

Calculated Electric Fields Table

Circuit Name: Q1 La Crosse Tap to Briggs Road Substation

Facility Description: Proposed Davit Arm Single Circuit 161 kV

Distance from	Electric
Centerline	Field
(feet)	(kV/m)
Centerline	1.258
25	1.393
50	0.542
100	0.123
150	0.047
200	0.024
300	0.010

Shown per Distance

Assumptions:

Typical Midspan Height = 26 feet 5% Overvoltage Condition (169.05 kV) Conductor = 795 DRAKE ACSS (1.107") Shield Wire = OPGW (0.571") ROW Width = 80 Feet

Field is Assymetrical so Highest Values

Calculated Magnetic Fields Table

Circuit Name: Q1 La Crosse Tap to Briggs Road Substation

Facility Description: Proposed Davit Arm Single Circuit 161 kV

Normal Load		Contingency Load		
Distance from Centerline (feet)	Magnetic Field (mG)	Distance from Centerline (feet)	Magnetic Field (mG)	
Centerline	15.5	Centerline	79.1	
25	10.6	25	54.1	
50	4.6	50	23.5	
100	1.4	100	7.1	
150	0.6	150	3.3	
200	0.4	200	1.9	
300	0.2	300	0.9	

Assumptions:

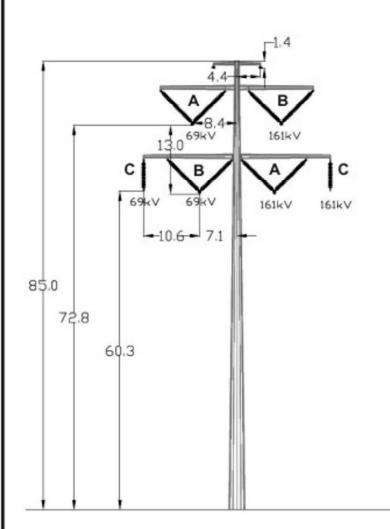
Typical Midspan Height = 26 feet

Normal Load = 27 MVA (96.8A)

Contingency Load = 138 MVA (494.9A)

Conductor = 795 DRAKE ACSS (1.107")

Shield Wire = OPGW (0.571")


ROW Width = 80 Feet

Field is Assymetrical so Highest Values Shown per Distance

Figure 1

PROPOSED 161 kV

Segment: A

Calculated Electric Fields Table

Circuit Name: Q1 La Crosse Tap to Briggs Road Substation

Facility Description: Proposed Davit Arm Double Circuit 161 kV and 69 kV

Distance from Centerline	Electric Field
(feet) Centerline	(kV/m) 0.776
25	1.555
50	0.547
100	0.080
150	0.028
200	0.014
300	0.006

Assumptions:

Typical Midspan Height = 26 feet 5% Overvoltage Condition (169.05 kV and 72.45 kV)

161 kV Conductor = 3M 636 GROSBEAK ACCR (1.004")

69 kV Conductor = 477 FLICKER ACSR (0.846")

Shield Wire = OPGW (0.571")

Shield Wire = 7/16" EHS (0.4375")

ROW Width = 80 Feet

Field is Assymetrical so Highest Values Shown per Distance Calculated Magnetic Fields Table

Circuit Name: Q1 La Crosse Tap to Briggs Road Substation

Facility Description: Proposed Davit Arm Double Circuit 161 kV and 69 kV

Normal Load		Contingency Load	
Distance from Centerline (feet)	Magnetic Field (mG)	Distance from Centerline (feet)	Magnetic Field (mG)
Centerline	10.7	Centerline	52.3
25	10.7	25	52.7
50	4.3	50	21.4
100	1.1	100	5.4
150	0.5	150	2.3
200	0.3	200	1.3
300	0.1	300	0.6

Assumptions:

Typical Midspan Height = 26 feet

161 kV Normal Load = 27 MVA (96.8A)

69 kV Normal Load = 2.4 MVA (20.1A)

161 kV Contingency Load = 138 MVA (494.9A)

69 kV Contingency Load = 17 MVA (142.2A)

Load Flow in Same Direction for Both Circuits

161 kV Conductor = 3M 636 GROSBEAK

ACCR (1.004")

69 kV Conductor = 477 FLICKER ACSR (0.846")

Shield Wire = OPGW (0.571")

Shield Wire = 7/16" EHS (0.4375")

ROW Width = 80 Feet

Field is Assymetrical so Highest Values

Shown per Distance

Figure 2

PROPOSED Segment: B

161 kV and 69 kV - BEST PHASING ARRANGEMENT

-0.9 13.2 90.0 75.8

Calculated Electric Fields Table

Circuit Name: Q1 La Crosse Tap to Briggs Road Substation

Facility Description: Proposed Y-Frame Single Circuit 161 kV

Distance from	Electric
Centerline	Field
(feet)	(kV/m)
Centerline	1.103
25	2.047
50	0.776
100	0.130
150	0.041
200	0.018
300	0.006

Assumptions:

Typical Midspan Height = 26 feet 5% Overvoltage Condition (169.05 kV) Conductor = 795 DRAKE ACSS (1.107")

Shield Wire = OPGW (0.571")

Shield Wire = 7/16" EHS (0.4375")

ROW Width = 80 Feet

Calculated Magnetic Fields Table

Circuit Name: Q1 La Crosse Tap to Briggs Road Substation

Facility Description: Proposed Y-Frame Single Circuit 161 kV

Normal Load		Contingency Load		
Distance from Centerline (feet)	Magnetic Field (mG)	Distance from Centerline (feet)	Magnetic Field (mG)	
Centerline	24.2	Centerline	123.7	
25	15.5	25	79.3	
50	6.1	50	31.2	
100	1.7	100	8.7	
150	0.8	150	4.0	
200	0.5	200	2.3	
300	0.2	300	1.1	

Assumptions:

Typical Midspan Height = 26 feet

Normal Load = 27 MVA (96.8A)

Contingency Load = 138 MVA (494.9A)

Conductor = 795 DRAKE ACSS (1.107")

Shield Wire = OPGW (0.571")

Shield Wire = 7/16" EHS (0.4375")

ROW Width = 80 Feet

Figure 3

PROPOSED 161 kV

Segment: C

Table 19 - Calculated Electric Fields Table Calculated Electric Field Data³ Transmission Line Segments: N8 Facility Description: 4 Existing Single Pole, H-Frame Single Circuit 161kV

Applies to all existing 161 kV H-Distance from Centerline (feet) Electric Field (kV/m) (Rect)
Centerline 0.68
25 1.72
50 0.82
100 0.15
150 0.05
200 0.05
200 0.01 Assumptions:
Typical Midspan Sag = 26 to 30 feet
Anaperage = 427 A

Provide a measured diagram of structures showing the height of conductors from the ground at the structure. Describe facility - Structure type, configuration, location OHG 4 Table 22a - Calculated Magnetic Fields Table Calculated Magnetic Field Data³ Transmission Line Segments: N8
Facility Description: Existing H-Frame²
Single Circuit 161kV
Circuit 1: Alma: Marshland 161 kV or Alma -- Tremval 161 kV
Existing Normal Load Existing Normal Peak 161-kV CONDUCTOR 8'-3" 8'-3" 8'-3" 8'-3" Distance from Centerline (feet) Distance from Centerline (feet) Magnetic Field (mG) Magnetic Field (mG)
 (feet)
 (feet)

 Centerline
 68.74
 Centerline
 86.07

 25
 48
 25
 60.11

 50
 21.39
 50
 26.78

 100
 6.3
 100
 7.89

 150
 2.91
 150
 3.64

 200
 1.67
 200
 2.09

 300
 0.77
 300
 0.96
 Assumptions:
Typical Midspun Sag = 26 to 30 feet
Amperage = 427 A.

All Cruit Phase Angle: A phase = 240 Deg, B Phase = 120 Deg, C phase = 0 Deg

Provide a measured diagram of structures showing the beight of conductors from the ground at the structure.

Describe facility - Structure type, configuration, location ⁶Flows on Alma + Marshland and Alma - Tremval are essentially identical 16'-6" (+) LOOKING TOWARDS NORTH La CROSSE FIGURE 8 **EXISTING** SEGMENTS: N JOB NUMBER PEI 9/27/10 REV PEI 9/27/10 EMF FIGURES PEI 9/27/10 GENERAL DRAWING DRAWING NUMBER SCALE: NTS 161-kV H-FRAME REFERENCE DRAWINGS