2 24.6 2.2 9.8 MVA 9.8 9.8	12 12 14 1 5 %1 5 5	116.74KV 0.9621UN 0.9621UN 1.0152PU -26.50 1541 116.74KV
TO TO TO TO TO BUS	709 709 1418 1491 1541 1541 1541 1391 1542	6CHARITY 6CHARITY 3MGIND 3CHARI#2 3CAINHY+ 3CAINHY+ 3CHARITY	230 230 115 115 115 115 115	144 144 144 144 144 144 144 144 144 144	1 2 1 1 2	-16.6 -16.7 22.4 1.5 9.4 MW	-7.3 -7.3 10.3 1.5 2.7 MVAR -2.7	18.1 18.2 24.6 2.2 9.8 MVA 9.8	12 12 14 1 5 %1 5 5	116.74KV 0.9621UN 0.9621UN 1.0152PU -26.50 1541 116.74KV
TO TO TO TO TO BUS TO TO BUS	709 709 1418 1491 1541 1541 1391 1542 1542	6CHARITY 6CHARITY 3MGIND 3CHARI#2 3CAINHY+ 3CAINHY+ 3CAINHY 3CAINHOY 3CAINHOY	230 230 115 115 115 115 115	144 144 144 144 144 144 144 144 144	1 2 1 1 2	-16.6 -16.7 22.4 1.5 9.4 MW -9.4 9.4 MW	-7.3 -7.3 10.3 1.5 2.7 MVAR -2.7 2.7 MVAR	18.1 18.2 24.6 2.2 9.8 MVA 9.8 9.8 9.8	12 12 14 1 5 %1 5 5	116.74KV 0.9621UN 0.9621UN 1.0152PU -26.50 1541 116.74KV
TO TO TO TO TO BUS TO BUS TO	709 709 1418 1491 1541 1541 1391 1542 1542 LOAD-	6CHARITY 6CHARITY 3MGIND 3CHARI#2 3CAINHY+ 3CAINHY+ 3CAINHY 3CAINHOY 3CAINHOY PQ	230 230 115 115 115 115 115 115	144 144 144 144 144 144 144 144 144 144	1 2 1 1 2	-16.6 -16.7 22.4 1.5 9.4 MW -9.4 9.4 MW 9.4	-7.3 -7.3 10.3 1.5 2.7 MVAR -2.7 2.7 MVAR 2.8	18.1 18.2 24.6 2.2 9.8 MVA 9.8 9.8 MVA 9.8	12 12 14 1 5 %1 5 %1	116.74KV 0.9621UN 0.9621UN 1.0152PU -26.50 1541 116.74KV 1.0151FU -26.50 1542 116.74KV
TO TO TO TO TO BUS TO TO BUS	709 709 1418 1491 1541 1541 1391 1542 1542 LOAD-	6CHARITY 6CHARITY 3MGIND 3CHARI#2 3CAINHY+ 3CAINHY+ 3CAINHY 3CAINHOY 3CAINHOY	230 230 115 115 115 115 115 115	144 144 144 144 144 144 144 144 144 144	1 2 1 1 2	-16.6 -16.7 22.4 1.5 9.4 MW -9.4 9.4 MW	-7.3 -7.3 10.3 1.5 2.7 MVAR -2.7 2.7 MVAR 2.8	18.1 18.2 24.6 2.2 9.8 MVA 9.8 9.8 MVA 9.8	12 12 14 1 5 %1 5 5	116.74KV 0.9621UN 0.9621UN 1.0152PU -26.50 1541 116.74KV 1.0151FU -26.50 1542 116.74KV
TO TO TO TO BUS TO BUS TO TO	709 709 1418 1491 1541 1541 1542 1542 1542 LOAD- 1541	6CHARITY 6CHARITY 3MGIND 3CHARI#2 3CAINHY+ 3CAINHY+ 3CAINHY+ 3CAINHOY 3CAINHOY 9Q 3CAINHY+	230 230 115 115 115 115 115	144 144 144 144 144 144 144 144 144 144	1 2 1 1 . CKT 1 . CKT 1 . CKT	-16.6 -16.7 22.4 1.5 9.4 MW -9.4 9.4 MW 9.4 -9.4	-7.3 -7.3 10.3 1.5 2.7 MVAR -2.7 2.7 MVAR 2.8 -2.8	18.1 18.2 24.6 2.2 9.8 MVA 9.8 9.8 MVA 9.8 9.8	12 14 1 5 %1 5 5 %1 5 5	116.74KV 0.9621UN 0.9621UN 1.0152PU -26.50 1541 116.74KV 1.0151FU -26.50 1542 116.74KV
TO TO TO TO TO BUS TO BUS TO	709 709 1418 1491 1541 1541 1542 1542 1542 LOAD- 1541	6CHARITY 6CHARITY 3MGIND 3CHARI#2 3CAINHY+ 3CAINHY+ 3CAINHY 3CAINHOY 3CAINHOY PQ	230 230 115 115 115 115 115	144 144 144 144 144 144 144 144 144 144	1 2 1 1 . CKT 1 . CKT 1 . CKT	-16.6 -16.7 22.4 1.5 9.4 MW -9.4 9.4 MW 9.4	-7.3 -7.3 10.3 1.5 2.7 MVAR -2.7 2.7 MVAR 2.8	18.1 18.2 24.6 2.2 9.8 MVA 9.8 9.8 MVA 9.8	12 14 1 5 %1 5 5 %1 5 5	116.74KV 0.9621UN 0.9621UN 1.0152PU -26.50 1541 116.74KV 1.0151FU -26.50 1542 116.74KV
TO TO TO TO BUS TO BUS TO TO BUS	709 709 1418 1491 1541 1541 1541 1542 1542 LOAD- 1541 1660	6CHARITY 6CHARITY 3MGIND 3CHARI#2 3CAINHY+ 3CAINHY+ 3CAINHOY 3CAINHOY 9Q 3CAINHY+ BUCKHALL	230 230 115 115 115 115 115	144 144 144 144 144 144 144 144 144 144	1 2 1 1 . CKT 1 . CKT 1 . CKT	-16.6 -16.7 22.4 1.5 9.4 MW -9.4 9.4 MW 9.4 -9.4 MW	-7.3 -7.3 10.3 1.5 2.7 MVAR -2.7 2.7 MVAR 2.8 -2.8 -2.8 MVAR	18.1 18.2 24.6 2.2 9.8 MVA 9.8 9.8 9.8 9.8 9.8 9.8 9.8	12 14 1 5 %1 5 5 %1 5 5	116.74KV 0.9621UN 0.9621UN 1.0152PU -26.50 1541 116.74KV 1.0151FU -26.50 1542 116.74KV
TO TO TO TO BUS TO BUS TO TO BUS	709 709 1418 1491 1541 1541 1541 1542 1542 LOAD- 1541 1660 LOAD-	6CHARITY 6CHARITY 3MGIND 3CHARI#2 3CAINHY+ 3CAINHY+ 3CAINHOY 3CAINHOY 9Q 3CAINHY+ BUCKHALL	230 230 115 115 115 115 115 115 115 115	144 144 144 144 144 144 144 144 144 144	1 2 1 1 2 3 CKT 1 1 3 CKT	-16.6 -16.7 22.4 1.5 9.4 MW -9.4 9.4 MW 9.4 -9.4	-7.3 -7.3 10.3 1.5 2.7 MVAR -2.7 2.7 MVAR 2.8 -2.8	18.1 18.2 24.6 2.2 9.8 MVA 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8	12 12 14 1 5 %1 \$ 1 %1 \$ 5 %1	116.74KV 0.9621UN 0.9621UN 1.0152PU -26.50 1541 116.74KV 1.0151FU -26.50 1542 116.74KV 1.0071FU -25.99 1660 115.81KV

Attachment 8A

Appendix C, Page 94 of 104

 PTI INTERACTIVE POWER SYSTEM SIMULATOR -- PSS/E
 TUE, AUG 05 2003
 15:11

 2010 CASE9B: SAME AS CASE9A BUT JEFFERIES TO MACEDONIA LINE
 RATING

 SECTION OPEN.
 SET A

 OUTPUT FOR ZONE 25 [BERKELEY]
 SET A

Attachment 9A

BUS	709	6CHAR1TY	230	AREA	СКТ	MW	MVAR	MVA	۶I	0.9799PU	-26.11	709
				144						225.38KV		
то	703	6AMOCO	230	144	1	73.6	19.9	76.2	16			
TO	713	6JEFF	230	144	ı	-271.9	-20.5	272.7	58			
TO	719	6WINYAH	230	144	1	-96.6	-98.6	138.1	18			
TO	1391	3CHARITY	115	144	1	16.6	7.4	18.2	12	0.9621RG		
TO	1391	3CHARITY	115	144	2	16.7	7.4	18.3		0.9621RG		
TO	1423	6NUCOR	230	144	1	282.8	64.8	290.1	62			
TO	12011	6WILLIAM	230	1	1	-21.1	19.5	28.7	4			
					_		· ··· ··		o -		04 10	810
BUS	719	6WINYAH	230	AREA	CKT	MW	MVAR	MVA	8 T	1.0200PU	-24.10	719
				144		07.0	00 F	120 0	10	234.60KV		
TO		6CHARITY			1	97.2	90.5	132.8	16 34			
TO		6HEMING2			1	260.5	80.0	272.5	54 16			
TO		6JEFF	-	144	1	-114.2	53.8		16 89			
TO		6CAMPFLD			1	435.1	-6.4 3.8			1.0000LK		
TO		3WINYAH 12WINY 2	_	144	1	161.5 -285.0	-73.6	294.4		1.0000LK		
TO					1 1	-285.0	-73.8	294.1		1.0000LK		
TO		12WINY 3 12WINY 4			1	-235.0	-75.2	280.3		1.0000LK		
то	1404	120101 4	22.0	144	T	-270.0	-/].2	200.5	0,	1.000020		
BUS	767	3GTNREA	115	AREA	СКТ	MW	MVAR	MVA	۶I	1.0103PU	-29.69	767
200	,			144	0					116.18KV		
то	LOAD-1	PQ				12.0	5.1	13.1				
то	770	3GTWN S	115	144	1	20.9	-30.3	36.8	20			
то	859	3GTN CT	115	144	1	-32.9	25.1	41.4	23			
BUS	770	3GTWN S	115	AREA	CKT	MW	MVAR	MVA	%I	1.0124PU	-29.81	770
				144						116.42KV		
то	SHUNT					0.0	-116.8	116.8				
то	767	3GTNREA	115	144	1	-20.9	30.2	36.7	20			
TO	778	3GTN ST	115	144	1	121.6	38.5	127.6	95			
то	785	3 I PCOPMP	115	144	1	103.3	-2.7	103.4	77			
TO	786	3IPCOSW	115	144	1	24.4	20.5	31.9	30			
то	789	3JEFF	115	144	1	-63.0	18.1	65.5	49			
TO	830	3SAMPIT	115	144	1	34.2	8.8	35.4	26			
TO												
		3WINYAH			1	-174.4	-0.9	174.4	72			
тO	1213	3777+	115	144	1	-171. 7	0.3	1 71 .7	71			
TO	1213 1217	3VVV+ 3DUNBAR	115 115	144 144	1 1	-171.7 42.5	0.3 7.9	171.7 43.2	71 24			
	1213 1217	3777+	115 115	144 144	1 1	-171. 7	0.3 7.9	1 71 .7	71			
to to	1213 1217 1323	3VVV+ 3DUNBAR 3CAMPFLE	115 115) 115	144 144 144	1 1 1	-171.7 42.5 103.9	0.3 7.9 -4.0	171.7 43.2 104.0	71 24 77		-31 55	787
TO	1213 1217 1323	3VVV+ 3DUNBAR	115 115) 115	144 144 144 144	1 1 1	-171.7 42.5 103.9	0.3 7.9	171.7 43.2	71 24 77	0.9955PU		787
TO TO BUS	1213 1217 1323 787	3VVV+ 3DUNBAR 3CAMPFLE 3JAMTWN	115 115 115 115	144 144 144 144 AREA 144	1 1 1	-171.7 42.5 103.9 MW	0.3 7.9 -4.0 MVAR	171.7 43.2 104.0 MVA	71 24 77 %I	0.9955PU 114.48KV		787
TO TO BUS TO	1213 1217 1323 787 801	3VVV+ 3DUNBAR 3CAMPFLE 3JAMTWN 3MACDON	115 115 115 115 115	 144 144 144 144 AREA 144 144 144 	1 1 1 . CKT	-171.7 42.5 103.9 MW 7.8	0.3 7.9 -4.0 MVAR 2.2	171.7 43.2 104.0 MVA 8.2	71 24 77 %I	0.9955PU 114.48KV		787
TO TO BUS TO TO	1213 1217 1323 787 801 830	3VVV+ 3DUNBAR 3CAMPFLE 3JAMTWN 3MACDON 3SAMPIT	115 115 115 115 115 115	 144 144 144 144 AREA 144 144 144 144 	1 1 1 . CKT 1 1	-171.7 42.5 103.9 MW 7.8 -23.3	0.3 7.9 -4.0 MVAR 2.2 -5.6	171.7 43.2 104.0 MVA 8.2 24.0	71 24 77 %I 6	0.9955PU 114.48KV		
TO TO BUS TO	1213 1217 1323 787 801 830 1444	3VVV+ 3DUNBAR 3CAMPFLE 3JAMTWN 3MACDON	115 115 115 115 115 115 115	 144 144 144 144 144 144 144 144 144 	1 1 2 3 3 3 3 3 3 1 1 1	-171.7 42.5 103.9 MW 7.8	0.3 7.9 -4.0 MVAR 2.2	171.7 43.2 104.0 MVA 8.2	71 24 77 %I 6	0.9955PU 114.48KV 0.9526LK		

PTI INTERACTIVE POWER SYSTEM SIMULATOR--PSS/E TUE, AUG 05 2003 15:11 2010 CASE9B: SAME AS CASE9A BUT JEFFERIES TO MACEDONIA LINE RATING SET A SECTION OPEN. LEY]

BUS	789	3JEFF	115	AREA	CKT	MW	MVAR	MVA	₹I	1.0200PU	-20.91	789
				144						117.30KV		
TO	713	6JEFF	230	144	1	10.3	41.0	42.2	28	1.0000UN		
то	713	6JEFF	230	144	2	10.4	41.1	42.4	28	1.0000UN		
то	768	3RUSSVL+	115	144	1	70.5	18.1	72.7	54			
то	770	3GTWN S	115	144	1	65.7	-11.2	66.7	49			
то	794	3 LEBNON	115	144	1	55.7	13.9	57.5	31			
то	804	3MCWS	115	144	1	116.8	23.3	119.1	65			
то	870	3GAPAC +	115	144	1	54.4	-0.2	54.4	50			
то	1163	0JEFF	34.5	144	1	17.6	4.0	18.1	44	1.0121RG	30.00L	ĸ
то	1253	12JEFF	12.5	144	1	2.2	0.6	2.2	27	1.0000LK	30.00L	к
то	1368	3BIGGNS+	115	144	1	122.3	25.3	124.9	68			
то	1466	12JEFFH1	13.8	144	1	-30.0	-8.9	31.3	90	1.0000LK		
то	1467	12JEFFH2	13.8	144	1	-30.0	-9.4	31.4	91	1.0000LK		
то	1468	12JEFFH3	13.8	144	1	-30.0	-9.4	31.4	91	1.0000LK		
то	1469	12JEFFH4	13.8	144	1	-30.0	-9.4	31.4	91	1.0000LK		
то	1470	12JEFFH6	13.8	144	1	~8.0	-3.3	8.7	75	1.0000LK		
то	1471	12JEFFS1	13.8	144	1	-46.0	-5.0	46.3	82	1.0000LK		
то	1472	12JEFFS2	18.0	144	1	-46.0	-5.0	46.3	82	1.0000LK		
то	1473	12JEFFS3	18.0	144	1	-153.0	-52.6	161.8	86	1.0000LK		
то	1474	12JEFFS4	18.0	144	1	-153.0	-52.6	161.8	86	1.0000LK		
BUS	801	3MACDON	115	AREA	CKT	MW	MVAR	MVA	% I	0.9919PU	-31.86	801
				144						114.07KV		
то	LOAD-1	PO				7.8	3.1	8.4				
то		3JAMTWN	115	144	1			8.4	6			
BUS	830	3SAMPIT	115	AREA	CKT	MW	MVAR	MVA	%I	1.0060PU	-30.44	830
				144						115.69KV		
то	LOAD-	PQ				10.6	3.9	11.3				
то	770	3GTWN S	115	144	1	-34.1	-8.8	35.2	26			
то	787	3 JAMTWN	115	144	1	23.5	5.0	24.0	18			
10												
BUS	845	3WINYAH	115	AREA	Скт	MW	MVAR	MVA	۶I	1.0200PU	-26.82	845
				144						117.30KV		
то	719	6WINYAH	230		1	-161.5	3.8	161.5	53	1.0000UN		
то		3GTWN S				175.4						
то		3BL ISL+										
то		3777+				179.2						
то							-37.1			1.0000LK		
BUS	859	3GTN CI	115	AREA	CKT	MW	MVAR	MVA	% I	1.0082PU	-29.46	859
				144						115.94KV		
то	767	3GTNREA	115		1	32.9	-25.1	41.4	23			
то		OGTN CI				11.9				0.9870RG	30.00	ΓK
то		OGTN CI				12.0				0.9870RG		
то		3MRYVIL-				-85.1						
то		12GTN C				16.2				0.9530LK	30.00	LK
то		12GTN CT				12.1				5 0.9530LK		
_	-	-	_									

Appendix C, Page 96 of 104

PTI INTERACTIVE POWER SYSTEM SIMULATOR -- PSS/E TUE, AUG 05 2003 15:11 2010 CASE9B:SAME AS CASE9A BUT JEFFERIES TO MACEDONIA LINE RATING SET A SECTION OPEN. OUTPUT FOR ZONE 25 [BERKELEY] BUS 1167 3BL ISL+ 115 AREA CKT MW MVAR MVA %I 1.0158PU -27.63 1167 116.82KV 144 TO 845 3WINYAH 115 144 1 -101.6 -9.6 102.0 56 TO 1174 3MRYVIL+ 115 144 1 94.2 7.0 94.5 52 2.6 TO 1198 3BL ISL 115 144 1 7.3 7.8 4 BUS 1173 3MRYVIL 115 AREA CKT MW MVAR MVA %I 1.0102PU -28.85 1173 116.**17KV** 144 TO 1174 3MRYVIL+ 115 144 1 -8.6 -4.2 9.5 5 TO 1233 12MRYVIL12.5 144 1 8.6 4.2 9.5 47 0.9526LK 30.00LK BUS 1174 3MRYVIL+ 115 AREA CKT MW MVAR MVA %I 1.0103PU -28.84 1174 116.19KV 144 TO 859 3GTN CT 115 144 1 85.3 1.2 85.3 47 TO 1167 3BL ISL+ 115 144 1 -93.9 -5.3 94.0 52 9.5 5 TO 1173 3MRYVIL 115 144 1 8.6 4.1 BUS 1198 3BL ISL 115 AREA CKT MW MVAR MVA %I 1.0158PU -27.63 1198 116.81KV 144 7.3 2.7 7.8 TO LOAD-PO TO 1167 3BL ISL+ 115 144 1 -7.3 -2.7 7.8 4 BUS 1391 3CHARITY 115 AREA CKT MW MVAR MVA %I 1.0151PU -26.55 1391 116.73KV 144 TO 709 6CHARITY 230 144 1 -16.6 -7.3 18.1 12 0.9621UN 709 6CHARITY 230 144 2 -16.7 -7.3 18.2 12 0.9621UN TO TO 1418 3MGIND 115 144 1 22.4 10.3 24.6 14 TO 1491 3CHARI#2 115 144 1 1.5 1.5 2.2 1 TO 1541 3CAINHY+ 115 144 1 9.4 2.7 9.8 5 BUS 1541 3CAINHY+ 115 AREA CKT MW MVAR MVA %I 1.0151PU -26.55 1541 116.73KV 144 TO 1391 3CHARITY 115 144 1 -9.4 -2.7 9.8 5 TO 1542 3CAINHOY 115 144 1 9.4 2.7 9.8 5 BUS 1542 3CAINHOY 115 AREA CKT MW MVAR MVA %I 1.0151PU -26.55 1542 116.73KV 144 9.4 2.8 9.8 TO LOAD-PQ TO 1541 3CAINHY+ 115 144 1 -9.4 -2.8 9.8 5 BUS 1660 BUCKHALL 115 AREA CKT MW MVAR MVA %1 0.9936PU -32.04 1660 114.26KV 1 6.2 1.2 6.4 TO LOAD-PQ TO 787 3JAMTWN 115 144 1 -6.2 -1.2 6.4 4

Attachment 9A

Attachment 10A

PTI INTERACTIVE POWER SYSTEM SIMULATOR -- PSS/ETUE, AUG 05 200315:142010 CASE9C:SAME AS CASE9A BUT GEORGETOWN TO SAMPIT LINERATINGSECTION OPEN.SET A

OUTPUT FOR ZONE 25 [BERKELEY]

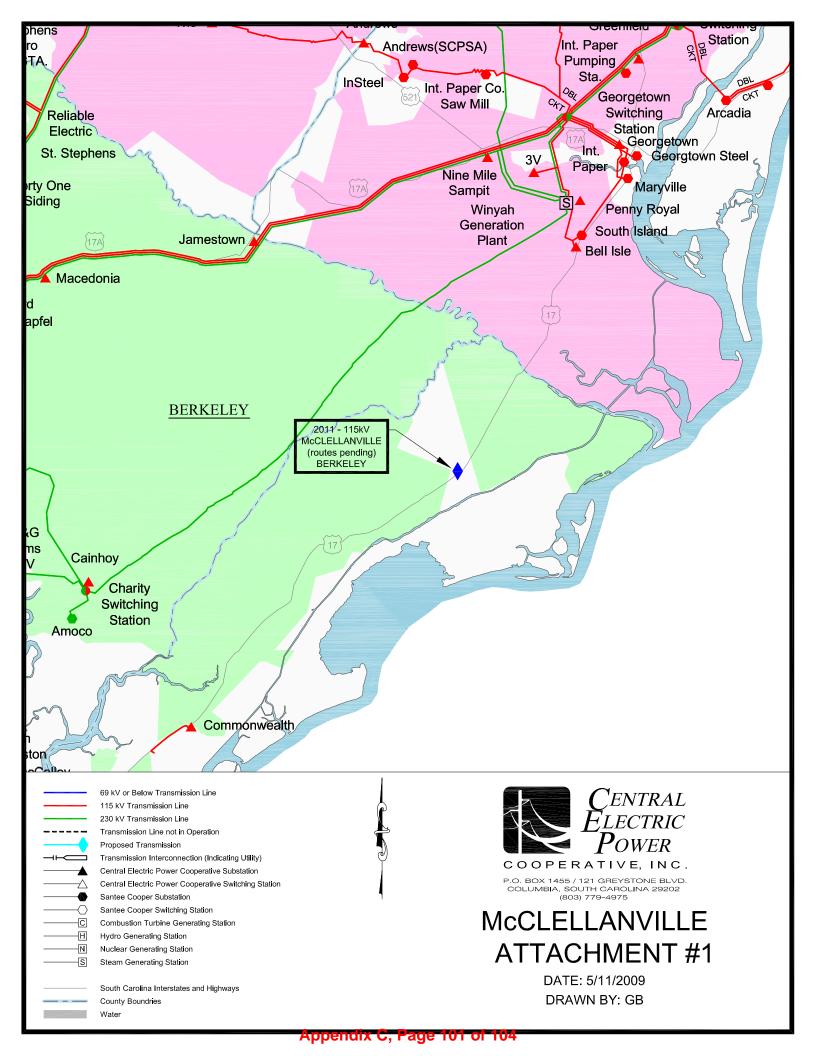
BUS	709	6CHARITY	230	AREA	CKT	MW	MVAR	MVA	%∎	0.9800PU	-26.06	709
200				144						225.39KV		
то	703	6AMOCO	230	144	1	73.6	19.9	76.2	16			
то		6JEFF	230			-269.2	-20.9	270.0	58			
то		6WINYAH			1	-104.1	-97.6	142.7	18			
то		3CHARITY				16.6	7.4	18.2	12	0.9621RG		
то		3CHARITY				16.7	7.4	18.3	12	0.9621RG		
то	1423	6NUCOR	230	144	1	282.8	64.8	290.1	62			
TO	12011	6WILLIAM	230	1	1	-16.3	18.9	25.0	3			
BUS	719	6WINYAH	230	AREA	CKT	MW	MVAR	MVA	*1	1.0200PU	-23.88	719
				144						234.60KV		
то	709	6CHARITY	230	144	1	104.7	90.0	138.1	17			
то	712	6HEMING2	230	144	1	261.9	77.9	273.2	34			
TO	713	6JEFF	230	144	1	-105.3	52.7	117.7	14			
то	730	6CAMPFLD	230	144	1	430.5	-9.3	430.6	88			
то	845	3WINYAH	115	144	ı	148.2	3.2	148.2	48	1.0000LK		
TO	1452	12WINY 2	22.0	144	1	-285.0	-71.2	293.8	91	1.0000LK		
то	1453	12WINY 3	22.0	144	1	-285.0	-70.3	293.5	91	1.0000LK		
то	1454	12WINY 4	22.0	144	1	-270.0	-72.8	279.6	87	1.0000LK		
BUS	767	3GTNREA	115	AREA	СКТ	MW	MVAR	MVA	۶I	1.0117PU	-29.17	767
				144						116.34KV		
TÒ												
	LOAD-1	PQ				12.0	5.1	13.1				
то		PQ 3GTWN S	115	144	1	12.0 18.4	5.1 -32.0	13.1 37.0	20			
	770						-32.0		20 22			
то	770	3GTWN S				18.4	-32.0	37.0				
то	770 859	3GTWN S	115	144	1	18.4 -30.4	-32.0	37.0 40.6	22	1.0140PU	-29.28	770
то то	770 859	3GTWN S 3GTN CT	115	144	1	18.4 -30.4	-32.0 26.9	37.0 40.6	22	1.0140PU 116.61KV		770
to to bus	770 859	3GTWN S 3GTN CT 3GTWN S	115	144 AREA	1	18.4 -30.4 MW	-32.0 26.9	37.0 40.6	22			770
to to bus	770 859 770 SHUNT	3GTWN S 3GTN CT 3GTWN S	115 115	144 AREA	1	18.4 -30.4 MW	-32.0 26.9 MVAR -117.2	37.0 40.6 MVA	22 %I			770
TO TO BUS TO	770 859 770 SHUNT 767	3GTWN S 3GTN CT 3GTWN S 3GTNREA	115 115 115	144 AREA 144	1 CKT	18.4 -30.4 MW 0.0	-32.0 26.9 MVAR -117.2	37.0 40.6 MVA 117.2	22 %I	116.61KV		770
TO TO BUS TO TO	770 859 770 SHUNT 767 778	3GTWN S 3GTN CT 3GTWN S 3GTNREA	115 115 115 115	144 AREA 144 144 144	1 СКТ 1	18.4 -30.4 MW 0.0 -18.4	-32.0 26.9 MVAR -117.2 32.0	37.0 40.6 MVA 117.2 36.9	22 %I 20 95	116.61KV		770
TO TO BUS TO TO TO	770 859 770 SHUNT 767 778 785	3GTWN S 3GTN CT 3GTWN S 3GTNREA 3GTN S1	115 115 115 115 115 115	144 AREA 144 144 144	1 СКТ 1 1	18.4 -30.4 MW 0.0 -18.4 121.6	-32.0 26.9 MVAR -117.2 32.0 38.4	37.0 40.6 MVA 117.2 36.9 127.5 108.2	22 %I 20 95	116.61KV		770
TO TO BUS TO TO TO	770 859 770 SHUNT 767 778 785 785	3GTWN S 3GTWN CT 3GTWN S 3GTWREA 3GTN ST 3IPCOPME	115 115 115 115 115 115	144 AREA 144 144 144 144 144	1 СКТ 1 1	18.4 -30.4 MW 0.0 -18.4 121.6 108.2	-32.0 26.9 MVAR -117.2 32.0 38.4 -2.3 20.1	37.0 40.6 MVA 117.2 36.9 127.5 108.2 33.9	22 %I 20 95 80	116.61KV		770
TO TO BUS TO TO TO TO	770 859 770 SHUNT 767 778 785 785 786	3GTWN S 3GTN CT 3GTWN S 3GTNREA 3GTN ST 3IPCOPME 3IPCOSW	115 115 115 115 115 115 115 115	144 AREA 144 144 144 144 144 144 144 144	1 СКТ 1 1 1	18.4 -30.4 MW 0.0 -18.4 121.6 108.2 27.2	-32.0 26.9 MVAR -117.2 32.0 38.4 -2.3 20.1 16.5 3.5	37.0 40.6 MVA 117.2 36.9 127.5 108.2 33.9 60.1 169.1	22 %I 20 95 80 32 45 70	116.61KV		770
TO TO BUS TO TO TO TO TO	770 859 770 SHUNT 767 778 785 786 789 845	3GTWN S 3GTN CT 3GTWN S 3GTNREA 3GTN ST 3IPCOPME 3IPCOSW 3JEFF	115 115 115 115 115 115 115 115	144 AREA 144 144 144 144 144 144 144 144	1 СКТ 1 1 1 1 1	18.4 -30.4 MW 0.0 -18.4 121.6 108.2 27.2 -57.7	-32.0 26.9 MVAR -117.2 32.0 38.4 -2.3 20.1 16.5 3.5	37.0 40.6 MVA 117.2 36.9 127.5 108.2 33.9 60.1	22 %I 20 95 80 32 45 70	116.61KV		770
TO TO BUS TO TO TO TO TO TO	770 859 770 SHUNT 767 778 785 786 789 845 1213 1217	3GTWN S 3GTWN CT 3GTWN S 3GTWN S 3GTNREA 3GTN ST 3IPCOPME 3IPCOSW 3JEFF 3WINYAH 3VVV+ 3DUNBAR	115 115 115 115 115 115 115 115 115 115	144 AREA 144 144 144 144 144 144 144 144 144 14	1 CKT 1 1 1 1 1 1 1 1	18.4 -30.4 MW 0.0 -18.4 121.6 108.2 27.2 -57.7 -169.1 -166.4 45.8	-32.0 26.9 MVAR -117.2 32.0 38.4 -2.3 20.1 16.5 3.5 4.7 7.9	37.0 40.6 MVA 117.2 36.9 127.5 108.2 33.9 60.1 169.1 166.5 46.5	22 %I 20 95 80 32 45 70 69 26	116.61KV		770
TO TO BUS TO TO TO TO TO TO	770 859 770 SHUNT 767 778 785 786 789 845 1213 1217	3GTWN S 3GTWN CT 3GTWN S 3GTWREA 3GTN ST 3IPCOPME 3IPCOSW 3JEFF 3WINYAH 3VVV+	115 115 115 115 115 115 115 115 115 115	144 AREA 144 144 144 144 144 144 144 144 144 14	1 CKT 1 1 1 1 1 1 1 1	18.4 -30.4 MW 0.0 -18.4 121.6 108.2 27.2 -57.7 -169.1 -166.4 45.8	-32.0 26.9 MVAR -117.2 32.0 38.4 -2.3 20.1 16.5 3.5 4.7 7.9	37.0 40.6 MVA 117.2 36.9 127.5 108.2 33.9 60.1 169.1 166.5 46.5	22 %I 20 95 80 32 45 70 69 26	116.61KV		770
TO TO BUS TO TO TO TO TO TO TO	770 859 770 SHUNT 767 778 785 786 789 845 1213 1213 1217 1323	3GTWN S 3GTWN S 3GTWN S 3GTWN S 3GTNREA 3GTN ST 3IPCOPME 3IPCOSW 3JEFF 3WINYAH 3VVV+ 3DUNBAR 3CAMPFLI	115 115 115 115 115 115 115 115 115 115	144 AREA 144 144 144 144 144 144 144 144 144 14	1 CKT 1 1 1 1 1 1 1 1	18.4 -30.4 MW 0.0 -18.4 121.6 108.2 27.2 -57.7 -169.1 -166.4 45.8 108.8	-32.0 26.9 MVAR -117.2 32.0 38.4 -2.3 20.1 16.5 3.5 4.7 7.9 -3.7	37.0 40.6 MVA 117.2 36.9 127.5 108.2 33.9 60.1 169.1 166.5 46.5 108.9	22 %I 20 95 80 32 45 70 69 26 81	116.61KV		
TO TO BUS TO TO TO TO TO TO TO	770 859 770 SHUNT 767 778 785 786 789 845 1213 1213 1217 1323	3GTWN S 3GTWN CT 3GTWN S 3GTWN S 3GTNREA 3GTN ST 3IPCOPME 3IPCOSW 3JEFF 3WINYAH 3VVV+ 3DUNBAR	115 115 115 115 115 115 115 115 115 115	144 AREA 144 144 144 144 144 144 144 144 144 14	1 CKT 1 1 1 1 1 1 1 1	18.4 -30.4 MW 0.0 -18.4 121.6 108.2 27.2 -57.7 -169.1 -166.4 45.8 108.8	-32.0 26.9 MVAR -117.2 32.0 38.4 -2.3 20.1 16.5 3.5 4.7 7.9 -3.7	37.0 40.6 MVA 117.2 36.9 127.5 108.2 33.9 60.1 169.1 166.5 46.5	22 %I 20 95 80 32 45 70 69 26 81	116.61KV	1 -22.79	
TO TO BUS TO TO TO TO TO TO TO TO TO BUS	770 859 770 SHUNT 767 778 785 786 789 845 1213 1217 1323 787	3GTWN S 3GTWN S 3GTWN S 3GTNREA 3GTN ST 3IPCOPME 3IPCOSW 3JEFF 3WINYAH 3VVV+ 3DUNBAR 3CAMPFLI	115 115 115 115 115 115 115 115 115 115	144 AREA 144 144 144 144 144 144 144 144 144 14	1 CKT 1 1 1 1 1 1 1 1 1 1 1	18.4 -30.4 MW 0.0 -18.4 121.6 108.2 27.2 -57.7 -169.1 -166.4 45.8 108.8	-32.0 26.9 MVAR -117.2 32.0 38.4 -2.3 20.1 16.5 3.5 4.7 7.9 -3.7 MVAR	37.0 40.6 MVA 117.2 36.9 127.5 108.2 33.9 60.1 169.1 166.5 46.5 108.9 MVA	22 %I 20 95 80 32 45 70 69 26 81 %I	116.61KV 1.0038PU 115.44KV	1 -22.79	
TO TO BUS TO TO TO TO TO TO TO TO TO TO	770 859 770 SHUNT 767 778 785 786 789 845 1213 1217 1323 787 801	3GTWN S 3GTWN CT 3GTWN S 3GTWN S 3GTNREA 3GTN ST 3IPCOPME 3IPCOSW 3JEFF 3WINYAH 3VVV+ 3DUNBAR 3CAMPFLI 3JAMTWN 3MACDON	115 115 115 115 115 115 115 115 115 115	144 AREA 144 144 144 144 144 144 144 144 144 14	1 1 1 1 1 1 1 1 1 1 1 1 1 1	18.4 -30.4 MW 0.0 -18.4 121.6 108.2 27.2 -57.7 -169.1 -166.4 45.8 108.8	-32.0 26.9 MVAR -117.2 32.0 38.4 -2.3 20.1 16.5 3.5 4.7 7.9 -3.7 MVAR -6.1	37.0 40.6 MVA 117.2 36.9 127.5 108.2 33.9 60.1 169.1 166.5 46.5 108.9 MVA 26.9	22 %I 20 95 80 32 45 70 69 26 81 %I 20	116.61KV 1.0038Pt 115.44KV	1 -22.79	
TO TO BUS TO TO TO TO TO TO TO TO TO TO TO TO	770 859 770 SHUNT 767 778 785 786 789 845 1213 1217 1323 787 801 801	3GTWN S 3GTWN S 3GTNN CT 3GTWN S 3GTWN S 3GTNREA 3GTN SI 3IPCOPME 3IPCOSW 3JEFF 3WINYAH 3VVV+ 3DUNBAR 3CAMPFLI 3JAMTWN 3JAMTWN 3MACDON	115 115 115 115 115 115 115 115 115 115	144 AREA 144 144 144 144 144 144 144 144 144 14	1 CKT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	18.4 -30.4 MW 0.0 -18.4 121.6 108.2 27.2 -57.7 -169.1 -166.4 45.8 108.8 108.8	-32.0 26.9 MVAR -117.2 32.0 38.4 -2.3 20.1 16.5 3.5 4.7 7.9 -3.7 MVAR -6.1 2.9	37.0 40.6 MVA 117.2 36.9 127.5 108.2 33.9 60.1 169.1 166.5 46.5 108.9 MVA 26.9 11.0	22 %I 20 95 80 32 45 70 69 26 81 %I 20 8	116.61KV 1.0038Pt 115.44KV	1 -22.79 1	787
TO TO BUS TO TO TO TO TO TO TO TO TO TO	770 859 770 SHUNT 767 778 785 786 789 845 1213 1217 1323 787 801 830	3GTWN S 3GTWN CT 3GTWN S 3GTWN S 3GTWN S 3GTNREA 3GTN ST 3IPCOPME 3IPCOSW 3JEFF 3WINYAH 3VVV+ 3DUNBAR 3CAMPFLI 3JAMTWN 3MACDON	1155 1155 1155 1155 1155 1155 1155 115	144 AREA 144 144 144 144 144 144 144 144 144 14	1 CKT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	18.4 -30.4 MW 0.0 -18.4 121.6 108.2 27.2 -57.7 -169.1 -166.4 45.8 108.8 108.8	-32.0 26.9 MVAR -117.2 32.0 38.4 -2.3 20.1 16.5 3.5 4.7 7.9 -3.7 MVAR -6.1 2.9 4.0	37.0 40.6 MVA 117.2 36.9 127.5 108.2 33.9 60.1 169.1 166.5 46.5 108.9 MVA 26.9 11.0 10.1	22 %I 20 95 80 32 45 70 69 26 81 %I 20 8 50	116.61KV 1.0038P4 115.44KV	1 -22.79 1	787

PTI INTERACTIVE POWER SYSTEM SIMULATOR--PSS/E TUE, AUG 05 2003 15:14 2010 CASE9C:SAME AS CASE9A BUT GEORGETOWN TO SAMPIT LINE RATING SECTION OPEN. SET A

BUS	789	3JEFF	115	AREA	CKT	MW	MVAR	MVA		1.0200PU	-21.14	789
				144	_					117.30KV		
то		6JEFF	230		1	2.8	40.9	41.0 41.2		1.0000UN 1.0000UN		
то	. = +	6JEFF	230		2	2.8	41.1	41.2 71.6	53	1.000000		
то		3RUSSVL+			1	69.3	18.0		45			
то		3GTWN S	115		1	60.1	-11.2	61.1 55.7	31			
TO		3LEBNON	115		1	53.9 34.3	14.1 8.8	35.4	31 26			
TO		3MACDON	115		1		23.5	115.3	20 63			
TO		3MCWS	115		1 1	112.9 51.2	-0.2	51.2	47			
то то		3GAPAC + 0JEFF	34.5		1	17.6	4.0	18.1		1.0121RG	30.00L	к
то			12.5		1	2.2	0.6	2.2	_	1.0000LK		
то		3BIGGNS+			1	118.9	25.4	121.5	67			
то		12JEFFH1			ĩ	-30.0	-8.9	31.3	90	1.0000LK		
то		12JEFFH2			1	-30.0	-9.4	31.4	91	1.0000LK		
TO		12JEFFH3			1	-30.0	-9.4	31.4	91	1.0000LK		
то		12JEFFH4			1	-30.0	-9.4	31.4	91	1.0000LK		
то		12JEFFH6			1	-8.0	-3.3	8.7	75	1.0000LK		
то	1471	12JEFFS1	13.8	144	1	-46.0	-5.0	46.3	82	1.0000LK		
то	1472	12JEFFS2	18.0	144	1	-46.0	-5.0	46.3	82	1.0000LK		
то	1473	12JEFFS3	18.0	144	1	-153.0	-57.1	163.3	87	1.0000LK		
то	1474	12JEFFS4	18.0	144	1	-153.0	-57.1	163.3	87	1.0000LK		
BUS	801	3MACDON	115	AREA	СКТ	MW	MVAR	MVA	%I	1.0135PU	-21.77	801
				144						116.55KV		
то	LOAD-H	PQ				7.8	3.1	8.4				
то	787	3 JAMTWN	115	144	1	26.3	5.7	26.9	20			
то	789	3JEFF	115	144	1	-34.1	-8.8	35.3	26			
BUS	830	3SAMPIT	115	AREA	CKT	MW	MVAR	MVA	¥Ι	0.9982PU	-23.29	830
				144						114.79KV		
TO	LOAD-I	PQ				10.6	3,9	11.3				
то	787	3 JAMTWN	115	144	1	-10.6	-3.9	11.3	9			
					~~~					1 000000	06.20	0.45
BUS	845	3WINYAH	115	AREA	CKT	MW	MVAR	MVA	\$1	1.0200PU	-26.38	845
	-10	C1173717311		144		140.0	2 2	140.0	4.0	117.30KV		
TO		6WINYAH 3GTWN S			1 1	-148.2 170.0	3.2 4.7	148.2 170.1	40 70	1.0000UN		
TO TO		3BL ISL			1	99.3	8.8	99.7	55			
TO		3VVV+		144	1	173.8	7.8	174.0	71			
TO		12WINY				-295.0	-24.5	296.0		1.0000LK		
10	11/0	10,0101			-	272.0		270.0				
BUS	859	3GTN C	r 115	AREA	CKT	MW	MVAR	MVA	%I	1.0094PU	-28.95	859
				144						116.08KV		
TO	767	3GTNREA	115	5 144	1	30.5	-26.9	40.7	23			
то	1151	OGTN C	T34.5	5 144	1	11.9	5.1	12.9	32	0.9870RG	30.00	LK
то	1151	OGTN C	T34.5	5 144	2	12.0	5.2	13.1	32	0.9870RG	30.00	LK
то	1174	3MRYVIL	+ 115	144	1	-82.6	1.3	82.6	46			
то		12GTN C			1	16.2	8.8	18.4	61	0.9530LK	30.00	ΓĶ

#### Attachment 10A

## Appendix C, Page 99 of 104


Attachment 10A

PTI INTERACTIVE POWER SYSTEM SIMULATOR -- PSS/ETUE, AUG 05 200315:142010 CASE9C:SAME AS CASE9A BUT GEORGETOWN TO SAMPIT LINERATINGSECTION OPEN.SET A

OUTPUT FOR ZONE 25 [BERKELEY]

BUS	1167	3BL ISL+	115	AREA 144	CKT	MW	MVAR	MVA	۶I	1.0162PU -27.17 1167 116.86KV
то	845	3WINYAH	115	144	1	-99.1	-7.6	99.4	55	
то	1174	3MRYVIL+	115	144	1	91.7	5.0	91.9	51	
то	1198	3BL ÍSL	115	144	1	7.3	2.6	7.8	4	
BUS	1173	3MRYVIL	115	AREA	СКТ	MW	MVAR	MVA	\$I	1.0111PU -28.36 1173
				144						116.27KV
то	1174	3MRYVIL+	115	144	1	-8.6	-4.2	9.5	5	
то	1233	12MRYVIL1	.2.5	144	1	8.6	4.2	9.5	47	0.9526LK 30.00LK
BUS	1174	3MRYVIL+	115	AREA	CKT	MW	MVAR	MVA	<b>%</b> I	1.0112PU -28.35 1174
				144						116.29KV
то	859	3GTN CT	115	144	1	82.8	-0.6	82.8	46	
то	1167	3BL ISL+	115	144	1	-91.4	-3.5	91.4	51	
TO	1173	3MRYVIL	115	144	1	8.6	4.1	9.5	5	
BUS	1198	3BL ISL	115	AREA	CKT	MW	MVAR	MVA	%I	1.0161PU -27.17 1198
				144						116.85KV
TO	LOAD-I	PQ				7.3	2.7	7.8		
то	1167	3BL ISL+	115	144	1	-7.3	-2.7	7.8	4	
BUS	1391	3CHARITY	115	AREA	CKT	MW	MVAR	MVA	۶I	1.0151PU -26.50 1391
				144						116.74KV
TO	709	6CHARITY	230	144	1	-16.6	-7.3	18.1		0.9621UN
TO	709	6CHARITY	230	144	2	-16.7	-7.3	18.2	12	0.9621UN
TO		3MGIND		144	1	22.4	10.3	24.6	14	
то		3CHARI#2			1	1.5	1.5	2.2	1	
то	1541	3CAINHY+	115	144	1	9.4	2.7	9.8	5	
									• -	
BUS	1541	3CAINHY+	115		CKT	MW	MVAR	MVA	\$I	1.0151PU -26.50 1541
-				144				~ ~	-	116.74KV
TO		3CHARITY			1	-9.4	-2.7	9.8	5	
TO	1542	3CAINHOY	115	144	1	9.4	2.7	9.8	5	
BUS	1540	ACR TRILOW	115		OV	MLT		MUD	Q	1.0151PU -26.50 1542
BUS	1042	3CAINHOY	112		CKI	MW	MVAR	MVA	.0 T	
<b>T</b> O	LOAD-	DO		144		9.4	2.8	9.8		116.74KV
TO		3CAINHY+	116	144	r	-9.4	-2.8	9.8	5	
10	1941	JUNINAI+	110	144	7	- 7.4	-2.0	9.0	5	,
BUS	1660	BUCKHALL	115	AREA	CKT	MW	MVAR	MVA	<b>%</b> т	1.0020PU -23.27 1660
202	1000	20 citradu		1		1.144	11110	1.1 4 1.7	.1	115.23KV
то	LOAD-	PO		*		6.2	1.2	6.4		
то		3JAMTWN	115	144	1	-6.2	-1.2	6.4	4	ł
10	, , ,	201012 12 MIN		-11	-	3.2	± • £	0.1	-	

Appendix C, Page 100 of 104



# Appendix 5

## Transmission Line Cost Estimates

Appendix C, Page 102 of 104

TOTAL COST	Estimated Wetland Mtigation Costs	Estimated Right of Way Acquisition Costs	Total estimated engineering & construction cost	Additional Cost of 2 Miles Overhead Crossing Santee Delta (6)	Additional Cost of (2) Directional Bored Cable (5)	Additional Cost of (1) Directional Bore Cable (Wilderness Area)	Additional Cost of 230/115 sw itching / substation (4)	Additional Costs for Construction on National Forest Lands (3)	Total Length on National Forest Lands	Additional Costs for Construction in Wetlands (2)	Total Length in Wetlands (miles)	Base Engineering and Construction Costs	Engineering and Construction Cost per Mile (1)	Line length (miles)	
\$11,489,474	\$682,825	\$1,250,000	\$9,556,649	elta \$675,000	nal \$0	) )	0	tion \$13,527	st 0.5	tion \$203,922	s) 9.7	\$8,664,200	\$512,675	16.9	Belle Isle to McClellanville #1
\$17,978,928	\$682,825	\$1,100,000	\$16,196,103	\$	\$8,000,000		0	\$40,581	1.5	\$160,122	7.6	\$7,995,400	\$522,575	15.3	Belle Isle to McClellanville #2
\$11,562,608	\$682,825	\$1,250,000	\$9,629,783	\$675,000	\$0		0	\$40,203	1.5	\$208,580	9.9	\$8,706,000	\$512,118	17	Belle Isle to McClellanville #3
\$14,765,228	\$682,825	\$1,100,000	\$12,982,403	\$337,500	\$3,780,000		0	\$40,581	1.5	\$160,122	7.6	\$8,664,200	\$512,675	16.9	Belle Isle to McClellanville #1 (5960' Delta U/G Crossing)
\$13,915,108	\$682,825	\$1,250,000	\$11,982,283	\$337,500	\$2,690,000		0	\$40,203	1.5	\$208,580	9.9	\$8,706,000	\$512,118	17	Belle Isle to McClellanville #2 (3780' Delta U/G Crossing)
\$16,245,974	\$682,825	\$1,250,000	\$14,313,149	\$337,500	\$3,840,000		0	\$13,527	0.5	\$203,922	9.7	\$9,918,200	\$498,402	19.9	Belle Isle to McClellanville New SCPSA ROW (6080' Delta U/G Cossing)
\$19,871,675	\$325,185	\$1,200,000	\$18,346,490	\$675,000	\$0		\$10,000,000	\$13,527	0.5	\$205,963	9.8	\$7,452,000	\$532,286	14	Britton Neck #1 230/115 to McClellanville
\$20,247,875	\$325,185	\$1,200,000	\$18,722,690	\$675,000	\$0		\$10,000,000	\$13,527	0.5	\$205,963	9.8	\$7,828,200	\$525,383	14.9	Britton Neck #2 230/115 to McClellanville
\$23,374,175	\$325,185	\$1,200,000	\$21,848,990	\$337,500	\$3,840,000		\$10,000,000	\$13,527	0.5	\$205,963	9.8	\$7,452,000	\$532,286	14	Britton Neck #1 230/115 to McClellanville (6080' Delta U/G Crossing)

Appendix C, Page 103 of 104

\$23,750,375	\$325,185	\$1,200,000	\$22,225,190	\$337,500	\$3,840,000		\$10,000,000	\$13,527	0.5	\$205,963	9.8	\$7,828,200	\$525,383	14.9	Britton Neck #2 230/115 to McClellanville (6080' Delta U/G Crossing)
\$17,127,047	\$323,875	\$650,000	\$16,153,172	0	0		\$10,000,000	\$225,974	7.7	\$188,998	6	\$5,738,200	\$579,616	9.9	Honey Hill Junc. 230/115 to McClellanville
\$18,677,047	\$323,875	\$650,000	\$17,703,172	0	0	\$1,550,000	\$10,000,000	\$225,974	7.7	\$188,998	9	\$5,738,200	\$579,616	9.9	Honey Hill Junc. 230/115 to McClellanville (2000' Wilderness U/G Crossing)
\$12,469,807	\$564,086	\$1,100,000	\$10,805,721	0	0		0	\$347,380	12.8	\$247,541	11.8	\$10,210,800	\$495,670	20.6	Jamestown to McClellanville
\$14,019,807	\$564,086	\$1,100,000	\$12,355,721	0	0	\$1,550,000	0	\$347,380	12.8	\$247,541	11.8	\$10,210,800	\$495,670	20.6	Jamestown to McClellanville (2000' Wilderness U/G Crossing)
\$17,392,402	\$1,100,390	\$2,100,000	\$14,192,012	0	0		0	\$405,200	15.2	\$273,812	13	\$13,513,000	\$474,140	28.5	Charity to McClellanville #1
\$17,584,252	\$1,109,562	\$2,200,000	\$14,274,690	0	0		0	\$370,544	13.9	\$307,546	14.6	\$13,596,600	\$473,749	28.7	Charity to McClellanville #2
\$19,587,319	\$1,100,390	\$2,400,000	\$16,086,929	0	0		0	\$421,193	15.8	\$271,736	12.9	\$15,394,000	\$466,485	33	Charity to McClellanville #3
\$19,684,089	\$1,109,562	\$2,400,000	\$16,174,527	0	0		0	\$399,914	15	\$297,013	14.1	\$15,477,600	\$466,193	33.2	Charity to McClellanville #4
\$22,793,661	\$0	\$10,750,000	\$12,043,661	0	0		0	\$149,670	5.1	\$94,791	4.5	\$11,799,200	\$483,574	24.4	Commonwealth - McClellanvill
\$41,874,461	\$0	\$10,750,000	\$31,124,461	0	0		0	\$149,670	5.1	\$94,791	4.5	\$30,880,000	\$1,265,574	24.4	SCE&G R/W Use (Commonwealth - McClellanville)

Appendix C, Page 104 of 104